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Abstract. In this paper, we introduce the based and unbased n-Spanier groups and n-semilocally simply
connected spaces, and investigate their relationship. We show that under some conditions, vanishing of
the n-Spanier group with respect to an open cover is equivalent to the n-semilocal simple connectivity of
that space, and vice versa.

1. Introduction

This paper discusses some local properties of topological spaces. In the homotopy theory of topological
spaces, studying the homotopy groups of spaces is a basic problem. Two main tools which are used
for computing the fundamental groups of locally well-behaved spaces are van Kampen’s theorem and
covering spaces; see [10, 14], for instance. Also, in the classical theory of covering spaces, one of the most
important problems is the existence of the universal covering of a locally path connected topological space
[10, 14], which is equivalent to the semilocal simple connectivity of that space [14]. Hence, semilocal simple
connectivity is a crucial condition in the classical theory of covering spaces.

Spanier [14] characterized the semilocal simple connectivity of a topological space in terms of vanishing
a specified subgroup of its fundamental group, but names have not yet been given to these groups. Recently
named in [7] the Spanier group. However, this characterization holds only if one assumes that the space
is locally path-connected. Indeed, Fischer et al. in [7] constructed a semilocally simply connected space in
the sense of Spanier with non-trivial Spanier group. Then, they proposed a modification of Spanier groups
so that the corresponding results were correct for all spaces. They also provided two concepts of semilocal
simple connectivity and two versions of Spanier groups - one which depends on base points, and one which
does not; see [7, Definitions 2.1-2.3 and 2.5]. For the sake of simplicity, we speak of these concepts using
the attributes “based” and “unbased”.

For general spaces, there were several attempts to define generalized coverings; see [2, 5, 8]. It is
known that, if a paracompact Hausdorff space X admits a universal covering space, then the natural
homomorphism from the fundamental group of X to its first shape homotopy group is an isomorphism.
In the generalized covering space theory, treated in [8] by Fischer and Zastrow, it has been shown that the
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injectivity of the natural homomorphism in a path-connected topological space implies the existence of
generalized covering maps. Instead of semilocal simple connected, they considered the condition of being
“homotopically Hausdorff”. Similar to Spanier’s book, they associated a certain group to a topological
space X together with an open covering of X, and showed that the semilocal simple connectivity of a space
is equivalent to the existence of an open covering of the space such that its associated group is trivial. They
also proved that the intersection of these groups (ranging over all open coverings) lies in the kernel of theπ1-
shape group homomorphism determined by X. Furthermore, the existence of generalized covering maps is
intimately related to Spanier groups. Fischer et al. [7, Theorem 2.8] asserted that the condition of semilocal
simple connectivity can be equivalently described by the properties of Spanier groups if the base points
are treated correctly. Then, Brazas and Fabel [1] proved that if X is a locally path-connected paracompact
Hausdorff space, then the kernel of the π1-shape group homomorphism is precisely the intersection of these
groups (ranging over all open coverings).

The aim of this paper is to introduce the based and unbased n-semilocal simple connectivity of a
topological space, and the based and unbased n-Spanier groups as subgroups of the nth homotopy group,
and to investigate their relationship. Then, we extend some of the aforementioned results to our setting.
To do so, we organized the paper as follows:

In Section 2, we present some basic concepts and results concerning topological spaces and their homo-
topy groups that will be used in other sections. For example, we recall the definitions of n-homotopically
Hausdorff spaces, open covers, open covers by pointed sets and, the based and unbased Spanier groups.
At the end of this section, we recall the construction of the nth shape homotopy group. In Section 3, we
define the based and unbased n-Spanier groups as subgroups of the nth homotopy group. Also, we define
the based and unbased n-semilocal simple connectivity of a topological space. In Lemma 3.6, we show
that for an open cover U of a topological space, the path-connectivity of all elements of U implies the
equality of the based n-Spanier group with respect to V and the unbased n-Spanier group with respect
to U, where V is the pointed cover induced by U. In Theorem 3.7, we explore the relationship between
the based and unbased n-Spanier groups and the based and unbased n-semilocal simple connectivity of
a topological space. In Examples 3.8, 3.9, 3.10, 3.11 and 3.12, we show that the nth based and unbased
Spanier groups and based and unbased n-semilocally simply connected spaces are different in general. In
Proposition 3.13, we show that if the based n-Spanier group of a path-connected space X is trivial, then X is
n-homotopically Hausdorff. Hence by Theorem 3.7, all based and unbased n-semilocally simply connected
spaces are n-homotopically Hausdorff.

In Section 4, we study some properties of the based and unbased n-Spanier groups. To do so, we first
show that πuSp

n and πbSp
n (n ≥ 2) are functors from the category of pointed topological spaces to the category

of abelian groups. Proposition 4.3 shows that the product of {(Xi, xi) : i ∈ I}, a family of path-connected
spaces, is unbased (based) n-semilocally simply connected if and only if all spaces Xi are unbased (based)
n-semilocally simply connected and πn(Xi, xi) is the trivial group for all but a finite number of indices i ∈ I.
After introducing πS

n(X, x) and πS1
n (X, x0), we obtain the following chain of subgroups of the nth homotopy

group,

πS
n(X, x0) ≤ πS1

n (X, x0) ≤ πbSp
n (X, x0) ≤ πuSp

n (X, x0).

Theorem 4.8 proves that these subgroups are identical in topological groups. In the sequel, the concept
of n-local triviality of a space with respect to a continuous map f is introduced, which is a generalization
of the definition of n-semilocally simply connected space. Then, we consider the relationship between this
concept and the based and unbased n-Spanier groups in Proposition 4.13. At the end of the paper, it will be
shown that ifU ranges over all open covers of a pointed space (X, x0), then

⋂
U π

uSp
n (U, x0) is contained in

the kernel of the canonical mapping from the nth homotopy group to the nth shape homotopy group of X.

2. Preliminaries

In this section, we present some definitions and results of the homotopy theory in algebraic topology
which will be used later in the paper. The contents can be found in [10].
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Throughout this paper, In = {(x1, . . . , xn) ∈ Rn : 0 ≤ xi ≤ 1, i = 1, . . . , n} is the n-cube in Rn, and the
boundary ∂In of In consists of all (x1, . . . , xn) ∈ In for which xi = 0 or xi = 1 for at least one value of i.

Let X be a topological space and x0 ∈ X.

(1) An n-loop at x0 in X is a continuous map α : In
→ X such that α(∂In) = {x0}. An n-loop α is essential

if it is not null-homotopic. If α is an n-loop at x0 in X, ←−α : In
→ X is defined by ←−α (x1, x2, . . . , xn) =

α(1 − x1, x2, . . . , xn) is an n-loop in X at x0, which is named by reverse of α.
(2) It is well-known that relative homotopy is an equivalence relation on the set of all n-loops at x0 in

X. If [α] denotes the equivalence class of an n-loop α, then πn(X, x0) = {[α] : α is an n − loop at x0}

is a group which is called the nth homotopy group of X. The first homotopy group of X is called the
fundamental group of X.

(3) The space X is called locally n-connected if for every x ∈ X and any neighborhood U of x, there
exists an open set V containing x such that V ⊂ U and for every 1 ≤ k ≤ n, the homomorphism
πk(V, x) −→ πk(U, x) induced by the inclusion map is the trivial homomorphism.

(4) The space X is said to be n-homotopically Hausdorff at x ∈ X if for any essential n-loop α : (In, ∂In) −→
(X, x), there exists an open neighborhood U of x such that no n-loop at x with image in U are homotopic
(in X) to α rel ∂In. The space X is called n-homotopically Hausdorff if X is n-homotopically Hausdorff at
x, for every x ∈ X. See [9] for more details.

(5) Let x0, x1 be two points of X, σ : [0, 1]→ X be a path from σ(0) = x0 to σ(1) = x1, and [α] ∈ πn(X, x1). If
we choose a continuous map F : In

× [0, 1] −→ X with the properties

F(s, 0) = α(s) s ∈ In,
F(s, t) = ←−σ (t) s ∈ ∂In, t ∈ [0, 1],
F1(s) = F(s, 1) s ∈ In,

then by [12, Theorem 2.5.6], the mapping σ# : πn(X, x1) → πn(X, x0) defined by σ#([α]) = [F1] is a
well-defined isomorphism and only depends on the homotopy class of σ.

Theorem 2.1 recalls some basic properties of the mapping σ# from [3].

Theorem 2.1. If σ, τ : I→ X are paths, then for every n ∈N, the isomorphisms σ#, τ# : πn(X, x1)→ πn(X, x0) have
the following properties.

1. If σ ' τ rel(∂I), then σ# = τ#.
2. If σ(1) = τ(0), then (στ)# = σ# ◦ τ#.
3. If σ is the constant map, then σ# is the identity mapping.
4. (Naturality) Let Y be a topological space and φ : X → Y be a continuous map such that τ = φ ◦ σ. Then, the

following diagram commutes.

πn(X, σ(1))

φ#

��

σ# // πn(X, σ(0))

φ#

��
πn(Y, τ(1)) τ#

// πn(Y, τ(0))

In the following, we state some definitions about the open covering of topological space.

(6) An open cover of X is a family {Ui : i ∈ I}, of open subsets of X, whose union is the whole set X.
(7) An open cover of X by pointed sets is a family {(Ui, xi) : i ∈ I} of pointed subsets, where {Ui : i ∈ I} is an

open cover of X and X = {xi : i ∈ I}.
(8) IfU′ = {(U′i , x

′

i ) : i ∈ I} andU = {(U j, x j) : j ∈ J} are open covers of X by pointed sets, thenU′ refines
U if for each i ∈ I, there exists j ∈ J such that U′i ⊂ U j and x′i = x j.

Now, let us mention the following remark from [7] about open covers by pointed sets.
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Remark 2.2. LetU = {Ui : i ∈ I} be a covering of X by open sets. Observe that due to the equality X = {xi : i ∈ I},
demanding that each point of X occurs at least once as the base point of one of the covering sets, it will in general

not suffice to choose a base point for each of the sets Ui in order to turn it into an open covering V of X by pointed
sets. Instead, the following procedure is apparently in general necessary:

• for each Ui ∈ U take |Ui| copies intoV; and

• define each of those copies as (Ui,P), i.e. use the same set Ui as first entry, and let the second entry run over all
points P ∈ Ui.

When constructed with this procedure, coverings by neighbourhood pairs offer in principle the same options for
refinements as coverings by open sets. Vice versa, note that this procedure will usually generate such coverings by
pointed sets, where a lot of x ∈ X occur as base points for different sets Ui. The cover V is called the pointed cover
induced byU.

Definition 2.3. [7] Let X be a topological space, x0 ∈ X and U = {Ui : i ∈ I} be an open cover of X. The unbased
Spanier group with respect to U is the subgroup π(U, x0) of π1(X, x0) which contains all homotopy classes having

representatives of the type
n∏

j=1
u jv ju−1

j , where u j is an arbitrary path (starting at the base point x0) and each v j is a

loop inside one of the neighborhoods Ui ∈ U.

Definition 2.4. [7] Let X be a topological space, x0 ∈ X andV = {(Ui, xi) : i ∈ I} be an open cover of X by pointed
open sets. The based Spanier group with respect to V is the subgroup π∗(V, x0) of π1(X, x0) which contains all

homotopy classes having representatives of the type
n∏

j=1
u jv ju−1

j , where each u j is an arbitrary path that runs from x0

to some point xi, and each v j must be a 1-loop inside the corresponding Ui.

Finally, we recall the construction of the nth shape homotopy group via the Čech expansion. See [1, 11]
for more details.

Let O(X) be the set of all open covers of X and O(X, x0) = {(U,U0) : U ∈ O(X), x0 ∈ U0 ∈ U}. It is easy
to see that O(X) is a directed set by refinement, where (V,V0) refines (U,U0) ifV refinesU as a cover and
V0 ⊂ U0.

The nerve of a covering (U,U0)∈ O(X, x0) is an abstract simplicial complex N(U) whose vertex set is U
and the vertices U0,U1, . . . ,Un ∈ U span an n-simplex in N(U) if

⋂n
i=1 Ui , ∅. The vertex U0 is taken to be

the base point of geometric realization |N(U)| . If (V,V0) refines (U,U0), then there exists a simplicial map
PUV : N(V)→ N(U), which is called the projection map(this map is unique up to homotopy). An open cover
U of X is called normal if it admits a partition of unity subordinated toU. Let Λ be the subset of O(X, x0)
consisting of all pairs (U,U0), whereU is a normal open cover of X. For each (U,U0) ∈ Λ, choose a pointed
map pU : (X, x0)→ (N(U),U0) such that p−1

U
(St(U,N(U))) ⊆ U for all U ∈ U, where St(U,N(U)) denotes the

open star of the vertex of N(U) which corresponds to U. The nth shape homotopy group of a space X based
at x0, which is denoted by π̌n(X, x0), is defined by π̌n(X, x0) = lim

←−
(πn(N(U), ∗), pUV#,Λ). Since the maps pU

induce homomorphisms pU# : πn(X, x0)→ πn(N(U), ∗) such that pU# = pUV#◦pV#, whenever (V,V0) refines
(U,U0), we obtain an induced homomorphism ϕ : πn(X, x0) → π̌n(X, x0) given by ϕ([α]) = ([αU]), where
αU = pU ◦ α.

3. The nth based and unbased Spanier groups

In this section, we define the based and unbased n-Spanier groups as subgroups of the nth homotopy
groups. Also, we introduce based and unbased n-semilocally simply connected spaces. Theorem 3.7 shows
their relationship, and Examples 3.8, 3.9, 3.10, 3.11 and 3.12 explore their differences.

Definition 3.1. Let X be a space, x0 ∈ X, andU = {Ui : i ∈ I} be an arbitrary open cover of X. Let πuSp
n (U, x0) be

the subgroup of πn(X, x0) which is spanned by all homotopy classes of the form σ#([ν]), where σ is an arbitrary path
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(starting at x0) and ν is an n-loop with the base point σ(1) that lies in one of the neighborhoods U ∈ U. This group
is called the unbased n-Spanier group with respect to U. We call the subgroup πuSp

n (X, x0) =
⋂
U π

uSp
n (U, x0) the

unbased n-Spanier group of X with based point x0.

Definition 3.2. Let X be a topological space, x0 ∈ X andU = {(Ui, xi) : i ∈ I} be an open cover of X by pointed sets.
Let πbSp

n (U, x0) be the subgroup of πn(X, x0) which is spanned by all homotopy classes of the form σ#([ν]), where σ is
an arbitrary path and ν is an n-loop with the base point xi which lies in one of the neighborhoods Ui ∈ U. This group
is called the based n-Spanier group with respect toU. We call the subgroup πbSp

n (X, x0) =
⋂
U π

bSp
n (U, x0) the based

n-Spanier group of X with based point x0.

In Definitions 3.1 and 3.2, it is obvious that πbSp
n (X, x0) ⊆ πuSp

n (X, x0). It is easy to see that if n = 1, then the
unbased and based n-Spanier groups are the unbased and based Spanier groups, in the sense of Definitions
2.3 and 2.4, respectively.

Example 3.3. Let Xn = Sn
−
∪ Sn

+, where Sn
∗ = {(x1, . . . , xn+1) ∈ Rn+1 : (x1 ∗ 1)2 +

n+1∑
i=2

x2
i = 1}, and ∗ ∈ {−,+}. The

space Xn is homeomorphic to Sn ∨
Sn. By [10, Example 1.26], the fundamental group π1(X1, 0) is the free group

Z ∗Z, and by [10, Example 4.26], πn(Xn, 0) is the group Z ⊕Z (n ≥ 2). For each n ∈ N, letUn =
{
Un
−
,Un

+

}
be an

open cover of Xn, where ∗ ∈ {−,+} and

Un
∗ =

{
(x1, . . . , xn+1) ∈ Rn+1 : (x1 ∗ 1)2 +

n+1∑
i=2

x2
i <

3
2

}
∩ Xn.

Since the image of the generators of πn(Xn, 0) are contained in Un
−

and Un
+, π

uSp
n (Un, 0) = πn(Xn, 0). If Vn =

{(Ui, xi) : Ui ∈ {Un
+,Un

−
}, i ∈ I} is an open cover by pointed sets, since the space is locally path-connected,πbSp

n (Vn, 0) =

πn(Xn, 0). On the other hand, since the space is n-semilocally simply connected, by Theorem 3.7, πuSp
n (Xn, 0) and

πbSp
n (Xn, 0) are trivial.

The following remark shows the relationship between the based and unbased n-Spanier groups and the
inverse limits.

Remark 3.4. Let (X, x0) be a pointed space.

1. If U and V are open covers of (X, x0) such that U refines V, then πuSp
n (U, x0) ⊆ πuSp

n (V, x0). Due to this
inclusion relation, the inverse limit of πuSp

n (U, x0) exists, defined via the directed system of all coverings with
respect to refinement. Hence πuSp

n (X, x0) = lim
←−

(πuSp
n (U, x0)).

2. Similarly, (1) holds for any based n-Spanier group.

Authors in [13] defined the notion of n-semilocally simply connected space. In following by using this
notion, we define based and unbased n-semilocally simply connected spaces.

Definition 3.5. Let X be a topological space. Then,

(9) X is called based n-semilocally simply connected if for each x ∈ X, there exists an open subset U of X containing
x such that every n-loop in U at x is null-homotopic in X;

(10) X is called unbased n-semilocally simply connected if for each x ∈ X, there exists an open subset U of X
containing x such that every n-loop in U is null-homotopic in X.

Lemma 3.6. Let X be a topological space and letV = {(Ui, xi) : i ∈ I} be an open cover of X by pointed sets such that
every Ui is a path-connected set. Then πbSp

n (V, x0) = πuSp
n (U, x0), whereU = {Ui : i ∈ I}.
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Proof. It is clear that πbSp
n (V, x0) ⊂ πuSp

n (U, x0). We show that πuSp
n (U, x0) ⊂ πbSp

n (V, x0). Let σ#([β]) be a
generator of πuSp

n (U, x0), where σ is a path in X from x0 to σ(1), and β is an n-loop in some Ui ∈ U at σ(1).
Since Ui is path-connected, there is a path γ in Ui from σ(1) to xi. Since γ(I) ⊂ Ui and β(In) ⊂ Ui, by [12,
Exercise 2.5.11], it is easy to prove that (←−γ )#([β]) is an n-loop in Ui at xi. Thus, (σ ∗γ)#((←−γ )#([β])) is an element
of πbSp

n (U, x0). On the other hand, by Theorem 2.1,

(σ ∗ γ)#((←−γ )#([β])) = (σ ∗ γ ∗ ←−γ )#([β])) = σ#([β]).

This means that σ#([β]) is an element of πbSp
n (V, x0). Therefore, πuSp

n (U, x0) ⊂ πbSp
n (V, x0).

Theorem 3.7 is a generalization of Theorems 2.8 of [7]. In general, it is obvious that if a topological space X is
unbased n-semilocally simply connected, it is also based n-semilocally simply connected. In the following
theorem, we show that the converse of this statement is true for locally path-connected spaces.

Theorem 3.7. Let X be a path-connected topological space and x0 ∈ X. Then, the following hold.

1. The space X is an unbased n-semilocally simply connected space if and only if X has an open coveringU such
that πuSp

n (U, x0) is trivial.
2. The space X is a based n-semilocally simply connected space if and only if X has an open covering by a pointed

setU such that πbSp
n (U, x0) is trivial.

3. The property in (1) implies in (2).
4. If X is a locally path-connected space, then the property in (2) also implies in (1).

Proof. 1. Let X be an unbased n-semilocally simply connected space. Then, for each x ∈ X, there exists
an open subset Ux of X such that x ∈ Ux and every n-loop α whose image is contained in Ux is null-
homotopic in X. Thus, U = {Ux : x ∈ X} is an open cover of X. Let [β] be a generator of πuSp

n (U, x0).
Then, there exist a path σ from x0 to σ(1) = x and an n-loop α at x such that α(In) ⊆ U, for some
U ∈ U, and σ#([α]) = [β]. Since the mapping σ# : πn(X, x0) → πn(X, x) is an isomorphism and α is
null-homotopic, β is null-homotopic in X. So,U is an open cover of X such that πuSp

n (U, x0) is trivial.
Conversely, suppose that πuSp

n (U, x0) is trivial, whereU is an open cover of X. Let x ∈ X. SinceU is
an open cover of X, there exists Ux ∈ U such that x ∈ Ux. Let α be an n-loop such that α(In) ⊆ Ux, and
σ : I −→ X be a path from x0 to σ(1) = x. Then, σ#([α]) lies in the trivial group πuSp

n (U, x0). Since σ# is
an isomorphism, α is null-homotopic. Thus, the elements of the coveringU suffice to prove that X is
unbased n-semilocally simply connected.

2. The proof is similar to (1).
3. This follows directly from the definitions of the based and unbased n-Spanier groups.
4. Let X be a based n-semilocally simply connected and locally path-connected space. Then, there

exists an open coverW of X by pointed sets such that πbSp
n (W, x0) is the trivial group. By the local

path-connectivity of X, there is a refinement V = {(Ui, xi) : i ∈ I} of W such that the Uis are open
path-connected sets. By Lemma 3.6, πbSp

n (V, x0) = πuSp
n (U, x0), where U = {Ui : i ∈ I}. But, by the

definition of the based n-Spanier group, πbSp
n (V, x0) is a subgroup of the trivial group πbSp

n (W, x0). So,
πbSp

n (V, x0) = πuSp
n (U, x0) is the trivial group, as desired.

In the following examples, we compute the based and unbased n-Spanier groups of some topological
spaces, and study the relationship between them and based and unbased n-semilocally simply connected
spaces.

Example 3.8. It is easy to show that if X is a based (an unbased) n-semilocally simply connected space, then its based
(unbased) n-Spanier group is trivial. But, the converse may not be true. Let

Sk =

{
(x1, . . . , xn+1) ∈ Rn+1

|

(
x1 −

1
k

)2
+

n+1∑
i=2

(xi)2 = 1
k2

}
,
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and Hn =
⋃

k∈N Sk be the n-dimensional Hawaiian earring. It is obvious that Hn is not n-semilocally simply
connected, but the based and unbased n-Spanier groups ofHn are trivial. By Theorem 4.14, πuSp

n (Hn, 0) is contained
in the kernel of ϕ : πn(Hn, 0) −→ π̌n(Hn, 0). But Eda et al. in [6] showed that ϕ is injective, so πuSp

n (Hn, 0) = 0.

Example 3.9. Let An =
(⋃

i∈N

(
Sn

i × [0, 1]
))
∪

(⋃
i∈N

(
Bn

i × [0, 1]
))
, where i = 1, 2, 3, ...,

Sn
i =

{
(x1, ..., xn+1) ∈ Rn+1 : x2

1 + · · · + x2
n+1 = 1

i2

}
and Bn

i =
{
(x1, ..., xn) ∈ Rn+1 : x2

1 + · · · + x2
n+1 =

(
2i+1

2i(i+1)

)2
}
.

It is easy to show that if x ∈ Bn
i , then 2i+2

2i+1 x and 2i
2i+1 x are in Sn

i and Sn
i+1, respectively. Hence, the following relation is

an equivalence relation on An. For any i ∈N, and x ∈ Bn
i ,

(x, 0) ∼
(

2i+2
2i+1 x, 0

)
and (x, 1) ∼

(
2i

2i+1 x, 1
)
,

and the other points of An are only related to themselves. Let Wn = An

∼
be the subspace of Rn+2. Figure 1 shows W1.

The space Wn is based and unbased n-semilocally simply connected, and its based and unbased n-Spanier groups are
trivial.

Figure 1: The space W1

Example 3.10. Let W1 be the space defined in Example 3.9, and let

W
1 = W1

∪ {(0, 0, b) ∈ R3 : 0 ≤ b ≤ 1} ∪ C,

where C is a single arc that intersects the central axis of W1 only at its endpoint (Figure 2).
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Figure 2: The spaceW1

Fix a point x0 onW1. Let σr be a simple path such that σr(0) = x0, contained in the plane determined by x0 and the
central axis, and with the endpoint at distance r from the central axis. Let αr be the simple loop with radius 0 < r < 1,
on the surface. Obviously, αr is not null-homotopic and any neighborhood of a point of the central axis contains such
a loop. For each 0 < r < 1, the loops σrαrσr

−1 are non-trivial and homotopic to each other; hence πuSp
1 (W1, x0) is

non-trivial. On the other hand, the spaceW1 is not locally path-connected and πbSp
1 (W1, x0) is trivial. Hence, the

spaceW1 has the following properties.

1. Its unbased 1-Spanier group is non-trivial.
2. Its based 1-Spanier group is trivial.
3. It is based 1-semilocally simply connected.
4. It is not unbased 1-semilocally simply connected.

Example 3.11. Let Wn = Wn
∪ {(0, ..., 0, b) ∈ Rn+1 : 0 ≤ b ≤ 1} ∪ C, where C is a single arc that connects the

central axis to Wn. This arc C cannot intersect Wn or the central axis at any points other than its endpoints. The
spaceWn has the following properties.

1. Its unbased n-Spanier group is not trivial.
2. Its based n-Spanier group is trivial.
3. It is based n-semilocally simply connected.
4. It is not unbased n-semilocally simply connected.

It is sufficient to present the proof only for n = 2. For the other values of n, the proof is similar to that of the
aforementioned case.

1. Let x0 ∈ W
2, and letU be an open cover ofW2. For each point x of the central axis, there exits U ∈ U such

that x ∈ U. Based on the construction ofW2, there exists 0 < r < 1 such that the 2-loop S2
r is contained in U.

(for suitable high of the plane x3 = 0). We know that this 2-loop is not freely homotopically trivial, and that any
neighborhood of a point of the central axis contains such a 2-loop. Let αU be a 2-loop such that αU(I2) = S2

r .
Let σ denote a path onW2 starting at x0, contained in the plane determined by x0 and the central axis, with the
endpoint at distance r from the central axis. Since σ# is an isomorphism, σ#[αU] ∈ πuSp

2 (U, x0) is non-trivial.
Now, letV be an open cover of X and x0 ∈ V ∈ V.We know that all such loops lie in πuSp

2 (V, x0), for a suitable
choice of 0 < r < 1. So, the unbased 2-Spanier group ofW2 is non-trivial.
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2. We know that every point of x ∈ W2 has an arbitrary small neighborhood whose path component containing
x is contractible. LetU be an open cover ofW2 by these neighborhoods. It is trivial that the based 2-Spanier
group of this cover is trivial. So, the based 2-Spanier group ofW2 is trivial.

Finally, (3) and (4) follow directly from Theorem 3.7.

Example 3.12. Take the space Wn of the above example, and replace the single arc C with a system of horizontal
arcs which are dense (only) near the central axis. Denote the resulting space byWn′ . Similar to what we observed in
Example 3.11, the unbased n-Spanier group ofWn′ is non-trivial. SinceWn′ is locally path-connected, by the step
(4) of Theorem 3.7 , the following assertions hold forWn′.

1. Its unbased n-Spanier group is not trivial.
2. Its based n-Spanier group is not trivial.
3. It is not based n-semilocally simply connected.
4. It is not unbased n-semilocally simply connected.

Proposition 3.13. Let X be a path-connected space. If πbSp
n (X, x0) is trivial, then X is n-homotopically Hausdorff.

Moreover, every based and unbased n-semilocally simply connected space is n-homotopically Hausdorff.

Proof. If X is not n-homotopically Hausdorff, then there exists x ∈ X such that X is not n-homotopically
Hausdorff at x. So, there is an essential n-loop α with base x such that for each open neighborhood W of x,
there is an n-loop βW in U with the base point x satisfying [α] = [βW]. Now, let U be an open cover of X
by pointed sets. Then there exist U ∈ U and an n-loop β with the base point x such that x ∈ U, β(In) ⊆ U
and [β] = [α]. By the path-connectivity of X, there exists a path σ from x0 to x. Obviously, σ#([β]) = σ#([α]),
which implies that σ#([α]) ∈ πbSp

n (U, x0) is an essential n-loop by the isomorphism σ#. SinceU is arbitrary,

σ#([α]) ∈
⋂
U π

bSp
n (U, x0) = πbSp

n (X, x0) = 1,

which is a contradiction.

4. Some results on the based and unbased n-Spanier groups

In this section, we study some properties of the based and unbased n-Spanier groups. For example, we
show that πuSp

n and πbSp
n are functors, and that πuSp

n (G, x) = πbSp
n (G, x) on a topological group G. Moreover,

we characterize the n-semilocal simple connectivity of the product of a family of path-connected spaces.
The concepts of small path, small n-loop group and n-local triviality with respect to a mapping are also
introduced, and the sequence

πS
n(X, x0) ≤ πS1

n (X, x0) ≤ πbSp
n (X, x0) ≤ πuSp

n (X, x0) ≤ ker(ϕ)

of the subgroups of the nth homotopy group is obtained.

Proposition 4.1. Let h : (X, x0) −→ (Y, y0) be a pointed map, and σ : [0, 1] −→ X be a path with σ(0) = x0. Then,
the following hold.

1. For every [β] ∈ πn(X, σ(1)), (h ◦ σ)#([h ◦ β]) = h∗ ◦ σ#([β]).
2. IfW is an open cover of Y, then

h∗(π
uSp
n (h−1(W), x0)) ⊆ πuSp

n (W, y0) and h∗(π
uSp
n (X, x0)) ⊆ πuSp

n (Y, y0).

3. IfW is an open cover of Y by pointed sets, then

h∗(π
bSp
n (h−1(W), x0)) ⊆ πbSp

n (W, y0) and h∗(π
bSp
n (X, x0)) ⊆ πbSp

n (Y, y0).
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Proof. 1. Let σ : I → X be a path with σ(0) = x0. Let F and F1 be the maps defined in (5). Then
σ# : πn(X, σ(1)) −→ πn(X, x0), defined by σ#([β]) = [F1], is a group isomorphism. Obviously, the
mapping h◦σ : [0, 1] −→ Y is a path with h◦σ(0) = y0, and the function G : In

× [0, 1] −→ Y, defined by
G(s, t) = h ◦ F(s, t), is a continuous map such that for every s ∈ In,G(s, 0) = h ◦ β(s) and G(s, t) =

←−−−
h ◦ σ(t),

for all s ∈ ∂In and t ∈ [0, 1]. Therefore,

h∗(σ#([β])) = h∗([F1]) = [h ◦ F1] = [G1] = (h ◦ σ)#([h ◦ β]).

2. LetW be an open cover of Y. Then, h−1(W) = {h−1(W) : W ∈ W} is an open cover of X. Suppose that
σ is a path with σ(0) = x0 and σ#([α]) ∈ πuSp

n (h−1(W), x0). By (1),

h∗(σ#([α])) = (h ◦ σ)#([h ◦ α]) ∈ πuSp
n (W, x0).

By the definition of the unbased n-Spanier group, the last inclusion is obvious.
3. The proof is similar to that of (2).

Theorem 4.2. The mappingsπuSp
n andπbSp

n are functors from the category of pointed topological spaces to the category
of groups (Abelian groups if n ≥ 2).

Proof. We only prove thatπuSp
n is a functor; thatπbSp

n is a functor can be proved similarly. If (X, x0) is a pointed
space, by Definition 3.1, πuSp

n (X, x0) is a group. Let f : (X, x0) −→ (Y, y0) be a pointed map. Define f uSp
∗ :

πuSp
n (X, x0) −→ πuSp

n (Y, y0) by f uSp
∗ = f∗|πuSp

n (X,x0). By Proposition 4.1, f uSp
∗ is a well-defined homomorphism

such that f uSp
∗ (σ#([α])) = ( f ◦ σ)#([ f ◦ α]), where σ : I −→ X is a path with σ(0) = x0, [α] ∈ πn(X, σ(1)) and

α(In) ⊆ U for some U ∈ U. If f : (X, x0) −→ (Y, y0) and 1 : (Y, y0) −→ (Z, z0) are pointed maps, then by
Proposition 4.1, 1uSp

∗ ◦ f uSp
∗ = (1 ◦ f )uSp

∗ , and it is easy to show that iduSp
X∗ = id

π
uSp
n (X,x0).

Let {Xi}
n
i=1 be a family of topological spaces, and X = Πn

i=1Xi. It is easy to show that X is n-semilocally
simply connected if and only if Xi is n-semilocally simply connected, for each 1 ≤ i ≤ n. In general, a
similar assertion may not be true for an infinite index set I. A countably infinite product of the copies
of the n-dimensional sphere is not n-semilocally simply connected, but the n-dimensional sphere is an
n-semilocally simply connected space. In the following theorem, we characterize the n-semilocal simple
connectivity of infinite products under suitable conditions on the involved spaces.

Proposition 4.3. Let {(Xi, xi) : i ∈ I} be a family of path-connected pointed spaces, x = {xi}i∈I and X =
∏

i∈I Xi. Then
X is unbased n-semilocally simply connected if and only if the following hold.

1. For each i ∈ I, Xi is unbased n-semilocally simply connected.
2. For all but a finite number of the indices i, πn(Xi, xi) is the trivial group.

Proof. Assume that Pi : X −→ Xi is the canonical projection map into the ith component of X. Let X
be unbased n-semilocally simply connected. By Theorem 3.7, there is an open cover W′ of X such that
πuSp

n (W′, x) is trivial. LetW be a refinement ofW′ which is an open cover of X and its elements form the
basis of the product topology. Then, πuSp

n (W, x) is also trivial. It is clear that the setUk = Pk(W) is an open
cover of Xk.We show that πuSp

n (Uk, xk) is trivial. Let [β] be a generator of πuSp
n (Uk, xk). Then there exist a path

τ : I −→ Xk from xk to τ(1) = y and an n-loop γ : In
−→ Xk at y such that τ#([γ]) = [β] and γ(In) ⊆ Pk(W),

for some W ∈ W. Define the maps σ : I −→ X and α : In
−→ X by σ(t) = {σi(t)} and α(s) = {αi(s)}, where

σk(t) = τ(t), αk(s) = γ(s) and for each i , k, σi(t) = αi(s) = xi. Then σ is a path from x to z = {zi}, and the map
α is an n-loop at z, where zk = y and zi = xi for each i , k. It is easy to prove that Pk ◦ σ = τ, Pk ◦ α = γ

and α(In) ⊆W.Hence, σ#([α]) is in the trivial group πuSp
n (W, x). By Proposition 4.1, Pk∗(σ#[α]) = τ#([γ]) = [β],

which implies that [β] is null-homotopic. Thus, (1) holds.
Now we prove (2). SinceW is an open cover of X, there exists W =

∏
i∈I Ui inW such that x ∈ W and

Ui = Xi, for all indices i except those that lie in a finite subset J of I. Let k ∈ I \ J and α be an n-loop at xk in Xk.
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If ik : Xk −→ X is the canonical embedding defined by ik(z) = {zi}i∈I, where zk = z and zi = xi, for any i , k,
then ik ◦ α is null-homotopic in W. Suppose that Pk : X −→ Xk is the projection map. Then Pk∗([ik ◦ α]) = [α]
implies that α is null-homotopic. Hence, πn(Xk, xk) is the trivial group.

Conversely, let (1) and (2) hold. We prove that X is unbased n-semilocally simply connected. By
(1), there exists an open cover Ui of Xi such that πuSp

n (Ui, xi) is trivial, and by (2) there exists a finite
subset J of I such that for each i ∈ I \ J, the fundamental group πn(Xi, xi) is trivial. Obviously, the set
W = {

∏
i∈I Vi : V j ∈ U j for j ∈ J and Vi = Xi for i ∈ I \ J} is an open cover of X. Consider the isomorphism

ψ : πn(X, x) −→
∏

i∈I πn(Xi, xi) defined by ψ([α]) = {Pi∗([α])}i∈I. Let σ#([α]) be a generator of πuSp
n (W, x). Then

σ : I −→ X is a path from x to σ(1), and α : In
−→ X is an n-loop with the base point σ(1) such that α(In) ⊆W,

for some W =
∏

i∈I Vi ∈ W. Since the fundamental group πn(Xi, xi) is trivial for any i ∈ I \ J, by part (1)
Proposition 4.1, ψ(σ#([α])) ∈

∏
i∈I π

uSp
n (Ui, xi). Hence, ψ(πuSp

n (W, x)) ⊆
∏

i∈I π
uSp
n (Ui, xi).

Now, let {[βi]}i∈I be a generator of
∏

i∈I π
uSp
n (Ui, xi). Then for some k ∈ I, [βk] is a generator of πuSp

n (Uk, xk)
and for every i , k, [βi] = [Cxi ]. Thus, there exist a path σk : I −→ Xk from xk to σk(1) and an n-loop
αk : In

−→ Xk such that αk(In) ⊆ Uk, for some Uk ∈ Uk, and σk#([αk]) = [βk]. Define the path σ′ : I −→ X by
σ′(t) = {σi(t)}i∈I, and the n-loop γ : In

−→ X by γ(s) = {αi(s)}i∈I, where for every i , k, σi = αi = Cxi . Then the
n-loop σ′#([γ]) belongs to πuSp

n (W, x), and

ψ(σ′#([γ])) = {Pi∗(σ′#([γ]))}i∈I = {(Pi ◦ σ′)#([Pi ◦ γ])}i∈I = {σi#([αi])}i∈I = {[βi]}i∈I.

Hence, {[βi]}i∈I ∈ ψ(πuSp
n (W, x)), which implies that ψ(πuSp

n (W, x)) =
∏

i∈I π
uSp
n (Ui, xi). Therefore, πuSp

n (W, x)
is the trivial group. By Theorem 3.7, X is unbased n-semilocally simply connected.

Remark 4.4. Proposition 4.3 holds for based n-semilocal simple connectivity. By this proposition and the examples
provided in Section 3, we can provide many examples of unbased or based n-semilocally simply connected spaces.

In the following definitions, we define the notions of small n-loop, small n-loop group and small n-loop
generated group, which are generalizations of small loops, small loop groups and small generated groups
defined in [4], [15] and [16], respectively.

Definition 4.5. An n-loop f : (In, ∂In) −→ (X, x0) is a small n-loop if for every open neighborhood U of x0, there
exists an n-loop α : In

−→ X with the base point x0 such that α(In) ⊆ U and [α] = [ f ].

A small n-loop group at x0, denoted by πS
n(X, x0), is a subgroup of πn(X, x0) consisting of homotopy classes

of all small n-loops at x0. The set πS1
n (X, x0) = {σ#([α]) : [α] ∈ πS

n(X, x0), σ is a path with the end point x0} is a
subgroup of πn(X, x0) which is called the n-small generated group.

Proposition 4.6. Let X be a topological space and x ∈ X. Then

πS
n(X, x0) ≤ πS1

n (X, x0) ≤ πbSp
n (X, x0) ≤ πuSp

n (X, x0).

Proof. The proof is straightforward and therefore omitted.

Example 4.7. By Proposition 4.6, the small n-loop groups and the small n-loop generated groups ofHn andWn are
trivial.

In the following theorem, we show that the small n-loop groups, small n-loop generated groups, unbased
Spanier groups and based Spanier groups are identical on topological groups.

Theorem 4.8. Let G be a path-connected topological group. Then for every x ∈ G,

πS
n(G, x) = πS1

n (G, x) = πbSp
n (G, x) = πuSp

n (G, x).
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Proof. Let x ∈ G and [β] be a generator of πuSp
n (G, x). Then, there exist a path σ from x to σ(1) = y and an

n-loop α : In
−→ G at y such that σ#([α]) = [β]. Let W be an open neighborhood of x. Since G is a topological

group, there exist open neighborhoods U and V of e such that xU ⊆ W,V2
⊆ U and V is symmetric. If

V = {1V : 1 ∈ G}, thenV is an open cover of G such that for some 1 ∈ G, y ∈ α(In) ⊆ 1V. Since V is symmetric,
y−11 ∈ V. Let τ : I −→ G be a path from 1 to y. Define the n-loop γ : In

−→ G by γ(s) = 1y−1α(s) at 1, and the
map H : In

× I −→ G by H(s, t) =←−τ (t)1−1γ(s). Then for any s ∈ In,H(s, 0) =←−τ (0)1−1γ(s) = y1−11y−1α(s) = α(s),
and for every s ∈ ∂In,

H(s, t) =←−τ (t)1−1γ(s) =←−τ (t)1−11y−1α(s) =←−τ (t)y−1y =←−τ (t).

Since for each s ∈ In, H(s, 1) = ←−τ (1)1−1γ(s) = 11−1γ(s) = γ(s) by (5), τ#([α]) = [γ]. Now define the map
δ : I −→ G by δ(t) = σ←−τ (t), and the map γ′ : In

−→ G by γ′(s) = x1−1γ(s). Then δ is a path from x to 1,
γ′(∂In) = x and

γ′(In) ⊆ x1−1γ(In) ⊆ x1−11y−1α(In) ⊆ xy−11V ⊆ xV2
⊆ xU ⊆W.

Suppose that the map F : In
× I −→ G is given by F(s, t) =

←−
δ (t)x−1γ′(s). Then for each s ∈ In, F(s, 0) =

←−
δ (0)x−1x1−1γ(s) = 11−1γ(s) = γ(s), and for any s ∈ ∂In,

F(s, t) =
←−
δ (t)x−1x1−1γ(s) =

←−
δ (t)1−11y−1α(s) =

←−
δ (t)y−1y =

←−
δ (t).

Since for every s ∈ In, F(s, 1) =
←−
δ (1)x−1γ′(s) = xx−1γ′(s) = γ′(s), by (5), [γ′] = δ#([γ]) = (σ←−τ )#([γ]) =

σ# ◦
←−τ #([γ]) = σ#([α]) = [β]. Therefore, [β] ∈ πS

n(G, x). By Proposition 4.6,

πS
n(G, x) = πS1

n (G, x) = πbSp
n (G, x) = πuSp

n (G, x).

The existence of a topological group with non trivial nth Spanier group is a question for authors. The author
don’t know the answer of this question.

Proposition 4.9. Let G be a topological group, x0 ∈ G and U be an open subgroup of G. If σ : I −→ G is a path from
x0 to e, then there exist an open coverV and an open cover by pointed setsW such that πuSp

n (V, x0) and πbSp
n (W, x0)

are isomorphic.

Proof. The set V = {xU : x ∈ G} is an open cover of G. If H = {[α] : α(In) ⊆ U, α(∂In) = e}, then the map
φ : H −→ πuSp

n (V, x0), defined by φ([α]) = σ#([α]), is a monomorphism. To prove that φ is surjective, let [β]
be a generator of πuSp

n (V, x0). Since σ# : πn(G, e) −→ πn(G, x0) is onto, there exists [γ] in πn(G, e) such that
σ#([γ]) = [β].On the other hand, since [β] is a generator of πuSp

n (V, x0), there exist a path λ from x0 to λ(1) = y
and an n-loop α at y such that λ#([α]) = [β] and α(In) ⊆ 1U, for some 1 ∈ G. Define the maps δ : I −→ G and
α′ : In

−→ G by δ(t) =←−σ λ(t) and α′(s) = y−1α(s), respectively. Then δ is a path from e to y, and α′ is an n-loop
at e. Since y ∈ 1U and U is a subgroup of G, y−11 ∈ U and so α′(In) ⊆ y−1α(In) ⊆ y−11U ⊆ U. This implies that
[α′] ∈ H. If F : In

× I −→ G is given by F(s, t) =
←−
δ (t)α′(s), then F(s, 0) = α(s) and for any s ∈ ∂In, F(s, t) =

←−
δ (t).

Since for every s ∈ I, F(s, 1) = α′(s), by (5), [α′] = δ#([α]) = ←−σ#λ#([α]) = ←−σ#([β]) = [γ]. Consequently, [γ] ∈ H
and so φ is onto. Therefore, πuSp

n (V, x0) and H are isomorphic. Now, ifW = {(xU, x) : x ∈ G}, thenW is an
open cover by pointed sets. In a similar way, we can prove that πbSp

n (W, x0) and H are isomorphic.

Definition 4.10. A path σ : I −→ X is said to be a small path if for every connected open set V containing σ(0) and
σ(1), there exists a path τ from σ(0) to σ(1) such that τ(I) ⊆ V and [τ] = [σ]. The topological space X is called a small
path space if every path is a small path.

It is easy to see that Rn and Sn, for n ≥ 2, are small path spaces, and that in the circle S1, there are no small
paths.
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Proposition 4.11. Let G be a small path topological group, and V be a connected open neighborhood of e. If σ : I −→ G
is a path from x0 to e, then there exist an open coverV and an open cover by pointed setsW such that πuSp

n (V, x0)
and πbSp

n (W, x0) are isomorphic.

Proof. Let U be a symmetric open neighborhood of e such that U2
⊆ V. The set V = {xU : x ∈ G} ∪ {V}

is an open cover of G. If H = {[α] : α(In) ⊆ V, α(∂In) = e}, then the map φ : H −→ πuSp
n (V, x0), defined by

φ([α]) = σ#([α]), is a monomorphism. To prove that φ is surjective, let [β] be a generator of πuSp
n (V, x0).

Since σ# : πn(G, e) −→ πn(G, x0) is onto, there exists [γ] in πn(G, e) such that σ#([γ]) = [β]. On the other hand,
since [β] is a generator of πuSp

n (V, x0), there exist a path λ from x0 to λ(1) = y and an n-loop α at y such that
λ#([α]) = [β] and α(In) ⊆W, for some W ∈ V.

Let W = 1U, for some 1 ∈ G. If δ, α′ and F are the maps defined in Proposition 4.9, then [α′] = [γ].On the
other hand, y ∈ 1U and U is a symmetric open neighborhood of e. Hence y−11 ∈ U and α′(In) ⊆ y−1α(In) ⊆
y−11U ⊆ UU ⊆ V. Consequently, [γ] = [α′] ∈ H,which implies that φ([α′]) = [β]. If W = V, then←−σ λ is a path
from e to y such that e, y ∈ V. Since G is a small path space, there is a path δ from e to y such that δ(I) ⊆ V
and [←−σ λ] = [δ]. Consider A = (In

× {0}) ∪ (∂In
× I) and define the map L : A −→ V by

L(s, t) =

{
α(s) (s, t) ∈ In

× 0,
←−
δ (t) (s, t) ∈ ∂In

× I.

Since for any s ∈ ∂In, α(s) = y =
←−
δ (0), the map L is continuous. By [12, Exercise 2.5.11], there is a retraction

r : In
× I −→ A such that r(s, t) = (s, t) for every (s, t) ∈ A. Now, F = L ◦ r : In

× I −→ V is a continuous
map such that F(s, 0) = L ◦ r(s, 0) = α(s) for any s ∈ In, and F(s, t) =

←−
δ (t) for every (s, t) ∈ ∂In

× I. By (5)
and Proposition 2.1, [γ] = ←−σ #([β]) = (←−σ λ)#([α]) = [F1]. Hence, φ([F1]) = σ#([F1]) = σ#([γ]) = [β]. Therefore,
πuSp

n (V, x0) and H are isomorphic.
Now, ifW = {(xU, x) : x ∈ G} ∪ {(V, e)}, thenW is an open cover by pointed sets. In a similar way, we

can prove that πbSp
n (W, x0) and H are isomorphic.

Definition 4.12. Let X and Y be path-connected topological spaces, and f : X→ Y be a continuous map. The space
X is called n-locally trivial with respect to f if for each x ∈ X, there exists an open subset U of X such that x ∈ U and
every n-loop based at x which it has a representation in U lies in the kernel of f∗.

It can be shown that, if Y is a based or unbased n-semilocally simply connected space, then for every
continuous map f : X→ Y, the space X is n-locally trivial with respect to f .

In the following proposition, we consider the relationship between the n-local triviality of X and the
n-Spanier group.

Proposition 4.13. Let X and Y be path-connected spaces and f : X → Y be a continuous map. If X is n-locally
trivial with respect to f , then πbSp

n (X, x0) ⊆ πuSp
n (X, x0) ⊆ ker( f∗).

Proof. By Definition 3.1, it is sufficient to show that there exists an open coverU of X such that πuSp
n (U, x0) ⊆

ker( f∗). By the n-local triviality of X with respect to f , for each x ∈ X, there exists an open neighborhood Ux
of x such that every n-loop in Ux lies in the kernel of f∗. The set U = {Ux : x ∈ X} is an open cover of X.
We claim that πuSp

n (U, x0) ⊆ ker( f∗). Let σ#([γ]) be a generator of πuSp
n (U, x0). Since γ : In

→ Ux is an n-loop
and σ is a path from x0 to the base point of γ, the n-loop f∗([γ]) is trivial. By Proposition 4.1, the n-loop
f∗(σ#([γ])) = ( f ◦ σ)#( f∗([γ])) is also trivial. Hence σ#([γ]) ∈ ker( f∗).

Theorem 4.14. If (X, x0) is a pointed space, then πuSp
n (X, x0) is contained in the kernel ofϕ : πn(X, x0) −→ π̌n(X, x0).

Proof. Let U be an open cover of X such that x0 ∈ U0 ∈ U. It suffices to show πuSp
n (X, x0) ⊆ ker(PU# ). Let

N(U) be the nerve of U. Since N(U) is an unbased n-semilocally simply connected space, by Definition
4.12, the space X is n-locally trivial with respect to PU : (X, x0) −→ (N(U),U0). By Proposition 4.13,
πuSp

n (X, x0) ⊆ ker(PU# ).
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