A General Inequality for Pointwise Semi-Slant Warped Products in Nearly Kenmotsu Manifolds

Siraj Uddina, Ashwaq Altalhia, Nadia Alluhaibib

aDepartment of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
bDepartment of Mathematics, Science and Arts College, Rabigh Campus, King Abdulaziz University, Jeddah 21911, Saudi Arabia

Abstract. In this paper, we prove that every pointwise semi-slant warped product submanifold \(M = N^T \times_f N^\theta \) in a nearly Kenmotsu manifold \(\tilde{M} \) satisfies the following inequality:
\[
\|h\|^2 \geq 2n_2 \left(1 + \frac{10}{9} \cot^2 \theta \right) \left(\|\tilde{\nabla}(\ln f)\|^2 - 1 \right),
\]
where \(n_2 = \dim N^\theta \), \(\tilde{\nabla}(\ln f) \) is the gradient of \(\ln f \) and \(\|h\| \) is the length of the second fundamental form of \(M \). The equality and special cases of the inequality are investigated.

1. Introduction

It was proved in [20] that every nearly Kenmotsu manifold is locally isometric to the warped product \(\mathbb{R} \times_f M \) of a real line \(\mathbb{R} \) and a nearly Kaehler manifold \(\tilde{M} \). It was also proved that a normal nearly Kenmotsu manifold is a Kenmotsu manifold [20]. Nearly Kaehler manifolds were defined and studied by Gray in his series papers [22, 23]. Nearly Sasakian manifolds were introduced by Blair et al. [4]. Later, Olszak [29] studied nearly Sasakian non-Sasakian manifolds of dimension 5. In [19], Endo investigated the geometry of nearly cosymplectic manifolds. Later, Cappelletti Montano and Dileo studied nearly Sasakian manifolds for some other fundamental properties [7]. The geometry of nearly Kenmotsu manifolds was investigated in [34].

On the other hand, warped product manifolds introduced by Bishop on O’Neill to investigate the geometry of pseudo-Riemannian manifolds of negative curvature [2]. After a long gape, B.-Y. Chen introduced the notion of warped product submanifolds of Kaehler manifolds in his series papers [11, 12]. He investigate the geometry of CR-warped product submanifolds and proved that every CR-warped product \(M = N^T \times_f N^\perp \) of a Kaehler manifold satisfies the following inequality
\[
\|h\|^2 \geq 2q\|\tilde{\nabla}(\ln f)\|^2, \quad q = \dim N^\perp
\] (1)
where \(\|h\|^2 \) is the squared norm of the second fundamental form \(h \) of \(M \) and \(\tilde{\nabla}(\ln f) \) is the gradient of \(\ln f \). Later, this inequality known as Chen’s first inequality for warped products and investigated for different

\textbf{Keywords.} warped products; slant; pointwise semi-slant submanifolds; nearly Kenmotsu manifolds

\textbf{2020 Mathematics Subject Classification.} 53C15; 53C40; 53C42; 53C25; 53B25

Communicated by Mica S. Stanković

The project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under grant no. D-662-199-40. The authors, therefore, acknowledge with thanks DSR for technical and financial support.

Email addresses: siraj.ch@gmail.com (Siraj Uddin), ashwaq.altalhi@gmail.com (Ashwaq Altalhi), nallehaibi@kau.edu.sa (Nadia Alluhaibi)
kinds of warped product submanifolds of almost Hermitian as well as almost contact metric manifolds [1, 14, 17, 28, 33, 37, 38, 40, 43, 44].

In this paper, we study pointwise semi-slant warped product submanifolds of the form $N^T \times_f N^0$ of Kenmotsu manifolds where N^T and N^0 are invariant and proper pointwise slant submanifolds and obtain the following general inequality:

$$\|\eta\|^2 \geq 2n_2 \left(1 + \frac{10}{9} \cot^2 \theta \right) (\|\nabla (\ln f)\|^2 - 1), \quad n_2 = \dim N^0$$

The equality case of this inequality is also investigated and a special case of this inequality is given for contact CR-warped products.

2. Preliminaries

An odd dimensional differentiable manifold \tilde{M} endowed with a $(1,1)$ tensor field φ, a vector field ξ, a 1-form η and a Riemannian metric g is called an almost contact metric manifold, if

$$\varphi^2 = -I + \eta \otimes \xi, \quad \eta(\xi) = 1, \quad g(\varphi X, \varphi Y) = g(X, Y) - \eta(X)\eta(Y),$$

where $I : T\tilde{M} \to T\tilde{M}$ is the identity map and for any vector fields X, Y on \tilde{M}. The structure (φ, ξ, η, g) is called the almost contact metric structure on \tilde{M} ([3], [4]). This structure also satisfies:

$$\eta(X) = g(X, \xi), \quad \varphi(\xi) = 0, \quad \eta \circ \varphi = 0, \quad g(\varphi X, Y) = -g(X, \varphi Y).$$

In this paper, we refer to ξ as the structure vector field (Reeb vector field) and to η as the dual (Reeb form) of ξ.

An almost contact metric manifold $(\tilde{M}, \varphi, \xi, \eta, g)$ is called a nearly Kenmotsu manifold [34], if

$$(\tilde{\nabla}_X \varphi) Y + (\tilde{\nabla}_Y \varphi) X = -\eta(Y)\varphi X - \eta(X)\varphi Y$$ \quad (2)

for all $X, Y \in \Gamma(T\tilde{M})$, where $\Gamma(T\tilde{M})$ is the Lie algebra of the vector fields on \tilde{M} and $\tilde{\nabla}$ is the Levi-Civita connection of g. Moreover, if \tilde{M} satisfies

$$(\tilde{\nabla}_X \varphi) Y = g(\varphi X, Y)\xi - \eta(Y)\varphi X,$$ \quad (3)

then it is called a Kenmotsu manifold [27]. It was proved that every Kenmotsu manifold is a nearly Kenmotsu manifold but converse is not true in general [20]. The following useful result is proved in [20].

Proposition 2.1. For a nearly Kenmotsu manifold, we have

$$g(\tilde{\nabla}_X \xi, Y) + g(X, \tilde{\nabla}_Y \xi) = 2g(\varphi X, \varphi Y),$$ \quad (4)

for any vector fields $X, Y \in \Gamma(T\tilde{M})$.

Now, we give the brief introduction of warped product manifolds.

Let (B, g_B) and (F, g_F) be two Riemannian (or semi-Riemannian) manifolds and f be a positive smooth function on B. The warped product of B and F is the Riemannian manifold

$$B \times_f F = (M = B \times F, g)$$

equipped with the warped metric $g = g_B + f^2 g_F$. The function f is called the warping function and a warped product manifold M is said to be trivial or simply a Riemannian product manifold of B and F if f is constant (see, for instance, [2]).

Let X be a vector field on B and Z be another vector field on F. Then, from Lemma 7.3 of [2], we have

$$\nabla_X Z = \nabla_Z X = X(\ln f)Z,$$ \quad (5)
where ∇ denotes the Levi-Civita connection on M. Now for a smooth function f on an n-dimensional manifold M, we have

$$
\|\hat{\nabla} f\|^2 = \sum_{i=1}^{m} (e_i(f))^2
$$

(6)

for the given orthonormal frame field $\{e_1, e_2, \cdots, e_n\}$ on M, where $\hat{\nabla} f$ is the gradient of f defined by $g(\hat{\nabla} f, X) = X(f)$.

Remark 2.2. It is also important to note that for a warped product $M = B \times_f F$; B is totally geodesic and F is totally umbilical in M [2, 11].

Now, if M is a Riemannian manifold isometrically immersed in another Riemannian manifold \tilde{M}, then formulas of Gauss and Weingarten are respectively given by

$$
\hat{\nabla}_X Y = \nabla_X Y + h(X, Y),
$$

(7)

$$
\hat{\nabla}_X N = -A_X X + \nabla_X^N N,
$$

(8)

for any vector field X, $Y \in \Gamma(TM)$ and $N \in \Gamma(T^\perp M)$, where ∇^\perp is the normal connection in the normal bundle, h is the second fundamental form and A is the shape operator of the submanifold. They are related by $g(h(X, Y), N) = g(A_X X, Y)$.

A submanifold M is said to be totally geodesic if $h = 0$ and totally umbilical if $h(X, Y) = g(X, Y)H$, $\forall X, Y \in \Gamma(TM)$, where $H = \frac{1}{n} \sum_{i=1}^{n} h(e_i, e_i)$ is the mean curvature vector of M. For any $x \in M$ and $\{e_1, \cdots, e_n, e_{2m+1}, \cdots, e_{2m+1}\}$ is an orthonormal frame of the tangent space $T_x M$ such that e_1, \cdots, e_n are tangent to M at x. Then, we set

$$
h'_{ij} = g(h(e_i, e_j), e_r), \quad \|h\|^2 = \sum_{i,j=1}^{n} g(h(e_i, e_j), h(e_i, e_j)), \quad i, j \in \{1, \cdots, n\}, \quad r \in \{n+1, \cdots, 2m+1\}.
$$

(9)

B.-Y. Chen [9, 10] introduced a generalized class of holomorphic (invariant) and totally real (anti-invariant) submanifolds known as slant submanifolds in complex geometry. Later, A. Lotta [26] has extended Chen’s idea for contact metric manifolds.

A submanifold M tangent to ξ is said to be **slant** if for any $p \in M$ and any $X \in T_p M$, linearly independent to ξ, the angle between φX and $T_p M$ is a constant $\theta \in [0, \pi/2]$, called the **slant angle of M in \tilde{M}**.

As natural extension of slant submanifolds, Etayo [21] introduced the notion of pointwise slant submanifolds. Later, these submanifolds were studied by Chen and Garay [15] for their characterizations and fundamental properties. They proved many interesting results and provided a method that how to construct non-trivial examples of such submanifolds. They defined pointwise slant submanifolds as follows:

A submanifold M is called **pointwise slant** [15, 21, 42] if for any nonzero vector $X \in T_p M (p \in M)$, the angle $\theta(X)$ between φX and $T_p M$ is independent of the choice of $X \in T_p M$. In this case, θ defines a function on M, called the **slant function**. In particular, if the slant function θ is globally constant on M, then M is said to be a slant submanifold or a θ-slant submanifold.

Anti-invariant submanifolds are pointwise slant submanifolds with slant function $\theta = \frac{\pi}{2}$ everywhere on M. A pointwise slant submanifold is called **proper** if $0 < \theta < \frac{\pi}{2}$. See [? ?] for non-trivial examples of pointwise slant submanifolds.

For any vector field $X \in \Gamma(TM)$, we have

$$
\varphi X = TX + FX,
$$

(10)

where TX and FX are the tangential and normal components of φX, respectively.

We recall the following useful characterization from [42].
Proposition 2.3. Let M be a submanifold of an almost contact metric manifold \tilde{M} with $\xi \in \Gamma(TM)$. Then M is pointwise slant if and only if
\[T^2 = \cos^2 \theta (-I + \eta \otimes \xi), \]
where θ is the slant function and I denotes the identity map on TM.

Following relations are straightforward consequence of (11)
\[g(TX, TY) = \cos^2 \theta [g(X, Y) - \eta(X)\eta(Y)], \]
\[g(FX, FY) = \sin^2 \theta [g(X, Y) - \eta(X)\eta(Y)], \]
for vector fields $X, Y \in \Gamma(M)$. Also, for pointwise slant submanifolds, we have
\[tFX = \sin^2 \theta (-X + \eta(X)\xi), \quad fFX = -FTX, \quad X \in \Gamma(TM). \]

A submanifold M of an almost contact metric manifold \tilde{M} is said to be a contact CR-submanifold [14] if there exist a pair of orthogonal distributions D^T and D^\perp such that
\[TM = D^T \oplus D^\perp \oplus \langle \xi \rangle, \]
where D^T is ϕ-invariant i.e., $\phi D^T \subseteq D^T$ and D^\perp is anti-invariant i.e., $\phi D^\perp \subset T^\perp M$.

As a generalization of contact CR-submanifold, we define pointwise semi-slant submanifolds as follows:

Definition 2.4. Let \tilde{M} be an almost contact metric manifold and M be a submanifold of \tilde{M} such that the structure vector field ξ is tangent to M. Then M is called a pointwise semi-slant submanifold of \tilde{M} if there exists a pair of orthogonal distributions D^T and D^θ on M such that
\[TM = D^T \oplus D^\theta \oplus \langle \xi \rangle \]
where D^T is ϕ-invariant i.e., $\phi(D^T) \subseteq D^T$ and D^θ is a proper pointwise slant distribution with slant function θ, $0 < \theta < \pi/2$.

A pointwise semi-slant submanifold M is called proper if neither $\dim D^T = 0$ nor the slant function of D^θ is constant.

Clearly, semi-slant and contact CR-submanifolds are the pointwise semi-slant slant submanifolds with slant function θ is globally constant and $\theta = \pi/2$, repetitively.

The normal bundle of a pointwise semi-slant submanifold M is decomposed as
\[T^\perp M = F\mathcal{D}^\theta \oplus \mu \]
where μ is the maximal ϕ-invariant normal subbundle in $T^\perp M$.

3. Definition and a basic lemma

In this section, we give some preparatory results on pointwise semi-slant warped products. First, we define

Definition 3.1. A warped product of an ϕ-invariant submanifold and a proper pointwise slant submanifold in an almost contact metric manifold \tilde{M} is called a pointwise semi-slant warped product and it is denoted by $N^T \times_f N^\theta$ or $N^\theta \times_f N^T$, where N^T and N^θ are invariant and proper pointwise slant submanifolds of \tilde{M}, respectively.

We accept the following convention that X, Y are vector fields on N^T and Z, W are the vector fields N^θ and for the simplicity we denote tangent spaces of N^T and N^θ by the same D^T and D^θ, respectively.
On the other hand, we know that there is no proper warped product. Using (5), we obtain

\[g(h(X,Y),\varphi Z) = 0; \]

for any \(X, Y \in \Gamma(\Sigma^T) \) and \(Z \in \Gamma(\Sigma^0) \), we have

\[g(h(X,Z),FW) = -\frac{1}{2} (\eta(X) - X(\ln f)) g(TZ,W) - \varphi X(\ln f) g(Z,W). \]

Proof. From (4) and (5), for any \(Z \in \Gamma(\Sigma^0) \), we have

\[2\xi(\ln f) g(Z,W) = g(\tilde{\nabla}_Z \xi, W) + g(\tilde{\nabla}_W \xi, Z) = 2g(\varphi Z, \varphi W) = 2g(Z,W), \]

which gives (i). For the second part of the lemma, we have

\[g(h(X,Y),FZ) = g(\tilde{\nabla}_Z \eta, \varphi Z - TZ) = g((\tilde{\nabla}_Z \eta)Y, Z) - g(\tilde{\nabla}_Z \eta, Z) + g(\varphi \tilde{\nabla}_Z Y, Z), \]

for any \(X, Y \in \Gamma(\Sigma^T) \) and \(Z \in \Gamma(\Sigma^0) \). Since \(\nabla_X Y \in \Gamma(\Sigma^T) \), the last two terms in r.h.s. of above equation are identically zero. Then, we find

\[g(h(X,Y),FZ) = g((\tilde{\nabla}_Z \eta)Y, Z). \]

Hence, (ii) follows from (17) via polarization identity and (2). In the similar way, we have

\[g(h(X,Z),FW) = g((\tilde{\nabla}_Z \eta)X, W) - g(\tilde{\nabla}_Z \eta, W) - g(\tilde{\nabla}_Z X, TW). \]

Using (5), we obtain

\[g(h(X,Z),FW) = g((\tilde{\nabla}_Z \eta)X, W) - \varphi X(\ln f) g(Z,W) - X(\ln f) g(Z,TW). \]

On the other hand, we know that

\[g(h(X,Z),FW) = g((\tilde{\nabla}_Z \eta)X, W) - g(\tilde{\nabla}_Z X, TW) - g(\tilde{\nabla}_Z FZ, W) - X(\ln f) g(Z,TW). \]

Using (8) and (5), we find

\[g(h(X,Z),FW) = g((\tilde{\nabla}_Z \eta)X, W) + h(X,W), FZ). \]

Then, from (18) and (20) together with (2), we derive

\[2g(h(X,Z),FW) = -\eta(X) g(TZ,W) - \varphi X(\ln f) g(Z,W) + X(\ln f) g(TZ,W). + g(h(X,W), FZ). \]

Third relation immediately follows from above relation via polarization identity. Hence, the lemma is proved completely.

Now, if we interchange \(Z \) by \(TZ \) in (19) and using Proposition 2.3 and (5), then we find

\[g(h(X,TZ),FW) = g((\tilde{\nabla}_Z \eta)TZ, W) + \cos^2 \theta X(\ln f) g(Z,W) - \sin 2\theta X(\theta) g(Z,W) + g(h(X,W), FTZ) - \cos^2 \theta X(\ln f) g(Z,W). \]

Since, \(\theta \) is the slant function on \(N^0 \) hence \(X(\theta) = 0, \forall X \in \Gamma(\Sigma^T) \). Then, Eq. (21) takes the form

\[g(h(X,TZ),FW) = g((\tilde{\nabla}_Z \eta)TZ, W) + g(h(X,W), FTZ). \]
On the other hand, from (18), we have
\[g(h(X, TZ), FW) = g((\nabla_{TZ}\varphi)X, W) - \varphi X(ln f)g(TZ, W) - \cos^2 \theta X(ln f)g(Z, W). \] (23)

Then, (22), (23) and (2) imply that
\[2g(h(X, TZ), FW) = g(h(X, W), FTZ) + \cos^2 \theta (\eta(X) - X(ln f)) g(Z, W) - \varphi X(ln f)g(TZ, W). \] (24)

Furthermore, from Lemma 3.3(iii), we have
\[2g(h(X, TZ), FW) = \frac{2}{3} \cos^2 \theta (\eta(X) - X(ln f)) g(Z, W) - 2\varphi X(ln f)g(TZ, W). \] (25)

Then, from (24) and (25), we derive
\[g(h(X, W), FTZ) = -\frac{1}{3} \cos^2 \theta (\eta(X) - X(ln f)) g(Z, W) - \varphi X(ln f)g(TZ, W). \] (26)

The following relations are easily obtained by interchanging \(X \) by \(\varphi X, \ Z \) by \(TZ \) and \(W \) by \(TW \) in Lemma 3.3(iii) and (26).
\[g(h(\varphi X, W), FZ) = -\frac{1}{3} \varphi X(ln f)g(TZ, W) + (X(ln f) - \eta(X)) g(Z, W), \] (27)
\[g(h(X, TW), FZ) = \frac{1}{3} \cos^2 \theta (\eta(X) - X(ln f)) g(Z, W) + \varphi X(ln f)g(TZ, W), \] (28)
\[g(h(X, TW), FTZ) = -\frac{1}{3} \cos^2 \theta (\eta(X) - X(ln f)) g(TZ, W) - \cos^2 \theta \varphi X(ln f)g(Z, W), \] (29)
\[g(h(\varphi X, TW), FZ) = -\frac{1}{3} \cos^2 \theta \varphi X(ln f)g(Z, W) - (X(ln f) - \eta(X)) g(TZ, W), \] (30)
\[g(h(\varphi X, TW), FTZ) = -\frac{1}{3} \cos^2 \theta \varphi X(ln f)g(TZ, W) + \cos^2 \theta (X(ln f) - \eta(X)) g(Z, W). \] (31)

In particular, if \(X = \xi \), then we find
\[g(h(\xi, W), FZ) = g(h(\xi, TW), FZ) = g(h(\xi, TW), FTZ) = g(h(\xi, W), FTZ) = 0. \] (33)

4. Chen’s first inequality for pointwise semi-slant warped products

In this section, we prove B.-Y Chen’s first inequality for pointwise semi-slant warped product \(N^T \times_f N^\theta \) in nearly Kenmotsu manifolds.

Let \(\tilde{M} \) be a \((2m + 1)\)-dimensional nearly Kenmotsu manifold and \(M = N^T \times_f N^\theta \) be a \(n \)-dimensional warped product isometrically immersed in \(\tilde{M} \). We denote the corresponding tangent spaces of \(N^T \) and \(N^\perp \) by the same symbols \(T^T \) and \(T^\perp \), respectively. If \(\dim N^T = n_1 \) and \(\dim N^\theta = n_2 \), then we have
\[T^T = \text{Span}\{e_1, \ldots, e_p, e_{p+1} = \varphi e_1, \ldots, e_{2p} = \varphi e_p, e_{n_1} = e_{2p+1} = \xi\}, \]
\[T^\perp = \text{Span}\{e_{n_1+1}, = e_1', \ldots, e_{n+q} = e_q', \ldots, e_{n+n_q+1} = \sec \theta T\xi', \ldots, e_n = \sec \theta T\xi'_n\}. \]

Then, the normal bundle \(T^\perp M \) of \(M \) is spanned by
\[F T^\perp = \text{Span}\{e_{n_1+1}, = \sec \theta T\xi', \ldots, e_{n+q} = \sec \theta T\xi', \ldots, e_{n+n_q+1} = \sec \theta T\xi', \ldots, e_{n+n_2} = \sec \theta T\xi'_n\}, \]
\[\mu = \text{Span}\{e_{n+n_2+1} = \xi', \ldots, e_{2m+1} = e_{2m+1-n-n_2}\}. \]

Now, we prove the main result of of this paper.
Theorem 4.1. Let $M = N^T \times_f N^0$ be a pointwise semi-slant submanifold of a nearly Kenmotsu manifold \tilde{M}. Then, the second fundamental form h of M satisfies:

$$
\|h\|^2 \geq 2n_2 \left(1 + \frac{10}{9} \cot^2 \theta \right) \left(\|\nabla (\ln f)\|^2 - 1\right),
$$

(34)

where $\nabla (\ln f)$ is the gradient of $\ln f$ and $n_2 = \dim N^0$.

Moreover, if the equality sign in (34) holds identically then N^T is a totally geodesic submanifold and N^0 is a totally umbilical submanifold of \tilde{M}. Furthermore, M cannot be mixed totally geodesic in \tilde{M}.

Proof. From (9), we have

$$
\|h\|^2 = \sum_{i,j=1}^{n} g(h(e_i, e_j), h(e_i, e_j)) = \sum_{r=1}^{2m+1} \sum_{i,j=1}^{n} (g(h(e_i, e_j), e_r))^2.
$$

Then from (16), the above equation decompose as

$$
\|h\|^2 = \sum_{r=1}^{n+n_2} \sum_{i,j=1}^{n} (g(h(e_i, e_j), e_r))^2 + \sum_{r=1}^{2m+1-n-n_2} \sum_{i,j=1}^{n} (g(h(e_i, e_j), \tilde{e}_r))^2.
$$

(35)

Leaving the last μ-components term, we obtain

$$
\|h\|^2 \geq \sum_{r=1}^{n+n_2} \sum_{i,j=1}^{n} (g(h(e_i, e_j), Fe_r))^2 + \sum_{r=1}^{2m+1-n-n_2} \sum_{i,j=1}^{n} (g(h(e_i, e_j), Fe_r))^2 + \sum_{r=1}^{n+n_2} \sum_{i,j=1}^{n} (g(h(e_i, e_j), \tilde{e}_r))^2.
$$

(36)

First term in r.h.s. is identically zero by using Lemma 3.3(ii) and there is no relation for the third term, hence by leaving positive third term, we derive

$$
\|h\|^2 \geq 2 \csc^2 \theta \sum_{r=1}^{q} \sum_{i,j=1}^{p} (g(h(e_i, e_j), Fe_r))^2 + 2 \csc^2 \theta \sec^2 \theta \sum_{r=1}^{q} \sum_{i,j=1}^{p} (g(h(e_i, e_j), Fe_r))^2
$$

$$
+ 2 \csc^2 \theta \sec^2 \theta \sum_{r=1}^{q} \sum_{i,j=1}^{p} (g(h(e_i, \tilde{e}_j), FTe_r))^2 + 2 \csc^2 \theta \sec^2 \theta \sum_{r=1}^{q} \sum_{i,j=1}^{p} (g(h(e_i, \tilde{e}_j), FTe_r))^2
$$

$$
+ 2 \csc^2 \theta \sec^2 \theta \sum_{r=1}^{q} \sum_{i,j=1}^{p} (g(h(\xi, e_j), FTe_r))^2 + 2 \csc^2 \theta \sec^2 \theta \sum_{r=1}^{q} \sum_{i,j=1}^{p} (g(h(\xi, e_j), FTe_r))^2.
$$

Using Lemma 3.3, Eqs. (26)- (33), the above inequality takes the form

$$
\|h\|^2 \geq 4q \csc^2 \theta \sum_{i=1}^{p} (e_i(\ln f))^2 + \frac{4q}{9} \cot^2 \theta \sum_{i=1}^{p} (e_i(\ln f))^2
$$

$$
= 2n_2 \csc^2 \theta \sum_{i=1}^{p} (e_i(\ln f))^2 + \frac{2n_2}{9} \cot^2 \theta \sum_{i=1}^{p} (e_i(\ln f))^2 - 2n_2 \csc^2 \theta (\xi(\ln f))^2 - \frac{2n_2}{9} \cot^2 \theta (\xi(\ln f))^2.
$$

Then from (6) and Lemma 3.3(i), we get the required inequality (34). Now, for the equality case, from the excluded μ-components terms in (35), we obtain

$$
h(X, Y) \perp \mu, \quad \forall X, Y \in \Gamma(TM).
$$

(37)
Also, from the vanishing first term of (36), we get
\[h(\mathcal{D}^T, \mathcal{D}^T) \perp F \mathcal{D}^0. \] (38)

Then, from (37) and (38), we conclude that
\[h(\mathcal{D}^T, \mathcal{D}^T) = 0. \] (39)

Hence, \(N^T \) is totally geodesic in \(\tilde{M} \) by using the fact that \(N^T \) being totally geodesic in \(M \) (see, Remark 2.2).

Furthermore, from the excluded third term of (36), we find
\[h(\mathcal{D} \theta, \mathcal{D} \theta) \perp F \mathcal{D} \theta. \] (40)

Then, from (37) and (40), we obtain
\[h(\mathcal{D} \theta, \mathcal{D} \theta) = 0. \] (41)

Moreover, from Lemma 3.3(iii), we find that
\[h(\mathcal{D} T, \mathcal{D} \theta), \{0\}. \] (42)

Using the fact that \(N^0 \) is totally umbilical in \(M \) (see Remark 2.2) together with (41) and (42), we conclude that \(M \) can not be mixed totally geodesic in \(\tilde{M} \). Hence, the theorem is proved completely.

As a special case of Theorem 4.1, if \(\theta = \frac{\pi}{2} \) in (34), we have the following useful result.

Theorem 4.2. Let \(M = N^T \times_f N^\perp \) be a contact CR-warped product submanifold of a nearly Kenmotsu manifold \(\tilde{M} \). Then

(i) The second fundamental form \(h \) of the warped product immersion satisfies
\[\|h\|^2 \geq 2n_2 \left(\|\nabla (\ln f)\|^2 - 1 \right), \quad n_2 = \dim N^\perp. \] (43)

(ii) If the equality sign holds in (43), then \(N^T \) is a totally geodesic submanifold and \(N^\perp \) is a totally umbilical submanifold of \(\tilde{M} \).

References

