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Abstract. In this paper, we introduce pointwise hemi-slant submanifolds of para-Kaehler manifolds.
Using this notion, we investigate the geometry of warped product pointwise hemi-slant submanifolds. We
provide some non-trivial examples of such submanifolds.

1. Introduction

The notion of slant submanifolds was introduced by Chen in [10], and the first results on slant sub-
manifolds were collected in his book [11]. Since then, this subject has been studied extensively by many
geometers during the last two and half decades. Also, the study of slant submanifolds in a pseudo-
Riemannian manifold has been initiated:Chen and Mihai classified slant surfaces in Lorentzian complex
space forms in [12]. Arslan et. al defined slant submanifols of a neutral Kaehler manifold in [6], while
Alegre studied slant submanifolds of Lorentzian Sasakian and para-Sasakian manifolds in [1]. Recently,
slant, bi-slant and quasi bi-slant submanifolds of (para)-Hermitian manifolds have been defined in [2, 3, 5].
As an extension of slant submanifolds, Etayo [17] defined the notion of pointwise slant submanifolds under
the name of quasi-slant submanifolds.
On the other hand, Bishop and O’Neill started the concept of warped product which is one of the most
effective generalizations of semi-Riemannian manifold. The notion of warped product has recognized var-
ious significant contributions in differential geometry as well as in physics, particularly in general theory
of relativity [13, 26]. Since then, the study of warped product submanifolds has been investigated by many
geometers (see, e.g.,[4, 9, 15, 16, 18–21, 24, 25, 27–35] among many others, and for the most up-to-date
overview of this subject, see [14]).

In this paper, we introduce pointwise hemi-slant submanifolds of para-Kaehler manifolds and using
this notion, we investigate the geometry of warped product pointwise hemi-slant submanifolds of the form
N1ϕ×N2⊥ in a para-Kaehler manifold Ñ,where N2⊥ is a totally real submanifold and N1ϕ is a neutral proper
poitwise slant submanifold of Ñ with slant function ϕ.
In the present paper, in section 2, we give preliminaries and definitions needed for this paper. In section 3
we define and study pointwise hemi-slant submanifolds of para-Kaehler manifolds. Then, we give some
non-trivial examples of pointwise hemi-slant submanifolds and investigate the geometry of the leaves
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of distributions. In section 4, we prove some preparatory results and obtain a necessary and sufficient
condition for the existence of a submanifold of the form N1ϕ × N2⊥ to be locally warped product and
locally semi-Riemannian product. Also, we give some examples illustrating such submanifolds. In section
5 we describe the warped product submanifolds Ñ by giving geometric inequalities in term of second
fundamental form and warping function ϕ for the N1ϕ ×N2⊥ of a para-Kaehler manifold.

2. Preliminaries

Let (Ñ, 1) be an almost para-Hermitian manifold with almost para-complex structure P and a semi-
Riemannian metric 1 such that

P2Y1 = Y1, 1(PY1,PY2) + 1(Y1,Y2) = 0, (1)

for all Y1,Y2 ∈ Γ(TÑ), where ∇̃ denotes the Levi-Civita connection on Ñ of the semi-Riemannian metric 1.
If the para-complex structure P satisfies

(∇̃Y1 P)Y2 = 0, (2)

for all Y1,Y2 ∈ Γ(TÑ), then Ñ is called a para-Kaehler manifold([23]).

Now, let N be a semi-Riemannian submanifold of (Ñ,P, 1) and we denote by the same symbol 1 the
semi-Riemannian metric induced on N. Let Γ(TN) be the Lie algebra of vector fields in N and Γ(T⊥N), the
set of all vector fields normal to N. If ∇ be the induced Levi-Civita connection on N, then the Gauss and
Weingarten formulas are given by:

∇̃Y1 Y2 = ∇Y1 Y2 + σ(Y1,Y2), (3)

∇̃Y1 Y3 = −AY3 Y1 + ∇⊥Y1
Y3, (4)

for any Y1,Y2 ∈ Γ(TN) and Y3 ∈ Γ(T⊥N),where ∇⊥ is the normal connection in the normal bundle T⊥N and
AY3 is the shape operator of N with respect to the normal vector Y3.Also, σ : TN×TN→ T⊥N is the second
fundamental form of N in Ñ. MoreoverAY3 and σ are related by:

1(σ(Y1,Y2),Y3) = 1(AY3 Y1,Y2) (5)

for any Y1,Y2 ∈ Γ(TN) and Y3 ∈ Γ(T⊥N).
For any Y1 tangent to N we write

PY1 = αY1 + βY1, (6)

where αY1 and βY1 are the tangential and normal parts of PY1, respectively.
Also, for any Y3 ∈ Γ(T⊥N), we get

PY3 = άY3 + β́Y3, (7)

here άY3 and β́Y3 are the tangential and normal parts of PY3, respectively.

In [8], Chen and Garay introduced pointwise slant submanifold in a Kaehler manifold. Let N be a
submanifold of a Kaehler manifold (Ñ,P, 1). Then the submanifold N is called pointwise slant submanifold
if at each point p ∈ N, the slant angle ϕ(Y1) between PY1 and TpN is independent of the choice of the
non-zero vector Y1 ∈ TpN. In this case, the slant angle gives rise to a real-valued function ϕ : TN − {0} → R
which is called the slant function of the pointwise slant submanifold. If αY is the projection of PY1 over N,
they can be characterized as α2 = µId.
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We say that a semi-Riemannian submanifold N of a para-Hermitian manifold (Ñ,P, 1) is called a point-
wise slant if for every non-lightlike Y1 ∈ Γ(TN), the quotient 1(αY1, αY1)/1(PY1,PY1) is non-constant.
A submanifold is called invariant if it is a pointwise slant with slant function zero, that is if1(αY1, αY1)/1(PY1,PY1) =
1 for all non-lightlike Y1 ∈ Γ(TN). It is called anti-invariant if αY1 = 0 for all Y1 ∈ Γ(TN). In other cases, it is
called a proper pointwise slant submanifolds.

Definition 2.1. Let N be a proper pointwise slant submanifold of a para-Hermitian manifold (Ñ,P, 1). We say that
it is of
type 1 if for any spacelike (timelike) vector field Y1 ∈ Γ(TN), αY1 is timelike (spacelike), and ‖αY1‖

‖PY1‖
> 1,

type 2 if for any spacelike (timelike) vector field Y1 ∈ Γ(TN), αY1 is timelike (spacelike), and ‖αY1‖

‖PY1‖
< 1.

The proof of the following result is the same as slant submanifolds (see [2]and [3]), therefore we omit its
proof.

Theorem 2.2. Let N be a semi-Riemannian submanifold of a para-Hermitian manifold (Ñ,P, 1). Then,
(i) N is a pointwise slant submanifold of type 1 if and only if for any spacelike (timelike) vector field Y1 ∈ Γ(TN), αY1
is timelike (spacelike), and there exists a function µ ∈ (1,∞) such that

α2Y1 = µY1. (8)

If ϕ denotes the slant function of N then µ = cosh2 ϕ.
(ii) N is a pointwise slant submanifold of type 2 if and only if for any spacelike (timelike) vector field Y1 ∈ Γ(TN),
αY1 is timelike (spacelike), and there exists a function µ ∈ (0, 1) such that

α2Y1 = µY1. (9)

If ϕ denotes the slant function of N then µ = cos2 ϕ.

In every case, a real-valued functionϕ is called the slant function of the proper pointwise slant submanifold.
From the Theorem 2.2, we have:

Corollary 2.3. LetD be a distribution on N. Then,
(i) D is a proper pointwise slant of type 1 if and only if for any spacelike (timelike) vector field Y1 ∈ Γ(D), αY1 is
timelike (spacelike), and there exists a function µ ∈ (1,∞) such that

(αQϕ)2Y1 = µY1 (10)

where Qϕ denotes the orthogonal projection onD. Also, in this case µ = cosh2 ϕ.
(ii) D is a proper pointwise slant of type 2 if and only if for any spacelike (timelike) vector field Y1 ∈ Γ(D), αY1 is
timelike (spacelike), and there exists a function µ ∈ (0, 1) such that

(αQϕ)2Y1 = µY1 (11)

where Qϕ denotes the orthogonal projection onD. Also, in this case µ = cos2 ϕ.

In every case, a real-valued function ϕ is called the slant function of the proper pointwise slant distribution.

Let us point out that for both proper pointwise slant distributions of type 1 and 2, if Y1 is a spacelike
tangent vector field, then αY1 is a timelike tangent vector field. So, all type 1, and type 2 proper pointwise
slant distributions are neutral.

Remember that a para-holomorphic distribution satisfies PD = D, so every para-holomorphic distri-
bution is a pointwise slant distribution with slant function zero. It is called a totally real distribution if
PD ⊆ T⊥N, therefore every totaly distribution is anti-invariant.
IfD is a para-holomorphic distribution, then ‖αY1‖ = ‖PY1‖, for all Y1 ∈ Γ(D). IfD is a totally real distribu-
tion, then ‖αY1‖ = 0, for all Y1 ∈ Γ(D).
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3. Proper pointwise hemi-slant submanifolds

In this section we define and study proper pointwise hemi-slant submanifold of a para-Kaehler manifold
(Ñ,P, 1).

Definition 3.1. A semi-Riemannian submanifold N of a para-Hermitian (Ñ,P, 1) is called a pointwise bi-slant
submanifold if the tangent space admits a decomposition TN = Dϕ ⊕ Dω with both Dϕ and Dω pointwise slant
distributions with slant functions ϕ and ω.
It is called a pointwise semi-slant submanifold if the tangent space admits a decomposition TN = D> ⊕Dϕ withD>
a para-holomorphic distribution andDϕ a proper pointwise slant distribution with slant function ϕ.
It is called a pointwise hemi-slant submanifold if the tangent space admits a decomposition TN = D⊥ ⊕Dϕ withD⊥
a totally real distribution andDϕ a proper pointwise slant distribution with slant function ϕ.

Note that given a pseudo-Euclidean space R2n
n with coordinates (x1, ..., x2n) on R2n

n , we can naturally
choose an almost paracomplex structure P on R2n

n as follows:

P(
∂
∂x2i

) =
∂

∂x2i−1
, P(

∂
∂x2i−1

) =
∂
∂x2i

,

where i = 1, ...,n. Let R2n
n be a pseudo-Euclidean space of signature (+,-,+,-,...) with respect to the canonical

basis ( ∂
∂x1
, ..., ∂

∂x2n
).

Now, we can present some examples of proper pointwise hemi-slant submanifolds.

Example 3.2. Let N be a semi-Riemannian submanifold of R8
4 defined by the immersion φ : N→ R8

4:

φ(u, v, t, s) = (sin u, sin v, cos u, cos v, t, k1, k2, s),

such that u , v , 0, for non-vanishing functions u and v on N. Then N is a neutral pointwise hemi-slant submanifold
of type 2 with neutral anti-invariant distribution D⊥ = Span{Y3 = ∂

∂x5
,Y4 = ∂

∂x8
} and the neutral pointwise slant

distribution of type 2Dϕ = Span{Y1 = cos u ∂
∂x1
− sin u ∂

∂x3
,Y2 = cos v ∂

∂x2
− sin v ∂

∂x4
} with slant function ϕ = u− v.

Example 3.3. Let N be a semi-Riemannian submanifold of R8
4 defined by the immersion φ : N→ R8

4:

φ(u, v, t, s) = (v, sinh u, cosh u,u, t, k1, k2, s),

such that u > 2 and v , 0, for non-vanishing function u on N. Then N is a neutral pointwise hemi-slant submanifold
of type 1 with neutral anti-invariant distribution D⊥ = Span{Y3 = ∂

∂x5
,Y4 = ∂

∂x8
} and the neutral pointwise slant

distribution of type 1Dϕ = Span{Y1 = cosh u ∂
∂x2

+sinh u ∂
∂x3

+ ∂
∂x4
,Y2 = ∂

∂x1
}with slant functionϕ = cosh−1( cosh u

√
2

).

Let N be a proper pointwise hemi-slant submanifold of a para-Kaehler manifold (Ñ,P, 1), and set the
projections on the distributionsD⊥ andDϕ by Q⊥ and Qϕ, respectively. Then we can write

Y1 = Q⊥Y1 + QϕY1 (12)

for any spacelike (timelike) vector field Y1 ∈ Γ(TN). Applying P to equation (12) and using (6), we get

PY1 = βQ⊥Y1 + αQϕY1 + βQϕY1. (13)

From (13), we have

βQ⊥Y1 ∈ Γ(D⊥), αQ⊥Y1 = 0, (14)
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αQϕY1 ∈ Γ(Dϕ), βQϕY1 ∈ Γ(TN⊥). (15)

Using (6) in (13), we obtain

αY1 = αQϕY1, βY1 = βQ⊥Y1 + βQϕY1 (16)

for any spacelike (timelike) vector field Y1 ∈ Γ(TN). Since Γ(Dϕ) is a proper pointwise slant distribution,
from Theorem 2.2 and Corollary 2.3, we conclude that

type1 : α2Y1 = (cosh2 ϕ)Y1, type2 : α2Y1 = (cos2 ϕ)Y1 (17)

for any spacelike (timelike) vector field Y1 ∈ Γ(Dϕ) and a real-valued function ϕ defined on N. We give the
following results for the characterization of proper pointwise hemi-slant submanifold.

Proposition 3.4. Let N be a proper pointwise hemi-slant submanifold of a para-Kaehler manifold (Ñ,P, 1). Then N
is a proper pointwise hemi-slant submanifold if and only if there exists a function µ ∈ (1,∞) and a distribution of
type 1D on N such that
(a)D = {Y1 ∈ Γ(TN) : (αD)2Y1 = µY1},
(b) αY2 = 0 for any spacelike(timelike) vector field Y2 ∈ Γ(TN) orthogonal toD.
Moreover, if ϕ denotes the slant function of N then µ = cosh2 ϕ.

Proof. Let N be a proper pointwise hemi-slant submanifold of (Ñ,P, 1). By setting µ = cosh2 ϕ and using (14)
and (15), we obtain thatD = Dϕ, which follows a and b. Conversely, (a) and (b) imply that TN = D⊕D⊥.
Since α(D) ⊆ D, we received from (b) thatD⊥ is a totally real distribution.

In a similar way, we obtain:

Proposition 3.5. Let N be a proper pointwise hemi-slant submanifold of a para-Kaehler manifold (Ñ,P, 1). Then N
is a proper pointwise hemi-slant submanifold if and only if there exists a function µ ∈ (0, 1) and a distribution of type
2D on N such that
(a)D = {Y1 ∈ Γ(TN) : (αD)2Y1 = µY1},
(b) αY2 = 0 for any spacelike(timelike) vector field Y2 ∈ Γ(TN) orthogonal toD.
Moreover, if ϕ denotes the slant function of N then µ = cos2 ϕ.

From the above Propositions, we have:

Corollary 3.6. Let N be a proper pointwise hemi-slant submanifold of a para-Kaehler manifold (Ñ,P, 1). ThenDϕ is
a proper pointwise slant distribution of
type 1 if and only if 1(αY1, αY2) = − cosh2 ϕ1(Y1,Y2), 1(βY1, βY2) = sinh2 ϕ1(Y1,Y2),
type 2 if and only if 1(αY1, αY2) = − cos2 ϕ1(Y1,Y2), 1(βY1, βY2) = − sin2 ϕ1(Y1,Y2)
for all spacelike (timelike) vector fields Y1,Y2 ∈ Γ(Dϕ).

Using (1), (6) and (7), the Propositions 3.4 and 3.5, we get:

Lemma 3.7. Let N be a proper pointwise hemi-slant submanifold of a para-Kaehler manifold (Ñ,P, 1). ThenDϕ is a
proper pointwise slant distribution of
type 1 if and only if (a) άβY1 = (− sinh2 ϕ)Y1, (b) β́βY1 = −βαY1,
type 2 if and only if (a) άβY1 = (sin2 ϕ)Y1), (b) β́βY1 = −βαY1,
for all spacelike (timelike) vector field Y1 ∈ Γ(Dϕ).

Now we examine the conditions for integrability and totally geodesic foliation of distributions associated
with the definition of proper pointwise hemi-slant submanifolds of a para-Kaehler manifold.

Theorem 3.8. Let N be a proper pointwise hemi-slant submanifold of a para-Kaehler manifold (Ñ,P, 1). Then the
totally real distributionD⊥ is integrable.
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Proof. It is known that is a para-Kaehler manifold, then dF = 0, where d is exterior derivative and F is the
fundamental 2−form definedF (Y1,Y2) = 1(Y1,PY2) for any spacelike (timelike) vector fields Y1,Y2 ∈ Γ(TÑ)
(see [23]). SinceF is closed (dF = 0), for any spacelike (timelike) vector fields Y1 ∈ Γ(Dϕ) and Y2,Y3 ∈ Γ(D⊥)
we have

3dF (αY1,Y2,Y3) = αY1F (Y2,Y3) − Y2F (αY1,Y3) + Y3F (αY1,Y2)
= −F ([αY1,Y2],Y3) + F ([αY1,Y3],Y2) − F ([Y2,Y3], αY1) = 0.

SinceD⊥ andDϕ are orthogonal andD⊥ is anti-invariant, using Proposition 3.4 and (6) we get

Y21(βαY1,Y3) − cosh2 ϕ1([Y2,Y3],Y1) − 1([Y2,Y3], βαY1) = 0.

Since [Y2,Y3] ∈ Γ(TN) and βαY1 ∈ Γ(TN⊥) we obtain

cosh2 ϕ1([Y2,Y3],Y1) = 0.

Since N is a proper pointwise hemi-slant submanifold and Y1,Y2,Y3 are all non-zero, we have [Y2,Y3] ∈
Γ(D⊥).

Note that the Theorem 3.8 holds for proper pointwise slant submanifold N1ϕ of type 2.
From the Theorem 3.8, we have:

Corollary 3.9. Let N be a proper pointwise hemi-slant submanifold of a para-Kaehler manifold (Ñ,P, 1). Then the
totally real distribution D⊥ is integrable if and only if for any spacelike (timelike) vector fields Y1,Y2 ∈ Γ(D⊥) the
shape operator satisfiesAPY2 Y1 = APY1 Y2.

Theorem 3.10. Let N be a proper pointwise hemi-slant submanifold of a para-Kaehler manifold (Ñ,P, 1). Then the
totally real distributionD⊥ defines a totally geodesic foliation if and only if for every spacelike (timelike) vector fields
Y1 ∈ Γ(D⊥) and Y3 ∈ Γ(Dϕ),APY1αY3 = AβαY3 Y1.

Proof. For any spacelike (timelike) vector fields Y1,Y2 ∈ Γ(D⊥) and Y3 ∈ Γ(Dϕ), using (1)-(7) we get

1(∇Y1 Y2,Y3) = −1(∇̃Y1 PY2,PY3)
= −1(∇̃Y1 PY2, αY3) + 1(∇̃Y1 Y2, άβY3)
+ 1(∇̃Y1 Y2, β́βY3). (18)

From (4), (5) and Lemma 3.7(type 1), we obtain

1(∇Y1 Y2,Y3) = 1(APY2 Y1, αY3) − sinh2 ϕ1(∇̃Y1 Y2,Y3)
= −1(AβαY3 Y1,Y2).

Using (3), we get
cosh2 ϕ1(∇Y1 Y2,Y3) = 1(APY2αY3,Y1) − 1(AβαY3 Y2,Y1).

Now, analogous to the proof of the Theorems 3.8 and 3.10 we give the following results for proper pointwise
hemi-slant submanifolds.

Theorem 3.11. Let N be a proper pointwise hemi-slant submanifold of a para-Kaehler manifold (Ñ,P, 1). Then the
proper pointwise slant distributionDϕ is integrable if and only if

1(AβαY2 Y1 −APY1αY2,Y3) = 1(AβαY3 Y1 −APY1αY3,Y2)

for every spacelike (timelike) vector fields Y1 ∈ Γ(D⊥) and Y2,Y3 ∈ Γ(Dϕ).
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Theorem 3.12. Let N be a proper pointwise hemi-slant submanifold of a para-Kaehler manifold (Ñ,P, 1). Then the
proper pointwise slant distributionDϕ defines a totally geodesic foliation if and only ifAβαY2 Y1 −APY1αY2 = 0 for
any spacelike (timelike) vector fields Y1 ∈ Γ(D⊥) and Y2 ∈ Γ(Dϕ).

From the Theorems 3.10 and 3.12 we have:

Corollary 3.13. Let N be a proper pointwise hemi-slant submanifold of a para-Kaehler manifold (Ñ,P, 1). Then a
necessary and sufficient condition for N to be locally semi-Riemannian product of the form N = N1 × N2ϕ is that
the Weingarten operator satisfiesAβαY2 Y1 −APY1αY2 = 0 for any spacelike (timelike) vector fields Y1 ∈ Γ(D⊥) and
Y2 ∈ Γ(Dϕ), where N1 is a totally real submanifold and N2ϕ is a proper pointwise slant submanifold of Ñ.

4. Warped products N1ϕ ×h N2⊥ in para-Kaehler manifolds

Let (N1, 11) and (N2, 12) be two semi-Riemannian manifolds, let h : N1 → R+, and let η1 : N1 ×N2 → N1
and η2 : N1 × N2 → N2 the projection maps given by η1(r, s) = r and η2(r, s) = s for all (r, s) ∈ N1 × N2. The
warped product([7]) N = N1 × N2 is the manifold N1 × N2 equipped with the semi-Riemannian structure
such that

1(Y1,Y2) = 11(η1∗Y1, η1∗Y2) + (h ◦ η1)212(η2∗Y1, η2∗Y2)

for every spacelike(timelike) vector fields Y1,Y2 ∈ Γ(TN), here ∗ denotes the tangent map. The function h
is called the warping function of the warped product manifold. In particular, if the warping function is
constant, then the manifold N is said to be trivial.

Lemma 4.1. ([7]) For spacelike(timelike) vector fields Y1,Y2 ∈ Γ(TN1) and Y3,Y4 ∈ Γ(TN2), we get on warped
product manifold N = N1 ×h N2 that
(a)∇Y1 Y2 ∈ Γ(TN1),
(b)∇Y1 Y3 = ∇Y3 Y1 = ( Y1h

h )Y3,

(c)∇Y3 Y4 =
−1(Y3,Y4)

h ∇h,
where ∇ denotes the Levi-Civita connection on N and ∇h is the gradient of h defined by 1(∇h,Y1) = Y1h.

It is also important to note that for a warped product N = N1 ×h N2, N1 is totally geodesic and N2 is totally
umbilical in N([7]).
In this section, we investigate the existence of warped product submanifolds N1ϕ ×h N2⊥ of para-Kaehler
manifolds such that N1ϕ is a proper pointwise slant submanifold and N2⊥ is a totally real submanifold of
Ñ. First, we are going to give some examples of a warped product pointwise hemi-slant submanifold of the
form N1ϕ ×h N2⊥.

Example 4.2. Consider a semi-Riemannian submanifold of R8
4 with the cartesian coordinates (x1, ..., x8) and the

almost para-complex structure

P(
∂
∂x2i

) =
∂

∂x2i−1
, P(

∂
∂x2i−1

) =
∂
∂x2i

, 1 ≤ i ≤ 4.

Let R8
4 be a semi-Euclidean space of signature (+,-,+,-,+,-,+,-) with respect to the canonical basis ( ∂

∂x1
, ..., ∂

∂x8
).

Let N be defined by the immersion ψ as follows

ψ(u, v, t) = (sinh u, v,u, cosh u, cosh(t3), a, sinh(t3), b)

for any non-vanishing function u on N, where a, b are constants and u > 1. Then the tangent space TN of N is
spanned by the following vectors

ψu = cosh u
∂
∂x1

+
∂
∂x3

+ sinh u
∂
∂x4

, ψv =
∂
∂x2

,
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ψt = 3t2 sinh(t3)
∂
∂x5

+ 3t2 cosh(t3)
∂
∂x7

.

Then we obtain
Pψu = cosh u

∂
∂x2

+ sinh u
∂
∂x3

+
∂
∂x4

, Pψv =
∂
∂x1

,

Pψt = 3t2 sinh(t3)
∂
∂x6

+ 3t2 cosh(t3)
∂
∂x8

.

It is easy to see that Pψt⊥TN = span{ψu, ψv, ψt} and thus, we consider D⊥ = span{ψt} is a spacelike totally real
distribution and Dϕ = span{ψu, ψv} is a neutral proper poitwise slant distribution of type 1 with slant function
ϕ = cosh−1( cosh u

√
2

). It is easy to observe that Dϕ and D⊥ are integrable. If we denote the integral manifolds of Dϕ and
D⊥ by N1ϕ and N2⊥, respectively, then the metric tensor of N is given by

ds2 = 2du2
− dv2 + 9t4 cosh(2t3)dt2.

Thus, N is a warped product submanifold of the form N = N1ϕ ×h N2⊥ in R8
4 with the warping function h =

3t2
√

cosh(2t3).

Example 4.3. Let N be an immersed semi-Riemannian submanifold of a para-Kaehler manifold Ñ (as given in
Example 4.2) defined by

ψ(x, y, z) = (sin x, sin y, cos x, cos y, cos ez, a, sin ez, b),

such that u , v , 0, for non-vanishing functions u and v on N. Then the tangent space TN of N is spanned by the
following vectors:

ψx = cos x
∂
∂x1
− sin x

∂
∂x3

, ψx = cos y
∂
∂x2
− sin y

∂
∂x4

,

ψz = −ez sin(ez)
∂
∂x5

+ ez cos(ez)
∂
∂x7

.

Thus, we consider D⊥ = span{ψz} is a spacelike totally real distribution and Dϕ = span{ψx, ψy} is a neutral proper
poitwise slant distribution of type 2 with slant function ϕ = u−v. It is easy to observe that Dϕ and D⊥ are integrable.
If we denote the integral manifolds of Dϕ and D⊥ by N1ϕ and N2⊥, respectively, then the metric tensor of N is given
by

ds2 = dx2
− dy2 + e2zdz2.

Hence, N is a 3-dimensional pointwise hemi-slant warped product submanifold of R8
4 with the warping function h = ez.

Example 4.4. Let N be defined by the immersion ψ as follows

ψ(x, y, z, t) = (sinh x, sinh y, cosh y, cosh x, sinh(z + t), z, sinh(z + t), t)

for any non-vanishing functions x and y on N. Then the tangent space TN of N is spanned by the following vectors

ψx = cosh x
∂
∂x1

+ sinh x
∂
∂x4

, ψy = cosh y
∂
∂x2

+ sinh y
∂
∂x3

,

ψz = cosh(z + t)
∂
∂x5

+
∂
∂x6

+ cosh(z + t)
∂
∂x7

, ψt = cosh(z + t)
∂
∂x5

+ cosh(z + t)
∂
∂x7

+
∂
∂x8

.

It is easy to see that Pψz and Pψt⊥TN = span{ψx, ψy, ψz, ψt} and thus, we consider D⊥ = span{ψz, ψt} is a spacelike
totally real distribution and Dϕ = span{ψx, ψy} is a neutral proper poitwise slant distribution of type 1 with slant
function α2 = cosh2(x − y). It is easy to observe that Dϕ and D⊥ are integrable. If we denote the integral manifolds
of Dϕ and D⊥ by N1ϕ and N2⊥, respectively, then the metric tensor of N is given by

ds2 = dx2
− dy2 + cosh(2(z + t))(dz2 + dt2).

Thus, N is a pointwise hemi-slant warped product submanifold of the form N = N1ϕ ×h N2⊥ in R8
4 with the warping

function h =
√

cosh(2(z + t)).
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Now we will consider warped product pointwise hemi-slant submanifolds N = N1ϕ ×h N2⊥ such that N1ϕ
is a neutral proper pointwise slant submanifold and N2⊥ is a totally real submanifold of a para-Kaehler
manifold Ñ.

Lemma 4.5. Let N = N1ϕ ×h N2⊥ be a pointwise hemi-slant warped product submanifold of a para-Kaehler manifold
Ñ. Then

1(APY4αY1,Y3) = (− cosh2 ϕ)(Y1 ln h)1(Y3,Y4) + 1(AβαY1 Y3,Y4) (19)

for any spacelike(timelike) vector fields Y1,Y2 ∈ Γ(TN1ϕ) and Y3,Y4 ∈ Γ(TN2⊥).

Proof. From (1)-(6) we obtain

1(APY4αY1,Y3) = −1(∇Y3 Y1,Y4) + 1(∇̃Y3 PβY1,Y4). (20)

Using Lemma 4.1, Lemma 3.7(type 1) and (7) we get

1(APY4αY1,Y3) = −(Y1 ln h)1(Y3,Y4) + 1(∇̃Y3 (− sinh2 ϕ)Y1,Y4

+ 1(∇̃Y3 (−βαY1),Y4).

From the fact that ϕ is slant function and using (4) we obtain

1(APY4αY1,Y3) = −(Y1 ln h)1(Y3,Y4) − (sinh2 ϕ)1(∇̃Y3 Y1,Y4)
+ 1(AβαY1 Y3,Y4),

since 1(Y1,Y4) = 0. Using (3) we have

1(APY4αY1,Y3) = (− cosh2)(Y1 ln h)1(Y3,Y4) + 1(AβαY1 Y3,Y4).

Theorem 4.6. Let N be a pointwise hemi-slant warped product submanifold of a para-Kaehler manifold Ñ. Then N
is locally isometric to pointwise hemi-slant warped product submanifold of the form N = N1ϕ ×h N2⊥ if and only if
the shape operator of N satisfies

APY4αY1 −AβαY1 Y4 = (− cosh2 ϕ)(Y1 ln h)Y4, (21)

for some function τ on N such that Y3(τ) = 0, where spacelike(timelike) vector fields Y1,Y2 ∈ Γ(Dϕ) and Y3,Y4 ∈

Γ(D⊥).

Proof. Let us consider that N is a pointwise hemi-slant warped product submanifold of a para-Kaehler
manifold Ñ. Then, Lemma 4.5, we have (21). We know that h is a function on N2 , therefore setting τ = ln h
implies that Y3(τ) = 0. Conversely we assume that N is a pointwise hemi-slant submanifold of Ñ such
that (21) holds. Taking the inner product of (21) with Y2, we can say from Theorem 3.12 that the integral
manifold N1ϕ ofDϕ is totally geodesic foliation in N. Thus, by Corollary 3.9 the distributionD⊥ is integrable
if and only if

1(APY3 Y4, αY1) = 1(APY4αY1,Y3) (22)

for any spacelike(timelike) vector fields Y1,Y2 ∈ Γ(Dϕ) and Y3,Y4 ∈ Γ(D⊥). From (19) and (22) we obtain

1(APY3 Y4, αY1) = (− cosh2 ϕ)1(∇Y3 Y1,Y4) + 1(AβαY1 Y3,Y4) (23)

on the other hand, taking the inner product of (21) with Y3 we obtain

1(APY4αY1 −AβαY1 Y4,Y3) = 1((− cosh2 ϕ)(Y1 ln h)Y4,Y3). (24)
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From (23), (24) and Lemma 4.1, we have

−1(σ⊥(Y3,Y4),Y1) = 1(Y1(τ)Y3,Y4) = 1(Y3,Y4)1(∇τ,Y1).

Thus σ⊥(Y3,Y4) = 1(Y3,Y4)(−∇τ), here σ⊥ is a second fundamental form of D⊥ in N and ∇τ is a gradient
of τ = ln h. Hence the integrable manifold N2 of D⊥ is totally umbilical submanifold in N and its mean
curvature is non-zero and parallel and Y3(τ) = 0 for every spacelike (timelike) vector field Y3 ∈ Γ(D⊥).
Therefore, from Theorem 1.2 ([22], page 211), we deduce that N is a pointwise hemi-slant warped product
submanifold of Ñ.

Now we maintain a necessary and sufficient condition for a warped product submanifold of the form
N = N1ϕ ×h N2⊥ to be a semi-Riemannian product.

Theorem 4.7. A pointwise hemi-slant warped product submanifold of the form N = N1ϕ ×h N2⊥ of a para-Kaehler
manifold Ñ is simply a locally semi-Riemannian product if and only if the shape operator satisfies AβαY3 Y1 = 0, for
every spacelike(timelike) vector fields Y3 ∈ Γ(N1ϕ) and Y1 ∈ Γ(N2⊥).

Proof. Proof. For all spacelike(timelike) vector fields Y3 ∈ Γ(N1ϕ) and Y1,Y2 ∈ Γ(N2⊥), using (1)-(3) we have
1(∇Y1 Y3,Y2) = −1(∇̃Y1 PY3,PY2). From (1),(2) and (6) we get

1(∇Y1 Y3,Y2) = 1(∇̃Y1α
2Y3,Y2) + 1(∇̃Y1βαY3,Y2) − 1(∇̃Y1βY3,PY2).

Using type 1 (17), (3)-(5) and the fact that 1(Y2,Y3) = 0, we obtain

1(∇Y1 Y3,Y2) = (cosh2 ϕ)1(∇̃Y1 Y3,Y2) − 1(σ(Y1,Y2), βαY3) − 1(∇⊥Y1
βY3,PY2). (25)

Hence, from Lemma 4.1, we get

(sinh2 ϕ)(Y3 ln h)1Y1,Y2) = 1(σ(Y1,Y2), βαY3) + 1(∇⊥Y1
βY3,PY2). (26)

Interchanging Y1 and Y2 in (26) and then, subtracting from (26), we have:

1(∇⊥Y1
βY3,PY2) = 1(∇⊥Y2

βY3,PY1). (27)

Furthermore from (1),(3),(4) and (6) we obtain

1(∇⊥Y1
βY3,PY2) = −(Y3 ln h)1(Y1,Y2) − 1(∇̃Y1αY3,PY2). (28)

Again by interchanging Y1 and Y2 in (28) we conclude that (27) holds if and only if

1(∇̃Y1αY3,PY2) = −1(∇̃Y1 PY2, αY3) = 0. (29)

Using type 1,(17) and (1)-(6) we have

(− cosh2 ϕ)(Y3 ln h)1(Y1,Y2) + 1(σ(Y1,Y2), βαY3) = 0. (30)

Hence, from (30) we can say that h is constant if and only if 1(σ(Y1,Y2), βαY3) = 0, since N1ϕ is proper
pointwise slant submanifold and Y3 is non-zero spacelike(timelike)vector field.

We say that a hemi-slant submanifold is mixed geodesic if

σ(Y1,Y3) = 0 (31)

for all spacelike(timelike) vector fields Y1 ∈ Γ(Dϕ) and Y3 ∈ Γ(D⊥).
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Lemma 4.8. For a mixed geodesic pointwise hemi-slant warped product submanifold N = N1ϕ ×h N2⊥ of a para-
Kaehler manifold Ñ Then, we obtain

1(σ(Y1,Y2),PY3) = 0 (32)

(αY1 ln h)1(σ(Y3,Y4) = 1(σ(Y3,Y4), βY1) (33)

for spacelike(timelike) vector fields Y1,Y2 ∈ Γ(N1ϕ) and Y3,Y4 ∈ Γ(N2⊥).

Proof. From (1) and (2) we obtain1(σ(Y1,Y2),PY3) = −1(∇̃Y1 PY2,Y3).From here, 1(σ(Y1,Y2),PY3) = 1(∇̃Y1 Y3,PY2).
Using (6), we have 1(σ(Y1,Y2),PY3) = 1(∇Y1 Y3, αY2) + 1(σ(Y1,Y3), βY2). Thus from Lemma 4.1 we get (32).
In a similar way, we have (33).

Note that the Lemma 4.8 holds for proper pointwise slant submanifold N1ϕ of type 2.

5. An optimal inequality

We establish general sharp geometric inequality for proper pointwise hemi-slant warped product sub-
manifolds of the form N1ϕ ×h N2⊥ of a para-Kaehler manifold (Ñ,P, 1).

Let x ∈ N and {E1, ...,Em, Ê1, ..., Ên,PE1, ...,PEm, Ẽ1, ..., Ẽn} be an orthonormal basis of the tangent space
TxÑ such that {E1, ...,Em, Ê1, ..., Ên} are tangent to N at x and {PE1, ...,PEm, Ẽ1, ..., Ẽn} are normal to N, and thus
TxÑ = TxN⊕T⊥x N.Now, we can take {E1, ...,Em, Ê1, ..., Ên} in such a way that {E1, ...,Em} form an orthonormal
basis ofD⊥ and {Ê1, ..., Ên} form an orthonormal basis ofDϕ, where dimD⊥ = m and dimDϕ = n.We can take
{PE1, ...,PEm, Ẽ1, ..., Ẽn} in such a way that {PE1, ...,PEm} form an orthonormal frame of P(D⊥) and {Ẽ1, ..., Ẽn}

form an orthonormal frame of β(Dϕ). Since the metric on N1ϕ of a warped product N1ϕ ×h N2⊥ is neutral,
it is even-dimensional([9]). Thus n = 2p. Then, we can choose a orthonormal frames {Ê1, ..., Ê2p} ofDϕ and
{Ẽ1, ..., Ẽ2p} of β(Dϕ) in such a way that

Ê1 = sechϕαÊ1, ..., Ê2p = sechϕαÊ2p−1, (type1)
Ẽ1 = cschϕβẼ1, ..., Ẽ2p = cschϕβẼ2p, (type1)

where ϕ is the slant function. We note that such an orthonormal frame is called an adapted frame ([2]).

Let us consider
• onD⊥ : an orthonormal basis {Ei}i=1,...,m, where m = boyD⊥; moreover, one can suppose that εi = 1(Ei,Ei) =
1.
• on P(D⊥) : an orthonormal basis {PE j} j=1,...,m, where m = boyP(D⊥) and ε∗j = 1(PE j,PE j) = −1.

• on (Dϕ) : an orthonormal basis {Êa}a=1,...,n, where n = boy(Dϕ) and ε̂a = 1(Êa, Êa) = ∓1.
• on β(Dϕ) : an orthonormal basis {Ẽb}b=1,...,n, where n = boyβ(Dϕ) and ε̃b = 1(Ẽb, Ẽb) = ∓1.

Theorem 5.1. Let N = N1ϕ ×h N2⊥ be a mixed geodesic warped product submanifold of a para-Kaehler manifold Ñ
such that N1ϕ is a n−dimensional neutral proper pointwise slant submanifold and N2⊥ is a m−dimensional totally
real submanifold of N. Suppose that N2⊥ is spacelike. Then, the squared norm of the second fundamental form ‖σ‖2 of
N satisfies

‖σ‖2 ≤ m coth2 ϕ‖∇(ln h)‖2, (34)

where ∇(ln h) is the gradient of ln h.

Proof. Since ‖σ‖2 = ‖σ(Dϕ,Dϕ)‖2 + 2‖σ(Dϕ,D⊥)‖2 + ‖σ(D⊥,D⊥)‖2, if N is mixed geodesic we obtain

‖σ‖2 = ‖σ(Dϕ,Dϕ)‖2 + ‖σ(D⊥,D⊥)‖2. (35)
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The first factor of the right hand side of (35) can be written as

‖σ(Dϕ,Dϕ)‖2 =

2p+m∑
r=1

2p∑
c,d=1

1(σ(Êc, Êd), Ēr)2.

Using the adapted frame, we have

‖σ(Dϕ,Dϕ)‖2 =

m∑
i=1

2p∑
c,d=1

1(σ(Êc, Êd),PEi)2 +

2p∑
a=1

2p∑
c,d=1

1(σ(Êc, Êd), cschϕβÊa)2. (36)

From (32), we get

‖σ(Dϕ,Dϕ)‖2 =

2p∑
a=1

2p∑
c,d=1

1(σ(Êc, Êd), cschϕβÊa)2. (37)

On the other hand we can write the second factor of the right side of (35) as

‖σ(D⊥,D⊥)‖2 =

2p+m∑
r=1

m∑
i, j=1

1(σ(Ei,E j), Ēr)2.

Using the adapted frame we arrive at

‖σ(D⊥,D⊥)‖2 =

m∑
k=1

m∑
i, j=1

1(σ(Ei,E j),PEk)2 +

2p∑
c=1

m∑
i, j=1

1(σ(Ei,E j), cschϕβÊc)2. (38)

From (33), we get

‖σ(D⊥,D⊥)‖2 =

m∑
k=1

m∑
i, j=1

1(σ(Ei,E j),PEk)2 + m
2p∑

c=1

csch2ϕ(αÊc ln h)2. (39)

Further we can write (39) as

‖σ(D⊥,D⊥)‖2 =

m∑
k=1

m∑
i, j=1

1(σ(Ei,E j),PEk)2 + m(csch2ϕ(αÊ1(ln h))2

+ csch2ϕ(αÊ2(ln h))2 + ... + csch2ϕ(αÊ2p(ln h))2). (40)

From (40) and using the adapted frame, we have

‖σ(D⊥,D⊥)‖2 =

m∑
k=1

m∑
i, j=1

1(σ(Ei,E j),PEk)2 + m(coth2 ϕ(sechϕαÊ1(ln h))2

+ csch2ϕ(sechϕα2Ê1(ln h))2 + coth2 ϕ(sechϕαÊ3(ln h))2

+ csch2ϕ(sechϕα2Ê3(ln h))2 + ... + coth2 ϕ(sechϕαÊ2p−1(ln h))2

+ csch2ϕ(sechϕα2Ê2p−1(ln h))2).

Using the Proposition 3.4, we obtain

‖σ(D⊥,D⊥)‖2 =

m∑
k=1

m∑
i, j=1

1(σ(Ei,E j),PEk)2 + m
2p∑

c=1

(coth2[Ẽ2c−1(ln h))2 + Ê2c−1(ln h))2

=

m∑
k=1

m∑
i, j=1

1(σ(Ei,E j),PEk)2 + m coth2
‖∇(ln h)‖2. (41)



Y. Gündüzalp / Filomat 36:1 (2022), 275–288 287

From (35), (37) and (41) we obtain (34).
If the equality sign of (34) holds identically, then N1ϕ is totally geodesic and N2⊥ a totally umbilical
submanifold in Ñ.

Remark 5.2. If the manifold N2⊥ of Theorem 5.1 is timelike, then (34) shall be replaced by

‖σ‖2 ≥ m coth2 ϕ‖∇(ln h)‖2. (42)

In a similar way, for proper pointwise slant submanifold N1ϕ of type 2, we obtain the following result:

Theorem 5.3. Let N = N1ϕ ×h N2⊥ be a mixed geodesic warped product submanifold of a para-Kaehler manifold Ñ
such that N1ϕ is a n−dimensional neutral proper pointwise slant submanifold and N2⊥ is a m−dimensional totally
real submanifold of N. Suppose that N2⊥ is spacelike(respectively, timelike). Then, the squared norm of the second
fundamental form ‖σ‖2 of N satisfies

‖σ‖2 ≤ m cot2 ϕ‖∇(ln h)‖2 (respectively, ‖σ‖2 ≥ m cot2 ϕ‖∇(ln h)‖2) (43)

where ∇(ln h) is the gradient of ln h.
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