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Abstract. In this paper, we prove that every pointwise semi-slant warped product submanifold M = NT
× f

Nθ in a nearly Kenmotsu manifold M̃ satisfies the following inequality: ‖h‖2 ≥ 2n2

(
1 + 10

9 cot2 θ
) (
‖∇̂(ln f )‖2 − 1

)
,

where n2 = dim Nθ, ∇̂(ln f ) is the gradient of ln f and ‖h‖ is the length of the second fundamental form of
M. The equality and special cases of the inequality are investigated.

1. Introduction

It was proved in [20] that every nearly Kenmotsu manifold is locally isometric to the warped product
R× f M̃ of a real lineR and a nearly Kaehler manifold M̃. It was also proved that a normal nearly Kenmotsu
manifold is a Kenmotsu manifold [20]. Nearly Kaehler manifolds were defined and studied by Gray in his
series papers [22, 23]. Nearly Sasakian manifolds were introduced by Blair et al. [4]. Later, Olszak [29]
studied nearly Sasakian non-Sasakian manifolds of dimension 5. In [19], Endo investigated the geometry
of nearly cosymplectic manifolds. Later, Cappelletti Montano and Dileo studied nearly Sasakian manifolds
for some other fundamental properties [7]. The geometry of nearly Kenmotsu manifolds was investigated
in [34].

On the other hand, warped product manifolds introduced by Bishop on O’Neill to investigate the
geometry of pseudo-Riemannian manifolds of negative curvature [2]. After a long gape, B.-Y. Chen
introduced the notion of warped product submanifolds of Kaehler manifolds in his series papers [11, 12].
He investigate the geometry of CR-warped product submanifolds and proved that every CR-warped
product M = NT

× f N⊥ of a Kaehler manifold satisfies the following inequality

‖h‖2 ≥ 2q‖∇̂(ln f )‖2, q = dim N⊥ (1)

where ‖h‖2 is the squared norm of the second fundamental form h of M and ∇̂(ln f ) is the gradient of ln f .
Later, this inequality known as Chen’s first inequality for warped products and investigated for different
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kinds of warped product submanifolds of almost Hermitian as well as almost contact metric manifolds
[1, 14, 17, 28, 33, 37, 38, 40, 43, 44].

In this paper, we study pointwise semi-slant warped product submanifolds of the form NT
× f Nθ of

Kenmotsu manifolds where NT and Nθ are invariant and proper pointwise slant submanifolds and obtain
the following general inequality:

‖h‖2 ≥ 2n2

(
1 +

10
9

cot2 θ
) (
‖∇̂(ln f )‖2 − 1

)
, n2 = dim Nθ

The equality case of this inequality is also investigated and a special case of this inequality is given for
contact CR-warped products.

2. Preliminaries

An odd dimensional differentiable manifold M̃ endowed with a (1, 1) tensor field ϕ, a vector field ξ, a
1-form η and a Riemannian metric 1 is called an almost contact metric manifold, if

ϕ2 = −I + η ⊗ ξ, η(ξ) = 1, 1(ϕX, ϕY) = 1(X,Y) − η(X)η(Y),

where I : TM̃ → TM̃ is the identity map and for any vector fields X,Y on M̃. The structure (ϕ, ξ, η, 1) is
called the almost contact metric structure on M̃ ([3], [4]). This structure also satisfies:

η(X) = 1(X, ξ), ϕ(ξ) = 0, η ◦ ϕ = 0, 1(ϕX,Y) = −1(X, ϕY).

In this paper, we refer to ξ as the structure vector field (Reeb vector field) and to η as the dual (Reeb form)
of ξ.

An almost contact metric manifold (M̃, ϕ, ξ, η, 1) is called a nearly Kenmotsu manifold [34], if

(∇̃Xϕ)Y + (∇̃Yϕ)X = −η(Y)ϕX − η(X)ϕY (2)

for all X,Y ∈ Γ(TM̃), where Γ(TM̃) is the Lie algebra of the vector fields on M̃ and ∇̃ is the Levi-Civita
connection of 1. Moreover, if M̃ satisfies

(∇̃Xϕ)Y = 1(ϕX,Y)ξ − η(Y)ϕX, (3)

then it is called a Kenmotsu manifold [27]. It was proved that every Kenmotsu manifold is a nearly Kenmotsu
manifold but converse is not true in general [20]. The following useful result is proved in [20].

Proposition 2.1. For a nearly Kenmotsu manifold, we have

1(∇̃Xξ,Y) + 1(X, ∇̃Yξ) = 21(ϕX, ϕY), (4)

for any vector fields X,Y ∈ Γ(TM̃).

Now, we give the brief introduction of warped product manifolds.
Let

(
B, 1B

)
and

(
F, 1F

)
be two Riemannian (or semi-Riemannian) manifolds and f be a positive smooth

function on B. The warped product of B and F is the Riemannian manifold

B × f F =
(
M = B × F, 1

)
equipped with the warped metric 1 = 1B + f 21F. The function f is called the warping function and a warped
product manifold M is said to be trivial or simply a Riemannian product manifold of B and F if f is constant
(see, for instance, [2]).

Let X be a vector field on B and Z be an another vector field on F. Then, from Lemma 7.3 of [2], we have

∇XZ = ∇ZX = X(ln f )Z, (5)
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where ∇ denotes the Levi-Civita connection on M. Now for a smooth function f on an n-dimensional
manifold M, we have

‖∇̂ f ‖2 =

m∑
i=1

(
ei( f )

)2 (6)

for the given orthonormal frame field {e1, e2, · · · , en} on M, where ∇̂ f is the gradient of f defined by
1(∇̂ f ,X) = X( f ).

Remark 2.2. It is also important to note that for a warped product M = B × f F; B is totally geodesic and F is totally
umbilical in M [2, 11].

Now, if M is a Riemannian manifold isometrically immersed in an another Riemannian manifold M̃,
then formulas of Gauss and Weingarten are respectively given by

∇̃XY = ∇XY + h(X,Y), (7)

∇̃XN = −ANX + ∇⊥XN, (8)

for any vector field X, Y ∈ Γ(TM) and N ∈ Γ(T⊥M), where ∇⊥ is the normal connection in the normal
bundle, h is the second fundamental form and A is the shape operator of the submanifold. They are related
by 1(h(X,Y),N) = 1(ANX,Y)

A submanifold M is said to be totally geodesic if h = 0 and totally umbilical if h(X,Y) = 1(X,Y)H, ∀X, Y ∈
Γ(TM), where H = 1

n
∑n

i=1h(ei, ei) is the mean curvature vector of M. For any x ∈M and {e1, · · · , en, · · · , e2m+1}

is an orthonormal frame of the tangent space TxM̃ such that e1, · · · , en are tangent to M at x. Then, we set

hr
i j = 1(h(ei, e j), er), ‖h‖2 =

n∑
i, j=1

1(h(ei, e j), h(ei, e j)), i, j ∈ {1, · · · ,n}, r ∈ {n + 1, · · · , 2m + 1}. (9)

B.-Y. Chen [9, 10] introduced a generalized class of holomorphic (invariant) and totally real (anti-
invariant) submanifolds known as slant submanifolds in complex geometry. Later, A. Lotta [26] has
extended Chen’s idea for contact metric manifolds.

A submanifold M tangent to ξ is said to be slant if for any p ∈M and any X ∈ TpM, linearly independent
to ξ, the angle between ϕX and TpM is a constant θ ∈ [0, π/2], called the slant angle of M in M̃.

As natural extension of slant submanifolds, Etayo [21] introduced the notion of pointwise slant sub-
manifolds. Later, these submanifolds were studied by Chen and Garay [15] for their characterizations
and fundamental properties. They proved many interesting results and provided a method that how
to construct non-trivial examples of such submanifolds. They defined pointwise slant submanifolds as
follows:

A submanifold M is called pointwise slant [15, 21, 42] if for any nonzero vector X ∈ TpM (p ∈ M), the
angle θ(X) between ϕX and TpM is independent of the choice of X ∈ TpM. In this case, θ defines a function
on M, called the slant function. In particular, if the slant function θ is globally constant on M, then M is said
to be a slant submanifold or a θ-slant submanifold.

Anti-invariant submanifolds are pointwise slant submanifolds with slant function θ = π
2 everywhere

on M. A pointwise slant submanifold is called proper if 0 < θ < π
2 . See [? ? ] for non-trivial examples of

pointwise slant submanifolds.
For any vector field X ∈ Γ(TM), we have

ϕX = TX + FX, (10)

where TX and FX are the tangential and normal components of ϕX, respectively.
We recall the following useful characterization from [42].
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Proposition 2.3. Let M be a submanifold of an almost contact metric manifold M̃ with ξ ∈ Γ(TM). Then M is
pointwise slant if and only if

T2 = cos2 θ
(
−I + η ⊗ ξ

)
, (11)

where θ is the slant function and I denotes the identity map on TM.

Following relations are straightforward consequence of (11)

1(TX,TY) = cos2 θ[1(X,Y) − η(X)η(Y)], (12)

1(FX,FY) = sin2 θ[1(X,Y) − η(X)η(Y)], (13)

for vector fields X,Y ∈ Γ(M). Also, for pointwise slant submanifolds, we have

tFX = sin2 θ
(
−X + η(X)ξ

)
, f FX = −FTX, X ∈ Γ(TM). (14)

A submanifold M of an almost contact metric manifold M̃ is said to be a contact CR-submanifold [14] if
there exist a pair of orthogonal distributions DT and D⊥ such that

TM = DT
⊕D⊥ ⊕ 〈ξ〉,

where DT is ϕ-invariant i.e., ϕDT
⊆ DT and D⊥ is anti-invariant i.e., ϕD⊥ ⊂ T⊥M.

As a generalization of contact CR-submanifold, we define pointwise semi-slant submanifolds as follows:

Definition 2.4. Let M̃ be an almost contact metric manifold and M be a submanifold of M̃ such that the structure
vector field ξ is tangent to M. Then M is called a pointwise semi-slant submanifold of M̃ if there exists a pair of
orthogonal distributions DT and Dθ on M such that

TM = DT
⊕Dθ ⊕ 〈ξ〉 (15)

where DT is ϕ-invariant, i.e., ϕ(DT) ⊆ DT and Dθ is a proper pointwise slant distribution with slant function
θ , 0, π2 .

A pointwise semi-slant submanifold M is called proper if neither dim DT = 0 nor the slant function of Dθ is
constant.

Clearly, semi-slant and contact CR-submanifolds are the pointwise semi-slant slant submanifolds with
slant function θ is globally constant and θ = π

2 , repetitively.
The normal bundle of a pointwise semi-slant submanifold M is decomposed as

T⊥M = FDθ ⊕ µ (16)

where µ is the maximal ϕ-invariant normal subbundle in T⊥M.

3. Definition and a basic lemma

In this section, we give some preparatory results on pointwise semi-slant warped products. First, we
define

Definition 3.1. A warped product of an ϕ-invariant submanifold and a proper pointwise slant submanifold in an
almost contact metric manifold M̃ is called a pointwise semi-slant warped product and it is denoted by NT

× f Nθ or
Nθ
× f NT, where NT and Nθ are invariant and proper pointwise slant submanifolds of M̃, respectively.

We accept the following convention that X,Y are vector fields on NT and Z,W are the vector fields Nθ and
for the simplicity we denote tangent spaces of NT and Nθ by the same DT and Dθ, respectively.
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Remark 3.2. Notice that in both the cases of proper pointwise semi-slant warped products (in Definition 3.1), the
structure vector field ξ is tangent to the base manifold of the warped products otherwise from Proposition 2.1, we
easily find that there is no proper warped product.

Now, we have the following useful results for later use.

Lemma 3.3. Let M = NT
× f Nθ be a pointwise semi-slant warped product of a nearly Kenmotsu manifold M̃ such

that ξ is tangent to NT. Then, for any X,Y ∈ Γ(DT) and Z,W ∈ Γ(Dθ), we have

(i) ξ(ln f ) = 1,
(ii) 1(h(X,Y), ϕZ) = 0;

(iii) 1(h(X,Z),FW) = − 1
3
(
η(X) − X(ln f )

)
1(TZ,W) − ϕX(ln f )1(Z,W).

Proof. From (4) and (5), for any Z,W ∈ Γ(Dθ), we have

2ξ(ln f )1(Z,W) = 1(∇̃Zξ,W) + 1(∇̃Wξ,Z) = 21(ϕZ, ϕW) = 21(Z,W),

which gives (i). For the second part of the lemma, we have

1(h(X,Y),FZ) = 1(∇̃XY, ϕZ − TZ) = 1((∇̃Xϕ)Y,Z) − 1(∇̃XϕY,Z) + 1(ϕ∇XY,Z),

for any X,Y ∈ Γ(DT) and Z ∈ Γ(Dθ). Since ∇XY ∈ Γ(DT) (see, Remark 2.2), the last two terms in r.h.s. of
above equation are identically zero. Then, we find

1(h(X,Y),FZ) = 1((∇̃Xϕ)Y,Z). (17)

Hence, (ii) follows from (17) via polarization identity and (2). In the similar way, we have

1(h(X,Z),FW) = 1((∇̃Zϕ)X,W) − 1(∇̃ZϕX,W) − 1(∇̃ZX,TW).

Using (5), we obtain

1(h(X,Z),FW) = 1((∇̃Zϕ)X,W) − ϕX(ln f )1(Z,W) − X(ln f )1(Z,TW). (18)

On the other hand, we know that

1(h(X,Z),FW) = 1((∇̃Xϕ)Z,W) − 1(∇̃XTZ,W) − 1(∇̃XFZ,W) − X(ln f )1(Z,TW). (19)

Using (8) and (5), we find

1(h(X,Z),FW) = 1((∇̃Xϕ)Z,W) + 1(h(X,W),FZ). (20)

Then, from (18) and (20) together with (2), we derive

21(h(X,Z),FW) = −η(X)1(TZ,W) − ϕX(ln f )1(Z,W) + X(ln f )1(TZ,W). + 1(h(X,W),FZ).

Third relation immediately follows from above relation via polarization identity. Hence, the lemma is
proved completely.

Now, if we interchange Z by TZ in (19) and using Proposition 2.3 and (5), then we find

1(h(X,TZ),FW) = 1((∇̃Xϕ)TZ,W) + cos2 θX(ln f )1(Z,W) − sin 2θX(θ)1(Z,W)

+ 1(h(X,W),FTZ) − cos2 θX(ln f )1(Z,W). (21)

Since, θ is the slant function on Nθ hence X(θ) = 0, ∀ X ∈ Γ(DT). Then, Eq. (21) takes the form

1(h(X,TZ),FW) = 1((∇̃Xϕ)TZ,W) + 1(h(X,W),FTZ). (22)
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On the other hand, from (18), we have

1(h(X,TZ),FW) = 1((∇̃TZϕ)X,W) − ϕX(ln f )1(TZ,W) − cos2 θX(ln f )1(Z,W). (23)

Then, (22), (23) and (2) imply that

21(h(X,TZ),FW) = 1(h(X,W),FTZ) + cos2 θ
(
η(X) − X(ln f )

)
1(Z,W) − ϕX(ln f )1(TZ,W). (24)

Furthermore, from Lemma 3.3(iii), we have

21(h(X,TZ),FW) =
2
3

cos2 θ
(
η(X) − X(ln f )

)
1(Z,W) − 2ϕX(ln f )1(TZ,W). (25)

Then, from (24) and (25), we derive

1(h(X,W),FTZ) = −
1
3

cos2 θ
(
η(X) − X(ln f )

)
1(Z,W) − ϕX(ln f )1(TZ,W). (26)

The following relations are easily obtained by interchanging X by ϕX, Z by TZ and W by TW in Lemma
3.3(iii) and (26).

1(h(ϕX,W),FZ) = −
1
3
ϕX(ln f ) 1(TZ,W) +

(
X(ln f ) − η(X)

)
1(Z,W), (27)

1(h(X,TW),FZ) =
1
3

cos2 θ
(
η(X) − X(ln f )

)
1(Z,W) + ϕX(ln f ) 1(TZ,W), (28)

1(h(X,TW),FTZ) = −
1
3

cos2 θ
(
η(X) − X(ln f )

)
1(TZ,W) − cos2 θϕX(ln f ) 1(Z,W), (29)

1(h(ϕX,TW),FZ) = −
1
3

cos2 θϕX(ln f )1(Z,W) −
(
X(ln f ) − η(X)

)
1(TZ,W), (30)

1(h(ϕX,W),FTZ) = −
1
3

cos2 θϕX(ln f )1(Z,W) +
(
X(ln f ) − η(X)

)
1(TZ,W), (31)

1(h(ϕX,TW),FTZ) =
1
3

cos2 θϕX(ln f )1(TZ,W) + cos2 θ
(
X(ln f ) − η(X)

)
1(Z,W). (32)

In particular, if X = ξ, then we find

1(h(ξ,W),FZ) = 1(h(ξ,TW),FZ) = 1(h(ξ,TW),FTZ) = 1(h(ξ,W),FTZ) = 0. (33)

4. Chen’s first inequality for pointwise semi-slant warped products

In this section, we prove B.-Y Chen’s first inequality for pointwise semi-slant warped product NT
× f Nθ

in nearly Kenmotsu manifolds.
Let M̃ be a (2m + 1)-dimensional nearly Kenmotsu manifold and M = NT

× f Nθ be a n-dimensional
warped product isometrically immersed in M̃. We denote the corresponding tangent spaces of NT and N⊥

by the same symbols DT and Dθ, respectively. If dim NT = n1 and dim Nθ = n2, then we have

DT = Span{e1, · · · , ep, ep+1 = ϕe1, · · · , e2p = ϕep, en1 = e2p+1 = ξ},

Dθ = Span{en1+1,= e∗1 · · · , en1+q = e∗q, · · · , en1+q+1 = secθTe∗1, · · · , en = secθTe∗q}.

Then, the normal bundle T⊥M of M is spanned by

FDθ = Span{en+1,= cscθFe∗1 · · · , en+q = cscθFe∗q, · · · , en+q+1 = cscθ secθFTe∗1, · · · , en+n2 = cscθ secθFTe∗q},

µ = Span{en+n2+1,= ẽ1 · · · , e2m+1 = ẽ2m+1−n−n2 }.

Now, we prove the main result of of this paper.
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Theorem 4.1. Let M = NT
× f Nθ be a pointwsie semi-slant submanifold of a nearly Kenmotsu manifold M̃. Then,

the second fundamental form h of M satisfies:

‖h‖2 ≥ 2n2

(
1 +

10
9

cot2 θ
) (
‖∇̂(ln f )‖2 − 1

)
, (34)

where ‖∇̂(ln f ) is the gradient of ln f and n2 = dim Nθ.
Moreover, if the equality sign in (34) holds identically then NT is a totally geodesic submanifold and Nθ is a totally

umbilical submanifold of M̃. Furthermore, M can not be mixed totally geodesic in M̃.

Proof. From (9), we have

‖h‖2 =

n∑
i, j=1

1(h(ei, e j), h(ei, e j)) =

2m+1∑
r=n+1

n∑
i, j=1

(1(h(ei, e j), er)2.

Then from (16), the above equation decompose as

‖h‖2 =

n+n2∑
r=n+1

n∑
i, j=1

(1(h(ei, e j), er))2 +

2m+1−n−n2∑
r=1

n∑
i, j=1

(1(h(ei, e j), ẽr))2. (35)

Leaving the last µ-components term, we obtain

‖h‖2 ≥
n2∑

r=1

2p+1∑
i, j=1

(1(h(ei, e j),Fe∗r))
2 + 2

n2∑
r=1

2p+1∑
i=1

n2∑
j=1

(1(h(ei, e∗j),Fe∗r))
2 +

n2∑
r=1

n2∑
i, j=1

(1(h(e∗i , e
∗

j),Fe∗r))
2. (36)

First term in r.h.s. is identically zero by using Lemma 3.3(ii) and there is no relation for the third term,
hence by leaving positive third term, we derive

‖h‖2 ≥ 2 csc2 θ

q∑
r=1

2p∑
i=1

q∑
j=1

(1(h(ei, e∗j),Fe∗r))
2 + 2 csc2 θ sec2 θ

q∑
r=1

2p∑
i=1

q∑
j=1

(1(h(ei,Te∗j),Fe∗r))
2

+ 2 csc2 θ sec2 θ

q∑
r=1

2p∑
i=1

q∑
j=1

(1(h(ei, e∗j),FTe∗r))
2 + 2 csc2 θ sec4 θ

q∑
r=1

2p∑
i=1

q∑
j=1

(1(h(ei,Te∗j),FTe∗r))
2

+ 2 csc2 θ

q∑
r=1

q∑
j=1

(1(h(ξ, e∗j),Fe∗r))
2 + 2 csc2 θ sec2 θ

q∑
r=1

q∑
j=1

(1(h(ξ,Te∗j),Fe∗r))
2

+ 2 csc2 θ sec2 θ

q∑
r=1

q∑
j=1

(1(h(ξ, e∗j),FTe∗r))
2 + 2 csc2 θ sec4 θ

q∑
r=1

q∑
j=1

(1(h(ξ,Te∗j),FTe∗r))
2.

Using Lemma 3.3, Eqs. (26)- (33), the above inequality takes the form

‖h‖2 ≥ 4q csc2 θ

2p∑
i=1

(
ei(ln f )

)2 +
4q
9

cot2 θ

2p∑
i=1

(
ei(ln f )

)2

= 2n2 csc2 θ

2p+1∑
i=1

(
ei(ln f )

)2 +
2n2

9
cot2 θ

2p+1∑
i=1

(
ei(ln f )

)2
− 2n2 csc2 θ

(
ξ(ln f )

)2
−

2n2

9
cot2 θ

(
ξ(ln f )

)2 .

Then from (6) and Lemma 3.3(i), we get the required inequality (34). Now, for the equality case, from the
excluded µ-components terms in (35), we obtain

h(X,Y) ⊥ µ, ∀ X,Y ∈ Γ(TM). (37)
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Also, from the vanishing first term of (36), we get

h(DT,DT) ⊥ FDθ. (38)

Then, from (37) and (38), we conclude that

h(DT,DT) = {0}. (39)

Hence, NT is totally geodesic in M̃ by using the fact that NT being totally geodesic in M (see, Remark 2.2).
Furthermore, from the excluded third term of (36), we find

h(Dθ,Dθ) ⊥ FDθ. (40)

Then, from (37) and (40), we obtain

h(Dθ,Dθ) = {0}. (41)

Moreover, from Lemma 3.3(iii), we find that

h(DT,Dθ) , {0}. (42)

Using the fact that Nθ is totally umbilical in M (see Remark 2.2) together with (41) and (42), we conclude
that Nθ is a totally umbilical submanifold of M̃. Also, from (42), we observe that M can not be mixed totally
geodesic in M̃. Hence, the theorem is proved completely.

As a special case of Theorem 4.1, if θ = π
2 in (34), we have the following useful result.

Theorem 4.2. Let M = NT
× f N⊥ be a contact CR-warped product submanifold of a nearly Kenmotsu manifold M̃.

Then

(i) The second fundamental from h of the warped product immersion satisfies

‖h‖2 ≥ 2n2

(
‖∇̂(ln f )‖2 − 1

)
, n2 = dim N⊥. (43)

(ii) If the equality sign holds in (43), then NT is a totally geodesic submanifold and N⊥ is a totally umbilical
submanifold of M̃.
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Univ. Al. I. Cuza Iaşi Secţ. I a Mat. (N.S.) 62 (2016), no.3, 927–938.
[39] S. Uddin, B.-Y. Chen and F. R. Al-Solamy, Warped product bi-slant immersions in Kaehler manifolds Mediterr. J. Math. 14 (2) (2017),

Art. 95, 11 pp.
[40] S. Uddin and F. R. Al-Solamy, Warped product pseudo-slant immersions in Sasakian manifolds, Publ. Math. Debrecen, 91 (3-4) (2017),

331–348.
[41] S. Uddin, Geometry of warped product semi-slant submanifolds of Kenmotsu manifolds, Bull. Math. Sci. 8 (2018), no. 3, 435–451.
[42] S. Uddin , A. H. Alkhaldi, Pointwise slant submanifolds and their warped products in Sasakian manifolds, Filomat 32 (2018), no. 12,

4131–4142.
[43] S. Uddin and M. S. Stankovic, Warped product submanifolds of Kaehler manifolds with pointwise slant fiber, Filomat 32 (1) (2018), 35–44.
[44] S. Uddin, F. R. Al-Solamy, M. H. Shahid and A. Saloom, B.-Y. Chen’s inequality for bi-warped products and its applications in Kenmotsu

manifolds, Mediterr. J. Math. (2018) 15: 193. https://doi.org/10.1007/s00009-018-1238-1


