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Abstract. (m, ρ)-quasi-Einstein N(κ)-contact metric manifolds have been studied and it is established that
if such a manifold is a (m, ρ)-quasi-Einstein manifold, then the manifold is a manifold of constant sectional
curvature κ. Further analysis has been done for gradient Einstein soliton, in particular. Obtained results
are supported by an illustrative example.

1. Introduction

In an attempt to solve the Poincare conjecture, in 1982, Hamilton[18] developed the idea Ricci flow
which is given by

∂
∂t
1 = −2Ric,

where Ric is the Ricci tensor of the matric 1, satisfying a prescribed initial condition. The method of Ricci
flow was used by Perelman[26] to solve ‘Poincare conjecture’completely. The self-similar solution of Ricci
flow is Ricci soliton[10, 20]. A Ricci soliton (1,W, λ) is given by

1
2

£W1 + Ric = λ1, (1)

where £W denotes the Lie derivative in the direction of the vector field W and λ is a real number. The soliton
is considered expanding, steady or shrinking according as λ < 0, λ = 0 or λ > 0, respectively. The soliton is
called gradient when W is a gradient vector field associated with a smooth function ψ, and it is described
by

Ric + ∇2ψ = λ1.

Here ∇2 is the Hessian operator of 1. In particular, if ψ is a constant, it is said that the soliton is trivial. In
[11], the author gave the idea of m-Bakry-Emery Ricci curvature. When m > 0 and ψ : M→ R is a smooth
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function, the m-Bakery Ricci tensor Ricm
ψ is defined by

Ricm
ψ = Ric + ∇2ψ −

1
m

dψ ⊗ dψ.

A differentiable manifold (Mn, 1), n ≥ 3 is defined to be a generalized quasi-Einstein manifold if there are
three smooth functions ψ, α, β satisfying

Ric + ∇2ψ − αdψ ⊗ dψ = β1.

The idea of generalized quasi-Einstein manifold was developed by Catino[12]. When α = 0, β ∈ R, then
generalized quasi-Einstein manifold reduces to a gradient Ricci soliton[27] and m-quasi Einstein[2] when
α = 1

m ,m ∈ N and β ∈ R. Here we study a particular case of generalized quasi-Einstein soliton which is
called (m, ρ)-quasi-Einstein manifold introduced by Huang and Wei[19].
Definition 1.1. A Riemannian manifold (Mn, 1) is called a (m, ρ)-quasi-Einstein manifold if there is a smooth
function ψ : M→ R and three constants m, ρ, λ with 0 < m ≤ ∞ satisfying

Ric + ∇2ψ −
1
m

dψ ⊗ dψ = β1 = (ρr + λ)1, (2)

where r is the scalar curvature of the metric 1. When m = ∞, ρ = 0, then the manifold reduces to exactly
gradient Ricci soliton and gradient ρ-Einstein soliton when m = ∞. We denote (m, ρ)-quasi-Einstein man-
ifold by (Mn, 1, ψ, λ). If the potential function ψ is constant, then (m, ρ)-quasi-Einstein manifold is called
trivial. In [19], the authors gave some classification of (m, ρ)-quasi-Einstein manifold whenever it is bach-flat.

In 2016, Catino-Mazzieri[13] introduced the notion of Einstein solitons which is generated by self-similar
solutions to Einstein flow

∂
∂t
1 = −2

(
Ric −

1
2

r1
)
. (3)

Definition 1.2. ([13]) Let (M, 1) be a Riemannian manifold of dimension n ≥ 3. Then M is called a gradient
Einstein soliton, denoted by (1, ψ, λ) if there is a smooth function ψ : M→ R such that

Ric −
1
2

r1 + ∇2ψ = λ1. (4)

If the scalar curvature r of the manifold is constant, then the gradient Einstein soliton (1, ψ, λ) reduces to a
gradient Ricci soliton

(
1, ψ, λ + 1

2 r
)
.

Catino-Mazzieri[13] showed that every compact gradient Einstein, Schouten or traceless Ricci soliton is
trivial. They also proved that every gradient ρ-Einstein soliton is rectifiable. Next, they classified three-
dimensional gradient shrinking Schouten soliton and proved that it is isometric to a finite quotient of either
S3 or R3 or R × S2.

In the paper [9], Blaga studied gradient η-Einstein solitons. In the paper [17], Ghosh studied (m, ρ)-
quasi-Einstein metrices in the framework of K-contact manifolds and showed that in a complete (m, ρ)-
quasi-Einstein manifold with m , 1, the potential function ψ is constant and the manifold is compact,
Einstein and Sasakian. Motivated by these works in this paper we study (m, ρ)-quasi-Einstein matrices on
three dimensional N(κ)-contact metric manifolds. We also are interested to study gradient Einstein solitons
on 3-dimensional N(κ)-contact metric manifolds.

Now we state the main results of the paper :

Theorem 1.1. If a three-dimensional N(κ)-contact metric manifold (M, 1, ψ, λ) is a (m, ρ)-quasi-Einstein manifold,
then M is a manifold of constant sectional curvature κ and either λ = (m + 2 − 6ρ)κ or, ψ is a constant.

Theorem 1.2. If the metric of a three-dimensional N(κ)-contact metric manifold M3(1, ψ, λ) is a gradient Einstein
soliton, then M is a manifold of constant sectional curvature κ. Moreover, either M is flat or, ψ is a constant.
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2. Preliminaries

On a (2n + 1)-dimensional manifold M2n+1, by an almost contact structure, we mean the triplet (ϕ, ζ, θ),
where ϕ is a (1, 1) tensor field, ζ is a global vector field and θ is a 1-form, and

ϕ2 + I = θ ⊗ ζ, θ(ζ) = 1, (5)

which implies that

ϕζ = 0, θ ◦ ϕ = 0, and rank (ϕ) = 2n. (6)

The manifold M2n+1 equipped with the structure (ϕ, ζ, θ) is called an almost contact manifold [3, 4]. When
[ϕ,ϕ] + 2dθ ⊗ ζ vanishes identically, then almost contact manifold is said to be normal. If, in addition, the
manifold is endowed with a Riemannian metric such that

1(U,V) = 1(ϕU, ϕV) + θ(U)θ(V) (7)

for all vector fields U,V on M, then (M, ϕ, ζ, θ, 1) is called an almost contact metric manifold. Putting V = ζ
in (7), we find that

1(U, ϕV) + 1(ϕU,V) = 0, θ(U) = 1(U, ζ). (8)

If 1(U, ϕV) = dθ(U,V) for all U,V on M, then the almost contact metric manifold (M, ϕ, ζ, θ, 1) is called a
contact metric manifold. In this case, the volume form θ∧ (dθ)n , 0 everywhere on M. We denote by ∇ the
Riemannian connection of 1 and by K the corresponding curvature tensor given by

K(U,V) = [∇U,∇V] − ∇[U,V] (9)

for all vector fields U,V on M. A normal contact metric manifold is known as Sasakian manifold. A
necessary and sufficient condition for an almost contact metric manifold (M, ϕ, ζ, θ, 1) to be Sasakian is that

(∇Uϕ)V = 1(U,V)ζ − θ(V)U.

On the other hand for a Sasakian manifold, we have

K(U,V)ζ = θ(V)U − θ(U)V.

For a contact metric manifold, we can define a (1,1)-tensor field h = 1
2 £ζϕ which is symmetric and satisfy

ϕh + hϕ = 0, tr h = trϕh = 0 (10)

and

∇Uζ = −ϕU − ϕhU (11)

for all vector field U on M. h = 0 if and only if the characteristic vector field ζ is a Killing vector field, that is
£ζ1 = 0. In this case the contact metric manifold is called K-contact. Every Sasakian manifold is K-contact,
but the converse is true. However every 3-dimensional K-contact manifold is Sasakian[22].

The (κ, µ)-nullity distribution N(κ, µ)[7] of a contact metric manifold (M, ϕ, ζ, θ, 1) is the distribution

N(κ, µ) : p→ Np(κ, µ)
= {W ∈ TpM : K(U,V)W = (κI + µh)(1(V,W)U − 1(U,W)V)}

for all vector field U,V on M, where (κ, µ) ∈ R2. If the characteristic vector field ζ ∈ N(κ, µ) then the
manifold M is called a (κ, µ)-contact metric manifold. For a (κ, µ)-contact metric manifold, we have

K(U,V)W = (κI + µh)(θ(V)U − θ(U)V). (12)
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On a (κ, µ)-contact metric manifold, κ ≤ 1.When κ = 1, the structure is Sasakian. If µ = 0, the (κ, µ)-nullity
distribution N(κ, µ) is reduced to the κ-nullity distribution N(κ)[28]. The κ-nullity distribution N(κ) of a
Riemannian manifold is defined by [28]

N(κ) : p → Np(κ)
= {W ∈ TpM : K(U,V)W = κ(1(V,W)U − 1(U,W)V)},

where κ is a real number. If ζ ∈ N(κ), then a contact metric manifold is called an N(κ)-contact metric
manifold. N(κ)-contact metric manifolds have been studied by several authors such as [14–16, 21, 23–25]
and many others.

For N(κ)-contact metric manifolds M2n+1 the following relations hold[7]:

h2 = (κ − 1)ϕ2, κ ≤ 1, (13)

(∇Uϕ)V = 1(U + hU,V)ζ − θ(V)(U + hU), (14)

K(U,V)ζ = κ(θ(V)U − θ(U)V), (15)

Ric(U,V) = 2(n − 1)1(U,V) + 2(n − 1)1(hU,V) (16)
+ [2nκ − 2(n − 1)]θ(U)θ(V),

Ric(U, ζ) = 2nκθ(U), (17)

(∇Uθ)V = 1(U + hU, ϕV) (18)

for any vector fields U,V on M. The curvature tensor K in a 3-dimensional Riemannian manifold is given
by

K(U,V)W = Ric(V,W)U − Ric(U,W)V + 1(V,W)QU (19)

− 1(U,W)QV −
r
2
{1(V,W)U − 1(U,W)V}.

In [6], the authors proved that in a 3-dimensional N(κ)-contact metric manifold M, the following relations
hold :

QU =
( r

2
− κ

)
U +

(
3κ −

r
2

)
θ(U)ζ, (20)

where Q is the Ricci operator defined by Ric(U,V) = 1(QU,V).

K(U,V)W =
( r

2
− 2κ

)
(1(V,W)U − 1(U,W)V) (21)

+
(
3κ −

r
2

)
(1(V,W)θ(U)ζ − 1(U,W)θ(V)ζ

+ θ(V)θ(W)U − θ(U)θ(W)V).

∇Uζ = −(1 + α)ϕU (22)

for all vector fields U,V,W on M, whereα = ±
√

1 − κ. From (21), it follows that, a 3-dimensional N(κ)-contact
metric manifold is of constant curvature if and only if r = 6κ.

Lemma 2.1. [8] Let M2n+1(ϕ, ζ, θ, 1) be a contact metric manifold and suppose that K(U,V)ζ = 0 for all vector fields
U and V. Then M2n+1 is locally the product of a flat (n + 1)-dimensional manifold and n-dimensional manifold of
positive constant curvature 4 for n > 1 and flat for n = 1.
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3. Proof of the main results

Before proving the main result, we need the following lemma.

Lemma 3.1. If (Mn, 1, ψ, λ), n ≥ 3 be a (m, ρ)-quasi-Einstein manifold, then the curvature tensor K satisfies

K(U,V)Dψ = (∇VQ)U − (∇UQ)V + (Uβ)V − (Vβ)U (23)

+
1
m
{(Uψ)QV − (Vψ)QU}

+
β

m
{(Vψ)U − (Uψ)V}.

Proof. From (2), we have

∇VDψ = −QV +
1
m
1(Dψ,V)Dψ + βV. (24)

Differentiating covarianly (24) along the vector field U, we get

∇U∇VDψ = −∇U(QV) + β∇UV + (Uβ)V

+
1
m
{1(∇UDψ,V)Dψ + 1(Dψ,∇UV)Dψ + (Vψ)∇UDψ}. (25)

Interchanging U and V in the previous equation, we obtain

∇V∇UDψ = −∇V(QU) + β∇VU + (Vβ)U

+
1
m
{1(∇VDψ,U)Dψ + 1(Dψ,∇VU)Dψ + (Uψ)∇VDψ}. (26)

Substituting the values (24)-(26) in (9), we get the result.

Proof of Theorem 1.1. From (20), we get

(∇VQ)U =
1
2

(Vr)U −
1
2

(Vr)θ(U)ζ

+
( r

2
− 3κ

)
{1(U, ϕV + ϕhV)ζ + θ(U)(ϕV + ϕhV)}. (27)

Putting (27) and (20) in (23) and taking inner product with ζ, we obtain

1(K(U,V)Dψ, ζ) = (Uβ)θ(V) − (Vβ)θ(U) + (r − 6κ)1(U, ϕV)

+
1
m

(β − 2κ){(Vψ)θ(U) − (Uψ)θ(V)}. (28)

Using (15) in (28), it follows that

(m + 2)κ − β
m

{(Vψ)θ(U) − (Uψ)θ(V)} = (Uβ)θ(V) − (Vβ)θ(U)

+ (r − 6κ)1(U, ϕV). (29)

Replacing U by ϕU and V by ϕV in the foregoing equation, we have

(r − 6κ)dθ(U,V) = 0.

As dθ is non-vanishing on any contact metric manifold, from the above we get

r = 6κ.
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From (21), we see that M is a manifold of constant sectional curvature κ. Since the scalar curvature r = 6κ
is constant the function β = ρr + λ = 6ρκ + λ becomes a constant. Substituting U = ζ in (29)

(m + 2 − 6ρ)κ − λ
m

(Vψ − (ζψ)θ(V)) = 0. (30)

From the above, we have either λ = (m + 2 − 6ρ)κ or, Dψ = (ζψ)ζ.
Suppose that λ , (m + 2 − 6ρ)κ. Differentiating Dψ = (ζψ)ζ along the vector U and using (11), we get

∇UDψ = U(ζψ)ζ − (ζψ)(ϕU + ϕhU). (31)

In the previous equation, applying Poincare Lemma (d2 = 0), we infer that

U(ζψ)θ(V) − V(ζψ)θ(U) + 2(ζψ)1(U, ϕV) = 0.

Replacing U by ϕU and V by ϕV in the above equation, we have

(ζψ)dθ(U,V) = 0.

Since dθ , 0 for any contact manifold, we find that ζψ = 0. Consequently, Dψ = (ζψ)ζ = 0. This completes
the proof.

Corollary 3.1. If the metric of a 3-dimensional compact N(κ)-contact metric manifold (M, 1, ψ, λ) with κ > 0 is a
(m, ρ)-quasi-Einstein manifold then ψ is a constant.

Proof. Since r = 6κ, from (20), QV = 2κV. By proof of Theorem 1.1, either λ = (m + 2− 6ρ)κ or ψ is constant.
If λ = (m + 2 − 6ρ)κ, from (24) it follows that

∇VDψ =
1
m
1(Dψ,V)Dψ + mκV.

Taking trace over V, we have

∆ψ +
1
m
|Dψ|2 + 3mκ = 0.

where ∆ = −Div D is the Laplacian operator of 1. Integrating over M and using divergence theorem, we
obtain∫

M
|Dψ|2 dM = −3m2κ

∫
M

dM. (32)

Since M is orientable, the volume element dM on M is always positive and hence right hand side of (32) is
negative. While the integrand on the left hand side is non-negative, a contradiction. This completes the
proof.

Proof of Theorem 1.2. From (4), it follows that

QU −
1
2

rU + ∇UDψ = λU, (33)

where D is the gradient operator of 1.
Using (20) in (33), we get

∇UDψ = (κ + λ)U +
( r

2
− 3κ

)
θ(U)ζ. (34)
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Differentiating the equation (34) covariantly with respect to the vector field V and using (11), we obtain

∇V∇UDψ = (λ + 1)∇VU +
1
2

(Vr)θ(U)ζ

+
( r

2
− 3κ

)
{(Vθ(U))ζ − θ(U)(ϕV + ϕhV)}. (35)

Interchanging U and V in the previous equation, we have

∇U∇VDψ = (λ + 1)∇UV +
1
2

(Ur)θ(V)ζ

+
( r

2
− 3κ

)
{(Uθ(V))ζ − θ(V)(ϕU + ϕhU)}. (36)

Putting the values (34)-(36) in (9) and using (18) and (10), we infer that

K(U,V)Dψ =
1
2

(Ur)θ(V)ζ −
1
2

(Vr)θ(U)ζ

+ (r − 6κ)1(U, ϕV)ζ −
( r

2
− 3κ

)
θ(V)(ϕU + ϕhU) (37)

+
( r

2
− 3κ

)
θ(U)(ϕV + ϕhV).

Taking inner product of (37) with ζ and using (6) and (15), we get

κ(θ(U)Vψ − θ(V)Uψ) =
1
2

(Ur)θ(V) −
1
2

(Vr)θ(U) (38)

+ (r − 6κ)1(U, ϕV).

Replacing U by ϕU and V by ϕV in (38), we obtain

(r − 6κ)dθ(U,V) = 0.

Since dθ is non-vanishing on any contact manifold, from above equation it follows that

r = 6κ.

Putting the value of r in (21), we see that M is a manifold of constant sectional curvature κ.
Substituting U by ζ in (38), we get

κ{Vψ − θ(V)ζψ} = 0. (39)

This shows that either κ = 0 or Dψ = (ζψ)ζ. If κ = 0, then K(U,V)ζ = 0 for all vector fields U and V. Using
Lemma 2.1 we conclude that M is flat.
Suppose that κ , 0. By the same proof of Theorem 1.1 we conclude that ψ is constant. This completes the
proof.

If κ = 1, then M is a Sasakian manifold. Thus, we are in a position to state the following :

Corollary 3.2. If the metric of a Sasakian 3-manifold is a gradient Einstein soliton with potential function ψ,
then the manifold is a Sasaki-Einstein manifold and ψ is a constant.

4. Example

Let M = {(x, y, z) ∈ R : x , 0} be a three-dimensional manifold.
Suppose

E1 =
∂
∂x
, E2 = 2e−z ∂

∂x
+ ey ∂

∂y
+ 2xez ∂

∂z
, E3 = ez ∂

∂z
.
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here E1,E2,E3 are linearly independent at each point of M. We have

[E1,E2] = 2E3, [E1,E3] = 0, [E2,E3] = 2E1.

Let 1 be the Riemannian metric such that

1(Ei,E j) = δi j, i, j ∈ {1, 2, 3}.

Let ϕ be the (1,1) tensor field and θ be the 1-form defined by

ϕ(E1) = 0, ϕ(E2) = E3, ϕ(E3) = −E2, θ = dx − 2e−y−xdz.

By linearity of ϕ and 1, we have
ϕ2V = −V + θ(V)E1, θ(E1) = 1,

1(ϕU, ϕV) = 1(U,V) − θ(U)θ(V),

dθ(U,V) = 1(U, ϕV)

for all vector fields U,V on M. Thus for E1 = ζ, M(ϕ, ζ, θ, 1) is a contact metric manifold. The tensor h is
given by

hE1 = 0, hE2 = E2, hE3 = −E3.

By Koszul formula,
∇E1 E1 = 0, ∇E1 E2 = 0, ∇E1 E3 = 0,

∇E2 E1 = −2E3, ∇E2 E2 = 0, ∇E2 E3 = 2E1,

∇E3 E1 = 0, ∇E3 E2 = 0, ∇E3 E3 = 0.

From the above we see that
∇Vζ = −ϕV − ϕhV

for all V ∈ χ(M). The Riemannian curvature tensor K vanishes identically. Consequently M is a N(0)-contact
metric manifold. Also, the Ricci tensor Ric and the scalar curvature r vanish.
Suppose that ψ = λ

2 (x2 + e−2y + e−2z). By straightforward calculations we have ∇2ψ = λ1. This shows that 1
is a gradient Einstein soliton.
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