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Muneo Chōa, Injo Hurb, Ji Eun Leec

a15-3-1113, Tsutsui-machi Yahatanishi-ku, Kita-kyushu 806-0032, Japan
bDepartment of Mathematics Education, Chonnam National University, Gwangju, Republic of Korea

cDepartment of Mathematics and Statistics, Sejong University, Seoul, 05006, Republic of Korea

Abstract. In this paper, we prove that the numerical range of a conjugation on Banach spaces, using the
connected property, is either the unit circle or the unit disc depending the dimension of the given Banach
space. When a Banach space is reflexive, we have the same result for the numerical range of a conjugation
by applying path-connectedness which is applicable to the Hilbert space setting. In addition, we show that
the numerical ranges of antilinear operators on Banach spaces are contained in annuli.

1. Introduction and preliminaries

Let L(H) denote the algebra of all bounded linear operators on a separable complex Hilbert space H .
In 1918, O. Toeplitz [17] introduced the notion of the numerical range of a bounded linear operator T onH .
For T ∈ L(H), the numerical range W(T) of T is defined by

W(T) = {〈Tx, x〉 : x ∈ H , ‖x‖ = 1}. (1)

Toeplitz-Hausdorff theorem [11, 12, 17] establishes the convexity of the numerical range for any bounded
linear operator on a Hilbert space. The authors in [7, 16] present some properties and further developments
of the numerical ranges of bounded linear operators on a Hilbert space. In particular, diverse convex sets
are discussed in [16] such that they become the numerical ranges of some linear operators.

In 1961 and 1962, Bauer [1] and Lumer [14] extended the concept of the numerical range on a Banach
space X. Let X∗ be the dual space of X and let T∗ be the adjoint operator of T ∈ L(X), where L(X) is the
algebra of all bounded linear operators on X. The set Π is defined by

Π = { (x, f ) ∈ X × X∗ : ‖ f ‖ = f (x) = ‖x‖ = 1 }. (2)
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For T ∈ L(X), the numerical range V(T) of T is defined by

V(T) = { f (Tx) : (x, f ) ∈ Π }.

It is a natural extension of the numerical range W(T) of a bounded linear operator T on a Hilbert spaceH
to a Banach space X. It turns out that V(T) is not convex in general (see [3, Example 1, page 98]), but it is
connected due to the connectedness of Π (see [2] and [3, Corollary 5, page 102] or Proposition 2.3 below).
Note that it is an open problem if V(T) is path-connected or not (see [3, (7), page 129]).

One of the reasons to study numerical ranges is due to their relation to spectra. Let σ(T) denote the
spectrum of T ∈ L(X). For a subset M of C, we denote the closure of M by M. Note that for any T ∈ L(X),
σ(T) ⊂ V(T) holds (see [18] or [3, Theorem 1, page 88]). If H is a Hermitian operator on X (i.e, V(H) ⊂ R),
then V(H) = co σ(H) ([3, Corollary 11, page 53]), where co σ(H) is the convex hull of σ(H). Moreover, even
though H is Hermitian, H2 may not be Hermitian (see [3, Example 1, Page 58]).

In contrast to numerical ranges of linear operators, the ones of antilinear operators seem to have easier
structure. An antilinear operator A onH is defined by

A(αx + βy) = αAx + βAy

for x, y ∈ H and α, β ∈ C. A typical example of antilinear operators is a conjugation. A conjugation onH is
an antilinear operator C : H → H with C2 = I which satisfies 〈Cx,Cy〉 = 〈y, x〉 for all x, y ∈ H (see [9] and
[8–10] for more details). For a conjugation C onH , the numerical range W(C) is defined by

W(C) = { 〈Cx, x〉 : x ∈ H , ‖x‖ = 1 }, (3)

similar to the definition of those for linear operators. Recently, the authors in [13] provide the numerical
range of a conjugation on a Hilbert space as follows.

Theorem 1.1. ([13, Theorem 2.1]) Let C be a conjugation onH . Then the numerical range W(C) of C is the following:

(I) W(C) = {z : |z| = 1}, when dimH = 1 (equivalently,H = C).
(II) W(C) = {z : |z| ≤ 1} for dimH ≥ 2.

The same paper [13] also shows that the numerical ranges of antilinear operators onH (which are defined
similarly to (3)) are contained in annuli (see [13, Theorem 2.5]). Diverse convex sets can be numerical ranges
W(T) for T ∈ L(H), but the ones for antilinear operators look circular due to the circular property (6).

In this manuscript we would like to extend all these to Banach spaces. Recently, Chō and Tanahashi [6]
extend the concept of conjugations to a complex Banach spaceX (with its norm ‖·‖) as antilinear involutions
whose operator norms are at most 1. More precisely, any operator C : X → X is called a conjugation on X, if
C satisfies

C2 = I, ‖C‖ ≤ 1, C(x + y) = Cx + Cy, C(λx) = λCx, (4)

for x, y ∈ X and λ ∈ C. Note that (4) implies that ‖Cx‖ = ‖x‖ for all x ∈ X. With this extension of C, Theorems
2.4 and 3.1 tell us the numerical ranges V(C) and V(A) of conjugations C and antilinear operators A on X,
respectively.

This paper is organized as follows. In Section 2 we would like to present the numerical range for a
conjugation on a Banach space X. Section 3 leads us to the numerical ranges for antilinear operators on X.

2. Conjugations

Before considering the numerical range of a conjugation on a Banach space X, we would like to give
the alternative proof of Theorem 1.1(II) on a numerical range of a conjugation on a Hilbert space H . This
is because this proof is shorter than the original proof in [13] and a similar argument will be applied later
when a Banach space is reflexive.
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Proof. [Proof of Theorem 1.1(II)] By [9], there exists a unit vector x (so called an isotropic vector) such that
〈Cx, x〉 = 0 which means that 0 ∈W(C). Next, for nonzero vector x, since x + Cx , 0 or x−Cx , 0, it follows
that C(x + Cx) = x + Cx and C(ix + C(ix)) = C(i(x − Cx)) = ix + C(ix). Thus 1 ∈ W(C). Therefore, we can
choose x0, x1 which are unit vectors such that 〈Cx0, x0〉 = 0 and 〈Cx1, x1〉 = 1. Let 〈Cx0, x1〉 = reiθ and let
x′0 = eiθx0. Then x′0 is a unit vector and it satisfies 〈Cx′0, x1〉 = r. Since x′0, x1 are linearly independent, we
have (1 − t)x′0 + tx1 , 0. If not, (1 − t)x′0 + tx1 = 0 implies that |1 − t| = |t|, so t = 1

2 . This means that x′0 = −x1,
which contradicts to the fact that 〈Cx0, x0〉 = 0 and 〈Cx1, x1〉 = 1. Indeed, 1 = 〈Cx′0, x

′

0〉 = e−2iθ
〈Cx0, x0〉 = 0

which is impossible.
Let us now connect x′0 and x1 on the unit sphere of X. Put

y(t) :=
(1 − t)x′0 + tx1

‖(1 − t)x′0 + tx1‖
for 0 ≤ t ≤ 1.

Then y(t) is a unit vector and it satisfies

〈Cy(t), y(t)〉

=
1

‖(1 − t)x′0 + tx1‖
2

(
(1 − t)2

〈Cx′0, x
′

0〉 + 2t(1 − t)〈Cx′0, x1〉 + t2
〈Cx1, x1〉

)
=

1
‖(1 − t)x′0 + tx1‖

2

(
2t(1 − t)r + t2

)
⊂ [0, 1].

Since t ∈ [0, 1] is arbitrary, 〈Cy(0), y(0)〉 = 0, and 〈Cy(1), y(1)〉 = 1, it follows that the continuity of y(t) in t
says that

[0, 1] ⊂W(C). (5)

Next we discuss a circular structure of V(C). Let r ∈ [0, 1] and let x be a unit vector with 〈Cx, x〉 = r. For any
real number θ, since eiθx is a unit vector and

〈C(eiθx), eiθx〉 = e−2iθ
〈Cx, x〉 = e−2iθr, (6)

it follows that e−2iθr ∈W(C). Moreover, since θ is arbitrary, it holds

{ z ∈ C : |z| = r } ⊂W(C). (7)

From (5) and (7), we have W(C) = { z ∈ C : |z| ≤ 1 }. Hence the proof is completed.

To extend Theorem 1.1 to a Banach space X, recall that the numerical range V(C) of C,

V(C) = { f (Cx) : (x, f ) ∈ Π },

where Π is denoted as in (2). To proceed we need the following lemma.

Lemma 2.1. If dimX ≥ 2, then both 0 and 1 are in V(C).

Proof. By Lemma 2.2 on [5], there exists an isotropic vector (say x1) if dimX ≥ 2, i.e., there exists (x1, f ) ∈ Π
such that f (x1) = 1 and f (Cx1) = 0. This means that V(C) contains 0. To see 1 ∈ V(C), let us first show that
there exists a nonzero unit vector x2 ∈ X such that Cx2 = x2. We may assume that, for a nonzero vector
x, x + Cx , 0. Put x2 := (x + Cx)/‖x + Cx‖. Then x2 is a unit vector and it satisfies Cx2 = x2. Hence, by
Hahn-Banach theorem, there exists (x2, 1) ∈ Π such that 1(x2) = 1 = 1(Cx2), which means 1 ∈ V(C).

A topological space X is called connected if there is no separation by open subsets, that is, if there are
two open subsets A and B in X such that X = A ∪ B and A ∩ B = ∅, then either A = ∅ or B = ∅. One of the
crucial properties of V(T) for T ∈ L(X) is that V(T) is connected. This topological property follows from the
connectedness of Π in (2).
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Theorem 2.2. ([4, Theorem 11.4]) Let X be a complex Banach space. Then Π is a connected subset of X × X∗ with
the norm × weak∗ topology.

Similar to [4, Corollary 11.5], the mapping from Π to V(A) is continuous with any antilinear bounded
operator A.

Proposition 2.3. Let X be a complex Banach space and let C be a conjugation on X. Then V(C) is connected in the
complex plane C.

Proof. For (x, f ), (y, 1) ∈ Π, since

| f (Cx) − 1(Cy)| ≤ ‖Cx − Cy‖ + |( f − 1)(Cy)|,

the mapping (x, f ) → f (Cx) is a continuous mapping of Π with the relative norm × weak∗ topology onto
V(C). Hence, by Theorem 2.2, V(C) is connected in the complex plane C.

We are now ready to figure out V(C) on X. Let us denote by B(0, λ) the open ball with center 0 and
radius λ.

Theorem 2.4. Let X be a complex Banach space and let C be a conjugation on X. Then the numerical range V(C) of
a conjugation C is the following:

(i) V(C) = {z : |z| = 1}, when dimX = 1 (equivalently, X = C).
(ii) V(C) = {z : |z| ≤ 1} for dimX ≥ 2.

Before proving, recall the circular property (6), that is, if (x, f ) ∈ Π, then (eiθx, e−iθ f ) ∈ Π for any real number
θ. Therefore if f (Ax) ∈ V(A), then e−2iθ f (Ax) ∈ V(A) for any antilinear operator A. In other words,

{z ∈ C : |z| = | f (Ax)|} ⊂ V(A).

Proof. (i) Since one dimensional Banach space is a Hilbert space, we have this result from Theorem 1.1(I).
(ii) The isometric property of C implies that

| f (Cx)| ≤ ‖ f ‖‖x‖ = 1,

which says that V(C) ⊂ B(0, 1). Now let us show that B(0, 1) ⊂ V(C). With the help of the circular property,
Lemma 2.1 says that V(C) contains 0 and the unit circle {z ∈ C : |z| = 1}. This means that it suffices to show
that B(0, 1) \ {0} is in V(C). Suppose not, i.e., there exists a nonzero complex number λ in B(0, 1) which does
not belong to V(C). Due to the circular property again, the circle {z ∈ C : |z| = |λ|} has no intersection point
with V(C), i.e.,

V(C) ∩ {z ∈ C : |z| = |λ|} = ∅.

Put G := V(C) ∩ B(0, λ) and F := V(C) ∩ (C \ B(0, λ)). By construction these two sets G and F are (relatively)
open in V(C) and disjoint (i.e., F ∩ G = ∅). Since 0 ∈ G and 1 ∈ F, G and F are nonempty. All this means
that there are two nonempty open subsets G and F such that V(C) = G ∪ F and F ∩ G = ∅, i.e., V(C) has a
separation by nonempty open sets. So V(C) is not connected, which contradicts to Proposition 2.3. Then
V(C) contains B(0, 1) and therefore V(C) = B(0, 1).

For a conjugation C on X, we define the dual conjugation C∗ on X∗ of C by

(C∗ f )(x) = f (Cx) (x ∈ X),

where f (Cx) is the complex conjugation of the complex number f (Cx). In general, V(T) ⊂ V(T∗) for T ∈ L(X)
and its adjoint operator T∗ on X∗. However, due to Theorem 2.4, V(C) = V(C∗).
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Corollary 2.5. Let X be a complex Banach space and let C be a conjugation on X. Then V(C) = V(C∗).

From now on let us show the same result of Theorem 2.4 when X is reflexive but with path-connected
argument. A spaceX is called path-connected if for any two points x and y inX there exists a continuous path
f from [0, 1] toX such that f (0) = x and f (1) = y. Recall thatX is a reflexive Banach space ifX∗∗ = {x̂ : x ∈ X},
where x̂ is the Gelfand transformation of x, i.e., x∗( f ) = f (x) for f ∈ X∗.

Remark 2.6. In general, there is no relation between connectedness and path-connectedness. For example, topologist’s
sine curve (which is a subset of C), i.e.,

{ x + i sin
1
x

: 0 < x ≤ 1 } ∪ { iy : −1 ≤ y ≤ 1 } ⊂ C

is connected but not path-connected (even though C is path-connected).

Luna [15] and Weigel [19] show the path-connectedness of Π and then V(T).

Theorem 2.7. ([15, Corollary 7] or [19, Theorem 2]) LetX be a complex reflexive Banach space with dimX ≥ 2 and
let T ∈ L(X). Then V(T) is path-connected.

Note that the theorem above is also true for any antilinear bounded operators, since [15] shows that Π is
path-connected when X is reflexive and therefore a similar argument to Proposition 2.3 says that V(A) is
path-connected. We now provide the another proof of Theorem 2.4 (ii) by using path-connectedness of
V(C), when X is reflexive. The reason is that this proof is very similar to the one on a Hilbert space.

Theorem 2.8. With the same hypothesis as in Theorem 2.4, if X is reflexive with dimX ≥ 2. Then the numerical
range V(C) of C is V(C) = {z : |z| ≤ 1}.

Proof. From Lemma 2.1, it holds that 0, 1 ∈ V(C). Since, by Theorem 2.7, V(C) is path-connected, there exists
a continuous curve y = y(t) such that y(0) = 0 and y(1) = 1 on the complex plane. Then the circular property
implies V(C) = B(0, 1). More precisely, for any a (0 ≤ a ≤ 1), there exists t0 such that |y(t0)| = a. Put y(t0) = z.
Hence there exists (x, f ) ∈ Π such that f (Cx) = z. Let θ be any real number. Since (e−iθx, eiθ f ) ∈ Π, it follows
that

eiθ f (Ce−iθx) = e2iθ f (Cx) = e2iθz ∈ V(C).

Moreover, since θ is any real number, we have {w ∈ C : |w| = a }. Therefore, it holds V(C) = {z : |z| ≤ 1}.

Remark 2.9. It does not seem easy to apply the idea of the original proof on Toeplitz-Hausdorff theorem directly to
show Theorem 2.4 (ii) (unlike Hilbert space setting or Theorem 1.1).

3. Antilinear operators

In this section, we investigate the numerical ranges of antilinear operators on a Banach space X. As the
case of conjugations, the numerical ranges of any antilinear operators on a Banach space X have a circular
structure due to (6).

Theorem 3.1. Let A be a bounded antilinear operator on X. Put a:= inf{| f (Ax)| : (x, f ) ∈ Π} and b:= sup{| f (Ax)| :
(x, f ) ∈ Π}. Then its numerical range V(A) of A is the following:

(i) When dimX = 1 (equivalently, X = C), a = b and V(A) = {z : |z| = a}.
(ii) For dimX ≥ 2, V(A) is contained in the annulus whose boundaries are two circles {z : |z| = a} and {z : |z| = b}.

Inner or outer boundary circle is in V(A) if and only if the infimum or supremum becomes the minimum or
maximum, respectively.
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Proof. (i) Choose any (x, f ), (y, 1) ∈ Π. Since dimX = 1, there exists θ ∈ R such that y = eiθx. Since
1 = 1(y) = 1(eiθx) = eiθ1(x), it holds 1(x) = e−iθ = (e−iθ f )(x) and hence 1 = e−iθ f . Therefore, 1(Ay) =
(e−iθ f )(A(eiθx)) = e−2iθ f (Ax), which indicates that a = b. By the circular property, we have a proof of (i).
(ii) Suppose not, i.e., there exists a nonzero complex number λ between a and b which does not belong to
V(A). By the circular property

{z ∈ C : |z| = b} ∩ V(A) = ∅.

Then set G := V(A) ∩ B(0, λ) and F := V(A) ∩ (C \ B(0, λ)) where B(0, λ) is the open ball with center 0 and
radius λ with a ≤ λ ≤ b. By construction these two sets G and F are (relatively) open in V(A) and disjoint
(i.e., F ∩ G = ∅). Since a ∈ G and b ∈ F, G and F are nonempty. It means that there are two nonempty open
subsets G and F such that V(A) = G ∪ F and F ∩ G = ∅, i.e., V(A) has a separation by nonempty open sets.
So V(A) is not connected, which contradicts to Proposition 2.3. Hence V(A) is contained in the annulus.

It is notable that the proof above indicates that V(A) is path-connected, which was unknown for numerical
ranges V(T) of linear bounded operators T ∈ L(X).

For an antilinear operator A on X, we define the adjoint operator A∗ of A by

(A∗ f )(x) = f (Ax), (x ∈ X, f ∈ X∗),

where f (Ax) is the complex conjugation of the complex number f (Ax). Then A∗ is an antilinear operator on
X
∗. Similar to bounded linear operators we have the following corollary.

Corollary 3.2. Let A be an antilinear operator onX. Then V(A) ⊆ V(A∗) and the equality holds whenX is reflexive.

Remark 3.3. IfX is non-reflexive, then Π(X) is strictly smaller than Π(X∗) in the sense that there exists f ∈ X∗ such
that it does not have x ∈ X satisfying (x, f ) ∈ Π(X). Due to this, for example, it is possible that, even though V(A)
does not contain a in (ii) on Theorem 3.1, V(A∗) may contain a. Therefore V(A∗) may be strictly greater than V(T).
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[6] M. Chō and K. Tanahashi, On conjugations for Banach spaces, Sci. Math. Jpn. 81 (2018)(1), 37–45.
[7] T. Furuta, Invitation to Linear Operators, Taylor and Francis, London (2001).
[8] S. R. Garcia, Conjugation and Clark operators, Recent advances in operator-related function theory, Contemp. Math., vol. 393,

Amer. Math. Soc., Providence, RI, 2006, pp. 67–111.
[9] S. R. Garcia, E. Prodan and M. Putinar, Mathematical and physical aspects of complex symmetric operators, J. Phys. A: Math.

Gen. 47 (2014), 353001.
[10] V. I. Godič and Ī. E. Lucenko, On the representation of a unitary operator in the form of product of two involutions (Russian),

Uspehi Mat. Nauk. 20 (1965), no. 6 (126), 64–65.
[11] K. Gustafson, The Toeplitz-Hausdorff theorem for linear operators, Proc. Amer. Math. Soc. 25 (1970), 203–204.
[12] F. Hausdorff, Der Wertvorrat einer Bilinearform (German), Math. Z. 3 (1919), no. 1, 314–316.
[13] I. Hur and J. E. Lee, Numerical ranges of conjugations and antilinear operators, Linear Multilinear Algebra 69 (2021), no. 16,

2990–2997.
[14] G. Lumer, Semi-inner-product spaces, Trans. Am. Math. Soc. 100 (1961), 29–43.
[15] G. Luna, On the numerical range in Reflexive Banach spaces, Math. Ann. 231 (1977), 33–38.
[16] J. H. Shapiro, Notes on the numerical range, Lecture Notes, 2003, 1–15.
[17] O. Toeplitz, Das algebraische Analogon zu einem Satze von Fejer (German), Math. Z. 2 (1918), no. 1-2, 187–197.
[18] J. P. Williams, Spectra of products and numerical ranges, J. Math. Anal. Appl. 17 (1967), 214–220.
[19] H. Weigel, Reflexivity and numerical range, Expo. Math. 3 (1985), 373–374.


