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Abstract. An isometric immersion f : Mn
→ M̃m from an n-dimensional Riemannian manifold Mn into an

almost Hermitian manifold M̃m of complex dimension m is called pointwise slant if its Wirtinger angles define
a function defined on Mn. In this paper we establish the Existence and Uniqueness Theorems for pointwise
slant immersions of Riemannian manifolds Mn into a complex space form M̃n(c) of constant holomorphic
sectional curvature c, which extend the Existence and Uniqueness Theorems for slant immersions proved
by B.-Y. Chen and L. Vrancken in 1997.

1. Introduction

The class of slant submanifolds initiated by B.-Y. Chen in [5] is an important class of submanifolds of
almost Hermitian manifolds, including almost complex and totally real submanifolds as special cases. In
fact, Chen introduced a slant submanifold M of an almost Hermitian manifold (M̃, 1, J) as a submanifold
whose Wirtinger angle θ(X) between JX and the tangent space TpM (p ∈ M) is global constant, i.e, θ(X)
is independent of the choice of the unit vector X ∈ TpM and also independent of the choice of p ∈ M (cf.
e.g., [1, 5, 6, 8, 11, 17]). Further, Chen and Vrancken established in [12, 13] the Existence and Uniqueness
Theorem for slant immersions in complex space forms. Later, in the contents of contact geometry, similar
results were obtained for “slant submanifolds” in Sasakian space forms [1], in Kenmotsu space forms [18],
and in cosymplectic space forms [16].

Due to the popularity of slant submanifolds, F. Etayo [15] defined the notion of pointwise slant subman-
ifolds under the name of “quasi-slant” submanifolds as those whose Wirtinger angle θ(X) is independent
of the choice the unit vector X ∈ TpM at any fixed point p ∈M, but θmay depend on the point p ∈M. Also,
Etayo proved in [15] that a complete, totally geodesic, quasi-slant submanifold of a Kaehler manifold is
always a slant submanifold.

In [9], B.-Y. Chen and O. J. Garay studied pointwise slant submanifolds of almost Hermitian manifolds
and obtained many new results on such submanifolds. In particular, they provided many examples of
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pointwise slant submanifolds of almost Hermitian manifolds. Later on, pointwise slant submanifolds were
investigated on Riemannian manifolds equipped with different structures in [19, 20].

The main purpose of this paper is to establish the Existence and Uniqueness Theorems for pointwise
slant immersions in complex space forms, which extend the Existence and Uniqueness Theorems of Chen
and Vrancken.

This paper is organized as follows: In Section 2, we recall some basic formulas and definitions for
pointwise slant submanifolds in almost Hermitian manifolds. In Section 3, we provide the basic properties
and formulas of pointwise slant submanifolds. In the last two sections, we prove the existence and
uniqueness theorems for pointwise slant submanifolds in complex space forms, respectively.

2. Preliminaries

Let M̃ be an almost Hermitian manifold with an almost complex structure J and an almost Hermitian
metric 〈 , 〉, which satisfy

J2 = −I, 〈JX, JY〉 = 〈X,Y〉, (1)

for any X,Y be the vector fields on M̃. An almost Hermitian manifold M̃ is called a Kaehler manifold if [8, 21]

(∇̃X J)Y = 0, ∀X,Y ∈ TM, (2)

where ∇̃ denotes the Levi-Civita connection on M̃.
A Kaehler manifold is called a complex space form if it has constant holomorphic curvature. In the

following, we shall denote a complete simply connected m-dimensional complex space form with constant
holomorphic curvature c by M̃m(c). The curvature tensor of M̃m(c) satisfies

R̃(X,Y)Z =
c
4
{〈Y,Z〉X − 〈X,Z〉Y + 〈JY,Z〉JX − 〈JX,Z〉JY + 2〈X, JY〉JZ}. (3)

Let x : M → M̃m(c) be an isometric immersion of a Riemannian n-manifold into a complex space form
M̃m(c). We denote the differential map of x by x∗ and let T⊥M denote the normal bundle of M.

For any X ∈ TM, we put

JX = PX + FX, (4)

where PX and FX denote the tangential and normal components of JX, respectively. Also, for any V ∈ T⊥M,
we put

JV = tV + f V, (5)

where tV and f V are the tangential and normal components of JV, respectively.
For a submanifold M in M̃m(c), let ∇̃ and∇ denote the Riemannian connections on M̃ and M, respectively,

while ∇⊥ denotes the normal connection in the normal bundle T⊥M of M. Then, the Gauss and Weingarten
formulas are respectively given by

∇̃XY = ∇XY + σ(X,Y), (6)

∇̃XV = −AVX + ∇⊥XV, (7)

for tangent vector fields X,Y and normal vector field V of M, where σ is the second fundamental form of
M, and A is the shape operator of the second fundamental form.

It is well-known that the shape operator and the second fundamental form are related by

〈AVX,Y〉 = 〈σ(X,Y),V〉. (8)
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For the submanifold M in M̃m(c), let R denote the curvature tensor of M, and let R⊥ denote the curvature
tensor associated with the normal connection ∇⊥. Then the equation of Gauss, Codazzi and Ricci are given
respectively by (cf. e.g., [2, 8])

R̃(X,Y; Z,W) = R(X,Y; Z,W) + 〈σ(X,Z), σ(Y,W)〉 − 〈σ(X,W), σ(Y,Z)〉, (9)

(R̃(X,Y)Z)⊥ = (∇̄Xσ)(Y,Z) − (∇̄Yσ)(X,Z) (10)

and

R̃(X,Y; U,V) = R⊥(X,Y; U,V) − 〈[AU,AV]X,Y〉, (11)

for all X,Y,Z,W ∈ TM, and U,V ∈ T⊥M, where (R̃(X,Y)Z)⊥ is the normal component of R̃(X,Y)Z.
The covariant derivative ∇̄σ of the second fundamental form σ is defined by

(∇̄Xσ)(Y,Z) = ∇⊥Xσ(Y,Z) − σ(∇XY,Z) − σ(Y,∇XZ). (12)

The covariant derivatives of P and F, respectively given by

(∇̃XP)Y = ∇XPY − P(∇XY), (13)

(∇̃XF)Y = ∇⊥XFY − F(∇XY). (14)

With the help of (2)–(7), the above relations give (cf. [6])

(∇̃XP)Y = AFYX + tσ(X,Y), (15)

(∇̃XF)Y = fσ(X,Y) − σ(X,PY), (16)

for X,Y ∈ TM.
Recall that an isometric immersion f : M → M̃ is called pointwise slant if the Wirtinger angle θ(X) can

be regarded as a function on M, known as the slant function in [9]. A pointwise slant submanifold with
slant function θ is simply called a pointwise θ-slant submanifold. Clearly, a pointwise slant submanifold M
is a slant submanifold if its slant function θ is a constant function on M [5, 6]. It is easy to verify that every
surface of an almost Hermitian surface is pointwise slant (cf. Example 1 of [7]).

A point p of a submanifold M in an almost Hermitian manifold is called a totally real point (resp., complex
point) if cosθ = 0 (resp., sinθ = 0) at p. A submanifold M of an almost Hermitian manifold is called a totally
real submanifold if every point p of M is totally real (cf. [10]). It is well-known that every pointwise slant
submanifold is even-dimensional if it is not totally real (cf. Corollary 2.1 of [7]).

3. Basics of pointwise slant submanifolds

We recall the following lemma from [9].

Lemma 3.1. Let M be a submanifold of an almost Hermitian manifold. Then M is pointwise slant if and only if

P2 = −(cos2 θ)I, (17)

for some real-valued function θ defined on M, where I is the identity map.

The following relations are direct consequences of equation (17):

〈PX,PY〉 = (cos2 θ)〈X,Y〉, (18)

〈FX,FY〉 = (sin2 θ〈X,Y〉. (19)
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Clearly, we also have

tFX = −(sin2 θ)X, f FX = −FPX, (20)

for any vector field X on M.
Now, we put

X∗ = (cscθ)FX. (21)

Let β be the symmetric bilinear TM-valued form on M defined by

β(X,Y) = tσ(X,Y) (22)

for any X,Y ∈ TM. Then it follows from (4), (21) and (22) that

Jβ(X,Y) = Pβ(X,Y) + (sinθ)β∗(X,Y). (23)

Also, if we let γ be the symmetric bilinear TM-valued form on M defined by

γ∗(X,Y) = fσ(X,Y), (24)

then (5), (22) and (24), we find

Jσ(X,Y) = β(X,Y) + γ∗(X,Y). (25)

Applying the almost complex structure J and using (1), (5) and (23), we get

−σ(X,Y) = Pβ(X,Y) + (sinθ)β∗(X,Y) + tγ∗(X,Y) + fγ∗(X,Y).

Equating the tangential and the normal components, we obtain

Pβ(X,Y) = −tγ∗(X,Y), −σ(X,Y) = (sinθ)β∗(X,Y) + fγ∗(X,Y).

Using (20) and (21), we conclude that

γ(X,Y) = (cscθ)Pβ(X,Y).

Also,

σ(X,Y) = −(cscθ)β∗(X,Y), (26)

which can be written as

σ(X,Y) = (csc2 θ)(Pβ(X,Y) − Jβ(X,Y)). (27)

Taking the inner product of (15) with Z ∈ TM and using (5), (8) and (22), we derive that

〈(∇̃XP)Y,Z〉 = 〈β(X,Y),Z〉 − 〈β(X,Z),Y〉.

For an n-dimensional pointwise θ-slant submanifold M of a complex space form M̃m(c), we derive the
equations of Gauss and Codazzi of M in M̃m(c) as follows: From (3), we have

R̃(X,Y; Z,W) =
c
4

{
〈X,W〉〈Y,Z〉 − 〈X,Z〉〈Y,W〉 + 〈JX,W〉〈JY,Z〉 − 〈JX,Z〉〈JY,W〉 + 2〈X, JY〉〈JZ,W〉

}
.

Substituting (9) into the above equation, we find

R(X,Y; Z,W) + 〈σ(X,Z), σ(Y,W)〉 − 〈σ(X,W), σ(Y,Z)〉

=
c
4

{
〈X,W〉〈Y,Z〉 − 〈X,Z〉〈Y,W〉 + 〈PX,W〉〈PY,Z〉 − 〈PX,Z〉〈PY,W〉 + 2〈X,PY〉〈PZ,W〉

}
.
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Using (18) and (27), we may write

R(X,Y; Z,W) = (csc2 θ)
{
〈β(X,W), β(Y,Z)〉 − 〈β(X,Z), β(Y,W)〉

}
(28)

+
c
4

{
〈X,W〉〈Y,Z〉 − 〈X,Z〉〈Y,W〉 + 〈PX,W〉〈PY,Z〉 − 〈PX,Z〉〈PY,W〉 + 2〈X,PY〉〈PZ,W〉

}
,

which gives the Gauss equation of M in M̃m(c).
Next, for Codazzi equation if we take the normal parts of (3), we obtain

(R̃(X,Y; Z,W))⊥ =
c
4

{
〈PY,Z〉FX − 〈PX,Z〉FY + 2〈X,PY〉FZ

}
. (29)

Further, it follows from (21) and (26) that

∇
⊥

X(σ(Y,Z)) = −∇⊥X((csc2 θ)Fβ(Y,Z)),

which yields

∇
⊥

X(σ(Y,Z)) = −(csc2 θ)∇⊥XFβ(Y,Z) + 2(csc2 θ cotθ)(Xθ)Fβ(Y,Z).

Then by (16), the above equation takes the form

∇
⊥

X(σ(Y,Z)) = −(csc2 θ)
[

fσ(X, β(Y,Z)) − σ(X,Pβ(Y,Z)) + F(∇Xβ(Y,Z)) − 2(cotθ)(Xθ)Fβ(Y,Z)
]
.

On the other hand, it also follows from (21) and (26) that

σ(∇XY,Z) = −(csc2 θ)Fβ(∇XY,Z).

Similarly, we have

σ(Y,∇XZ) = −(csc2 θ)Fβ(Y,∇XZ).

Substituting these relations into (12), we obtain

(∇̄Xσ)(Y,Z) = −(csc2 θ)
[

fσ(X, β(Y,Z)) − σ(X,Pβ(Y,Z)) + F((∇Xβ)(Y,Z)) − 2(cotθ)(Xθ)Fβ(Y,Z)]

Thus, by using (20), (21) and (26), we can write

(∇̄Xσ)(Y,Z) = − (csc2 θ)
[
(csc2 θ)FPβ(X, β(Y,Z)) + (csc2 θ)Fβ(X,Pβ(Y,Z)) + F((∇Xβ)(Y,Z))

− 2(cotθ)(Xθ)Fβ(Y,Z)
]
.

(30)

Similarly, we have

(∇̄Yσ)(X,Z) = − (csc2 θ)
[
(csc2 θ)FPβ(Y, β(X,Z)) + (csc2 θ)Fβ(Y,Pβ(X,Z)) + F((∇Yβ)(X,Z))

− 2(cotθ)(Yθ)Fβ(X,Z)
]
.

(31)

Finally, after applying (29), (30) and (31) into Codazzi’s equation, we get

(∇̃Xβ)(Y,Z) + (csc2 θ)
{
Pβ(X, β(Y,Z)) + β(X,Pβ(Y,Z))

}
+

c
4

(sin2 θ)
{
〈X,PY〉Z + 〈X,PZ〉Y

}
− 2(cotθ)(Xθ)β(Y,Z)

= (∇̃Yβ)(X,Z) + (csc2 θ)
{
Pβ(Y, β(X,Z)) + β(Y,Pβ(X,Z))

}
+

c
4

(sin2 θ)
{
〈Y,PX〉Z + 〈Y,PZ〉X

}
− 2(cotθ)(Yθ)β(X,Z).
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4. Existence theorem

In this section we present the detailed proofs of the existence and uniqueness theorems for pointwise
slant immersions into a complex space form.

Theorem 4.1. (Existence Theorem) Let Mn be a simply connected Riemannian manifold of dimension n equipped
with metric tensor 〈 , 〉. Suppose that c is a constant and there exist a smooth function θ on Mn satisfying 0 < θ ≤ π

2 ,
an endomorphism P of the tangent bundle TMm and a symmetric bilinear TMn-valued form β on Mn such that the
following conditions are satisfied :

P2X = −(cos2 θ)X, (32)
〈PX,Y〉 = −〈X,PY〉, (33)

〈(∇̃XP)Y,Z〉 = 〈β(X,Y),Z〉 − 〈β(X,Z),Y〉, (34)

R(X,Y; Z,W) = (csc2 θ)
{
〈β(X,W), β(Y,Z)〉 − 〈β(X,Z), β(Y,W)〉

}
+

c
4

{
〈X,W〉〈Y,Z〉 − 〈X,Z〉〈Y,W〉 + 〈PX,W〉〈PY,Z〉

− 〈PX,Z〉〈PY,W〉 + 2〈X,PY〉〈PZ,W〉
}
,

(35)

(∇̃Xβ)(Y,Z) + (csc2 θ)
{
Pβ(X, β(Y,Z)) + β(X,Pβ(Y,Z))

}
+

c
4

(sin2 θ)
{
〈X,PY〉Z + 〈X,PZ〉Y

}
− 2(cotθ)(Xθ)β(Y,Z)

= (∇̃Yβ)(X,Z) + (csc2 θ)
{
Pβ(Y, β(X,Z)) + β(Y,Pβ(X,Z))

}
+

c
4

(sin2 θ)
{
〈Y,PX〉Z + 〈Y,PZ〉X

}
− 2(cotθ)(Yθ)β(X,Z),

(36)

for X,Y,Z ∈ TMn. Then there exists a pointwise θ-slant isometric immersion of Mn into a complex space form M̃n(c)
such that the second fundamental form σ of Mn is given by

σ(X,Y) = (csc2 θ)(Pβ(X,Y) − Jβ(X,Y)). (37)

Proof. Assume that c, θ, P and Mn satisfy the conditions given in the theorem. Suppose that TMn
⊕ TMn

be a Whitney sum. For each X ∈ TMn, we simply denote (X, 0) by X, (0,X) by X∗, and the product metric on
TMn

⊕ TMn by 〈 , 〉. We define the endomorphism Ĵ on TMn
⊕ TMn by

Ĵ(X, 0) = (PX, (sinθ)X), Ĵ(0,X) = (−(sinθ)X,−PX), (38)

for each X ∈ TM. Then by (17), (4) and (21), we find

Ĵ2((X, 0)) = Ĵ(PX, (sinθ)X) = −(X, 0).

Similarly, we find Ĵ2((0,X)) = −(0,X). Hence, J2 = −I. Also, it is easy to check that 〈 ĴX, ĴY〉 = 〈X,Y〉 and it
can be obtained by (38). Therefore, (Ĵ, 〈 , 〉) is an almost Hermitian structure on M.

Now, we can define an endomorphism A on TMn, a (TMn)∗-valued symmetric bilinear form σ on TMn

and a metric connection ∇⊥ of the vector bundle (TMn)∗ over Mn as follows :

AY∗X = (cscθ){(∇̃XP)Y − β(X,Y)}, (39)
σ(X,Y) = −(cscθ)β∗(X,Y), (40)

∇
⊥

XY∗ = (∇XY)∗ − (cotθ)(Xθ)Y∗ + (csc2 θ){Pβ∗(X,Y) + β∗(X,PY)}, (41)

for X,Y ∈ TM.
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Denote by ∇̂ the canonical connection on TMn
⊕TMn induced from equations (38)-(41). Using (13), (20),

(22) and (39)-(41), we get

(∇̂X Ĵ)Y = (∇̂X Ĵ)Y∗ = 0,

for any X,Y ∈ TMn.
Let R⊥ be the curvature tensor corresponding to the connection ∇⊥ on (TMn)∗, which gives by

R⊥(X,Y)Z∗ = ∇⊥X∇
⊥

Y Z∗ − ∇⊥Y∇
⊥

XZ∗ − ∇⊥[X,Y]Z
∗,

for any X,Y,Z ∈ TMn. Then by (41), we have

R⊥(X,Y)Z∗ =∇⊥X

[
(∇YZ)∗ − cotθ(Yθ)Z∗ + csc2 θ{Pβ∗(Y,Z) + β∗(Y,PZ)}

]
− ∇

⊥

Y

[
(∇XZ)∗ − cotθ(Xθ)Z∗ + csc2 θ{Pβ∗(X,Z) + β∗(X,PZ)}

]
− (∇[X,Y]Z)∗ + cotθ([X,Y]θ)Z∗ − csc2 θ{Pβ∗([X,Y],Z) + β∗([X,Y],PZ)}.

Now, by (33), (13), (36) and (41) with direct calculations, we have the following relation

R⊥(X,Y)Z∗ = (csc2 θ)
[
(Yθ) − (Xθ)

]
Z∗ + (R(X,Y)Z)∗

+

{
c
4

P
{
〈Y,PZ〉X − 〈X,PZ〉Y − 2〈X,PY〉Z

}
+

c
4

{
〈Y,P2Z〉X − 〈X,P2Z〉Y − 2〈X,PY〉PZ

}
+ (csc2 θ)

[
(∇̃XP)β(Y,Z) − (∇̃YP)β(X,Z) − β(X, (∇̃YP)Z) + β(Y, (∇̃XP)Z)

]}∗
.

(42)

On the other hand, from (34) and (39), we derive

〈[AZ∗ ,AW∗ ]X,Y〉 = (csc2 θ)
{
〈(∇̃XP)W, (∇̃YP)Z〉 − 〈(∇̃XP)Z, (∇̃YP)W〉 + 〈(∇̃XP)Z, β(Y,W)〉

+ 〈(∇̃YP)W, β(X,Z)〉 − 〈(∇̃XP)W, β(Y,Z)〉 (43)

− 〈(∇̃YP)Z, β(X,W)〉 + 〈β(X,W), β(Y,Z)〉 − 〈β(X,Z), β(Y,W)〉
}
.

Also, using (33), we can write

〈β(Y,Z),PW〉 + 〈Pβ(Y,Z),W〉 = 0.

Taking the covariant derivative of the above equation with respect to X with using (13) and (33), we obtain

〈β(Y,Z), (∇̃XP)W〉 + 〈(∇̃XP)β(Y,Z),W〉 = 0.

Furthermore, from (34), we find

〈(∇̃XP)Z, (∇̃YP)W〉 = 〈(∇̃XP)Z, β(Y,W)〉 − 〈β(Y, (∇̃XP)Z),W〉.

Substituting these relations in (42) and (43) with a simple computation, we arrive at

〈R⊥(X,Y)Z∗,W∗
〉 − 〈[AZ∗ ,AW∗ ]X,Y〉

=
c
4

[
(sin2 θ){〈X,W〉〈Y,Z〉 − 〈X,Z〉〈Y,W〉} − 2〈X,PY〉〈PZ,W〉

]
+ (csc2 θ)[Yθ − Xθ]〈Z,W〉.

Notice that the last equation with Equations (3), (32) and (33) means that (Mn,A,∇⊥) satisfies the Ricci
equation of an n-dimensional pointwise θ-slant submanifold of M̃n(c), while (35) and (36) mean that (Mn, σ)
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satisfies the equations of Gauss and Codazzi, respectively. Therefore, we have a vector bundle TMn
⊕ TMn

over Mn equipped with the product metric 〈 , 〉, the second fundamental form σ, the shape operator
A, and the connections ∇⊥ and ∇̂ which satisfy the structure equations of n-dimensional pointwise θ-
slant submanifold of M̃n(c). Consequently, by applying Theorem 1 of [14] we conclude that there exists a
pointwise θ-slant isometric immersion from Mn into M̃n(c) whose second fundamental form is given by
σ(X,Y) = (csc2 θ)(Pβ(X,Y) − Jβ(X,Y)).

A submanifold of an almost Hermitian manifold is called purely real if it contains no complex points (cf.
[4]). It was proved in [7] that Ricci’s equation is a consequence of the Gauss and Codazzi equations for
purely real surfaces in any Kaehler surface. On the other hand, Theorem 4.1 implies the following.

Corollary 4.2. The Ricci equation is a consequence of the Gauss and Codazzi equations for n-dimensional pointwise
slant submanifolds in any complex space form M̃n(c).

5. Uniqueness theorem

The next result provides the sufficient conditions to have the uniqueness property for pointwise slant
immersions.

Theorem 5.1. (Uniqueness Theorem) Let M̃n(c) be a complex space form and Mn be a connected Riemannian
n-manifold. Let x1, x2 : Mn

→ M̃n(c) be two pointwise θ-slant isometric immersions with 0 < θ ≤ π
2 . Suppose that

σ1 and σ2 are the second fundamental forms of x1 and x2, respectively. If we have

〈σ1(X,Y), Jx1
∗Z〉 = 〈σ2(X,Y), Jx2

∗Z〉, (44)

for all X,Y,Z ∈ TM. In addition, if we consider that at least one of the following conditions is satisfied:

(i) Every point is totally real point,
(ii) there exists a point p of M such that P1 = P2,

(iii) c , 0,

then P1 = P2 and there exists an isometry φ of M̃n(c) such that x1 = φ(x2).

Proof. Let us choose any point p ∈ M with assuming that x1(p) = x2(p) and x1
∗ (p) = x2

∗ (p). Then we take a
geodesic ψ through the point p = ψ(0). Define ψ1 = x1(ψ) and ψ2 = x2(ψ). So, it is sufficient to prove that
ψ1 = ψ2 to prove the theorem. First, we know that ψ1(0) = ψ2(0) and ψ′1(0) = ψ′2(0). We fix {e1, e2, ...en} be an
orthonormal frame along ψ. Now, we define a frame along ψ1 and ψ2 as:

ai = x1
∗ (ei), bi = x2

∗ (ei), an+i = (x1
∗ (ei))∗, bn+i = (x2

∗ (ei))∗,

such that X∗ defined by (21), for i = 1, 2, · · · n.
From (40), we can write

σi = −(cscθ)(βi)∗,

for any i = 1, 2. Using (40) and (32), we obtain

〈(β1)∗(X,Y),Fx1
∗Z〉 = 〈(β2)∗(X,Y),Fx2

∗Z〉

Then, by (21) the above equation takes the form

〈β1(X,Y), x1
∗Z〉 = 〈β2(X,Y), x2

∗Z〉.

As Z be arbitrary vector field and x1
∗ (p) = x2

∗ (p), we get β1 = β2.
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Now, we want to prove that P1 = P2. If (i) is satisfied, then we have P1 = P2 = 0, while if (ii) is satisfied,
then from (34) we have (∇̃X(P1 − P2))Y = 0. Since at any point p ∈ M we already have P1 = P2. So P1 = P2
everywhere.

For the remaining situation, suppose that c , 0, P1 , P2 with (i) and (ii) are not satisfied. In the beginning
we will show that P1 = −P2. For this, using (35), we find

〈P1X,W〉〈P1Y,Z〉 − 〈P1X,Z〉〈P1Y,W〉 + 2〈X,P1Y〉〈P1Z,W〉
= 〈P2X,W〉〈P2Y,Z〉 − 〈P2X,Z〉〈P2Y,W〉 + 2〈X,P2Y〉〈P2Z,W〉.

If we replace W by X and Z by Y with using (33), the above equation can be written as

(〈P1X,Y〉)2 = (〈P2X,Y〉)2 . (45)

Then, we fix e1 = X, e2 = P1X and e3 = Y with assuming that the component of P2e1 is in the same direction
of a vector e3 which is orthogonal to e1 and e2. Hence, equation (45) becomes

(〈P2e1, e3〉)
2 = (〈P1e1, e3〉)

2 = (〈e2, e3〉)
2 = 0,

which is a contradiction. Thus, by (32) and (33), we have P1u = ±P2u, for any u ∈ TpM. Now, we let a
basis {e1, e2, ..., en} of the tangent space at p ∈ M. Then there is a number ci ∈ {−1, 1} such that P1ei = ciP2ei.
Therefore, we have

P2(ei + e j) = ±P1(ei + e j) = ciP1ei + c jP1e j

So, we conclude that all values of ci have to be equal. Hence, either P1u = P2u or P1u = −P2u for any
u ∈ TpM. As M is connected, it follows that in situation (iii) either P1 = P2 or P1 = −P2.

If we assume that now we have two immersions such that P1 = −P2. Then, we can write (34) as

〈(∇̃XP1)Y,Z〉 = 〈β1(X,Y),Z〉 − 〈β1(X,Z),Y〉.

Similarly, we can obtain

〈(∇̃XP2)Y,Z〉 = 〈β2(X,Y),Z〉 − 〈β2(X,Z),Y〉.

But β1 = β2 = β, therefore we deduce that

〈β(X,Y),Z〉 = 〈β(X,Z),Y〉. (46)

For both immersions, we rewrite the equation (36) as follows{
(∇̃Xβ1)(Y,Z) − (∇̃Yβ1)(X,Z)

}
= (csc2 θ)

{
P1β1(Y, β1(X,Z)) + β1(Y,P1β1(X,Z))

− P1β1(X, β1(Y,Z)) − β1(X,P1β1(Y,Z))
}

+
c
4

(sin2 θ)
{
〈Y,P1Z〉X − 〈X,P1Z〉Y − 2〈X,P1Y〉Z

}
+ 2(cotθ)

{
(Xθ)β1(X,Z) − (Yθ)β1(Y,Z)

}
.

Similarly, we get{
(∇̃Xβ2)(Y,Z) − (∇̃Yβ2)(X,Z)

}
= (csc2 θ)

{
P2β2(Y, β2(X,Z)) + β2(Y,P2β2(X,Z))

− P2β2(X, β2(Y,Z)) − β2(X,P2β2(Y,Z))
}

+
c
4

(sin2 θ)
{
〈Y,P2Z〉X − 〈X,P2Z〉Y − 2〈X,P2Y〉Z

}
+ 2(cotθ)

{
(Xθ)β2(X,Z) − (Yθ)β2(Y,Z)

}
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Putting P1 = −P2 = P and β1 = β2 = β in the above two equations, and then subtracting them, we obtain

Pβ(X, β(Y,Z)) + β(X,Pβ(Y,Z)) − Pβ(Y, β(X,Z)) − β(Y,Pβ(X,Z))

+
c
4

(sin4 θ)
{
〈X,PZ〉Y − 〈Y,PZ〉X + 2〈X,PY〉Z

}
= 0.

Taking the inner product of the above equation with W for any W ∈ TM and applying (46), we get

〈β(X,Z), β(Y,PW)〉 − 〈β(X,PW), β(Y,Z)〉 + 〈β(X,W),Pβ(Y,Z)〉 − 〈β(Y,W),Tβ(X,Z)〉

+
c
4

(sin4 θ)
{
〈X,PZ〉〈Y,W〉 − 〈Y,PZ〉〈X,W〉 + 2〈X,PY〉〈Z,W〉

}
= 0.

(47)

In the pervious equation, if β = 0 at any point p ∈ M , then we get a contradiction because c , 0. So, we
now choose a fixed point p ∈M and define a function f on UMp by

f (u) = 〈β(u,u),u〉,

for each u ∈ UMp, where UMp be the set of all unit tangent vectors. It is known that UMp is compact.
So, there exists a vector v such that f arrives an absolute maximum at v. Suppose that w be a unit vector
orthogonal to v. Then the function f (t) = f (1(t)), such that 1(t) = (cos t)v + (sin t)w, satisfies the following

(i) f ′(0) = 0, which gives that 〈β(v, v),w〉 = 0.
(ii) f ′′(0) ≤ 0, which implies that 〈β(v,w),w〉 ≤ 1

2 〈β(v, v), v〉.

Now, by the total symmetry of β, we can fix an orthonormal basis {e1 = u, e2, ..., en}which satisfies

β(e1, e1) = µ1e1, β(e1, ei) = µiei, (48)

for i > 1 and µi ≤
1
2µ1. Using the total symmetry of (46) and β , 0, we obtain µ1 > 0. Substituting (46) and

(48) into (47) with X = Z = W = e1 and Y = ei, we obtain

〈β(ei,Pe1), µ1e1〉 − 〈β(e1,Pe1), µiei〉 + 〈µ1e1,Pµiei〉 − 〈µiei,Pµ1e1〉

+
c
4

(sin4 θ){−〈ei,Pe1〉〈e1, e1〉 + 2〈e1,Pei〉〈e1, e1〉} = 0,

which implies that(
µ2

i + µ1µi +
3c
4

sin4 θ
)
〈ei,Pe1〉 = 0. (49)

Now, we need to show that Pe1 be an eigenvector of β(e1, · ). For this, we put X = Z = e1, Y = ei and W = e j
in (47) such that i, j > 1 with using (46) and (48) to obtain

µ1〈β(e1, ei),Pe j〉 − µi〈β(e1, ei),Pe j〉 + µi〈β(e1, e j),Pei〉 − µ1〈β(ei, e j),Pe1〉 = 0,

or

(µ2
i − µ1µi + µiµ j)〈ei,Pe j〉 + µ1〈β(ei, e j),Pe1〉 = 0. (50)

Replacing the indices i and j in the above equation, we deduce that

(µ2
j − µ1µ j + µiµ j)〈ei,Pe j〉 − µ1〈β(ei, e j),Pe1〉 = 0. (51)

Adding (50) and (51), we find that

(µ2
i − µ1µi + µ2

j − µ1µ j + 2µiµ j)〈ei,Pe j〉 = 0,
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which gives that

(µi + µ j)(µ1 − µi − µ j)〈ei,Pe j〉 = 0, (52)

But we have µi ≤
1
2µ1. So, µ1 − µi − µ j = 0 only if µi = µ j = 1

2µ1.
Now, by taking X = W = e1, Y = ei and Z = e j such that i, j > 1 in (47), we get

〈β(e1,Pe1), β(ei, e j)〉 − µ j〈β(ei, e j),Pe1〉 + µiµ j〈ei,Pe j〉 + µ1〈β(ei, e j),Pe1〉 +
c
4

(sin4 θ)〈ei,Pe j〉 = 0. (53)

Replacing the indices i and j in the above equation, we obtain

〈β(e1,Pe1), β(ei, e j)〉 − µi〈β(ei, e j),Pe1〉 + µiµ j〈Pei, e j〉 + µ1〈β(ei, e j),Pe1〉 +
c
4

(sin4 θ)〈Pei, e j〉 = 0. (54)

Subtracting (53) from (54), we derive

(µi − µ j)〈β(ei, e j),Pe1〉 + 2µiµ j〈ei,Pe j〉 +
c
2

(sin4 θ)〈ei,Pe j〉 = 0. (55)

Now, we need to brief the preceding equations in the following method.
First, interchanging j by i in (50) with using 〈Pei, ei〉 = 0, we obtain

〈β(ei, ei),Pe1〉 = 0. (56)

Thus, we have 〈β(ν, ν),Pe1〉 = 0 if ν is an eigenvector of β(e1, · ). In addition, the symmetry of β give us that
〈β(ei, e j),Pe1〉 = 0, whenever µi = µ j. So that, we can consider the following four different cases:

(a) µi + µ j , 0, but not µi = µ j = 1
2µ1. Thus, (40) follows 〈Pei, e j〉 = 0;

(b) µi + µ j = 0 and µi , 0. So, (50) gives that 〈β(ei, e j),Pe1〉 = µi〈ei,Pe j〉, if we apply this in (55), we get
〈ei,Pe j〉 = 0;

(c) µi = µ j = 0. Thus, by (55), we obtain 〈Pei, e j〉 = 0;
(d) µi = µ j = 1

2µ1

Hence, if we let ei1 , ...,ir are eigenvectors in an eigenvalue which is different from 1
2µ1, then each Peis , s = 1, ..., r,

can just have a component in the same direction of e1, such as Peis = µse1. Therefore, µsPe1 = −(cos2 θ)eis .
Accordingly, either r = 1 or there does not exit an eigenvector with eigenvalue different from 1

2µ1. If r = 1,
then certainly Pe1 is an eigenvector. In the other case β(e1, · ) limited to the space e⊥1 , only has one eigenvalue,
that 1

2µ1. As Pe1 is orthogonal to e1 forever, then Pe1 is also an eigenvector in this case. Thus, Pe1 is always
an eigenvector of β(e1, · ).

Now, we can consider that e2 is in the same direction of Pe1. So, we get directly that β(e1,Pe1) = µ2Pe1,
such that from (37), µ2 satisfies the equation

µ2
2 + µ1µ2 +

3c
4

sin4 θ = 0. (57)

If we put X = Z = e1, Y = ei and W = Pe1, for i > 2 in (47), we find

µi〈β(e1,Pe1),Pei〉 − µ1〈β(ei,Pe1),Pe1〉 = 0,

which gives

µiµ2(cos2 θ)〈e1, ei〉 − µ1〈β(ei,Pe1),Pe1〉 = 0.

Hence,

β(Pe1,Pe1) = µ2(cos2 θ)e1

Taking X = Z = W = Pe1, and Y = e1 in (47) again, we derive

−µ2
2 − µ1µ2 +

3c
4

sin4 θ = 0. (58)

Finally, (57) and (58) implies that c sin4 θ = 0, which is a contradiction because c , 0 and θ be a real-valued
function. Thus, P1 = P2.
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