Warped Product Pointwise Hemi-Slant Submanifolds of a Para-Kaehler Manifold

Yılmaz Gündüzalp

Abstract. In this paper, we introduce pointwise hemi-slant submanifolds of para-Kaehler manifolds. Using this notion, we investigate the geometry of warped product pointwise hemi-slant submanifolds. We provide some non-trivial examples of such submanifolds.

1. Introduction

The notion of slant submanifolds was introduced by Chen in [10], and the first results on slant submanifolds were collected in his book [11]. Since then, this subject has been studied extensively by many geometers during the last two and half decades. Also, the study of slant submanifolds in a pseudo-Riemannian manifold has been initiated: Chen and Mihai classified slant surfaces in Lorentzian complex space forms in [12]. Arslan et. al defined slant submanifolds of a neutral Kaehler manifold in [6], while Alegre studied slant submanifolds of Lorentzian Sasakian and para-Sasakian manifolds in [1]. Recently, slant, bi-slant and quasi bi-slant submanifolds of (para)-Hermitian manifolds have been defined in [2, 3, 5]. As an extension of slant submanifolds, Etayo [17] defined the notion of pointwise slant submanifolds under the name of quasi-slant submanifolds.

On the other hand, Bishop and O’Neill started the concept of warped product which is one of the most effective generalizations of semi-Riemannian manifold. The notion of warped product has recognized various significant contributions in differential geometry as well as in physics, particularly in general theory of relativity [13, 26]. Since then, the study of warped product submanifolds has been investigated by many geometers (see, e.g., [4, 9, 15, 16, 18–21, 24, 25, 27–35] among many others, and for the most up-to-date overview of this subject, see [14]).

In this paper, we introduce pointwise hemi-slant submanifolds of para-Kaehler manifolds and using this notion, we investigate the geometry of warped product pointwise hemi-slant submanifolds of the form $N_{1\varphi} \times N_{2\perp}$ in a para-Kaehler manifold \tilde{N}, where $N_{2\perp}$ is a totally real submanifold and $N_{1\varphi}$ is a neutral proper pointwise slant submanifold of \tilde{N} with slant function φ.

In the present paper, in section 2, we give preliminaries and definitions needed for this paper. In section 3, we define and study pointwise hemi-slant submanifolds of para-Kaehler manifolds. Then, we give some non-trivial examples of pointwise hemi-slant submanifolds and investigate the geometry of the leaves.
of distributions. In section 4, we prove some preparatory results and obtain a necessary and sufficient condition for the existence of a submanifold of the form \(N_{1p} \times N_{2\perp} \) to be locally warped product and locally semi-Riemannian product. Also, we give some examples illustrating such submanifolds. In section 5 we describe the warped product submanifolds \(N \) by giving geometric inequalities in term of second fundamental form and warping function \(\varphi \) for the \(N_{1p} \times N_{2\perp} \) of a para-Kaehler manifold.

2. Preliminaries

Let \((\tilde{N}, g)\) be an almost para-Hermitian manifold with almost para-complex structure \(P \) and a semi-Riemannian metric \(g \) such that

\[
P^\sharp Y_1 = Y_1, \quad g(\nabla_{Y_1} Y_2, Y_2) + g(Y_1, Y_2) = 0, \tag{1}
\]

for all \(Y_1, Y_2 \in \Gamma(T\tilde{N}), \) where \(\tilde{\nabla} \) denotes the Levi-Civita connection on \(\tilde{N} \) of the semi-Riemannian metric \(g. \)

If the para-complex structure \(P \) satisfies

\[
(\nabla_{Y_1} P)Y_2 = 0, \tag{2}
\]

for all \(Y_1, Y_2 \in \Gamma(T\tilde{N}), \) then \(\tilde{N} \) is called a para-Kaehler manifold([23]).

Now, let \(N \) be a semi-Riemannian submanifold of \((\tilde{N}, P, g)\) and we denote by the same symbol \(g \) the semi-Riemannian metric induced on \(N. \) Let \(\Gamma(TN) \) be the Lie algebra of vector fields in \(N \) and \(\Gamma(T^\perp N) \), the set of all vector fields normal to \(N. \) If \(\tilde{\nabla} \) be the induced Levi-Civita connection on \(N, \) then the Gauss and Weingarten formulas are given by:

\[
\tilde{\nabla}_{Y_1} Y_2 = \nabla_{Y_1} Y_2 + \sigma(Y_1, Y_2), \tag{3}
\]

\[
\tilde{\nabla}_{Y_1} Y_3 = -\mathcal{A} Y_2 Y_1 + \nabla^\perp_{Y_1} Y_3, \tag{4}
\]

for any \(Y_1, Y_2 \in \Gamma(TN) \) and \(Y_3 \in \Gamma(T^\perp N), \) where \(\nabla^\perp \) is the normal connection in the normal bundle \(T^\perp N \) and \(\mathcal{A} \) is the shape operator of \(N \) with respect to the normal vector \(Y_3. \) Also, \(\sigma : TN \times TN \rightarrow T^\perp N \) is the second fundamental form of \(N \) in \(\tilde{N}. \) Moreover \(\mathcal{A} Y_1 \) and \(\sigma \) are related by:

\[
g(\sigma(Y_1, Y_2), Y_3) = g(\mathcal{A} Y_3 Y_1, Y_2) \tag{5}
\]

for any \(Y_1, Y_2 \in \Gamma(TN) \) and \(Y_3 \in \Gamma(T^\perp N). \)

For any \(Y_1 \) tangent to \(N \) we write

\[
P Y_1 = \alpha Y_1 + \beta Y_1, \tag{6}
\]

where \(\alpha Y_1 \) and \(\beta Y_1 \) are the tangential and normal parts of \(PY_1, \) respectively.

Also, for any \(Y_3 \in \Gamma(T^\perp N), \) we get

\[
P Y_3 = \alpha Y_3 + \beta Y_3, \tag{7}
\]

here \(\alpha Y_3 \) and \(\beta Y_3 \) are the tangential and normal parts of \(PY_3, \) respectively.

In [8], Chen and Garay introduced pointwise slant submanifold in a Kaehler manifold. Let \(N \) be a submanifold of a Kaehler manifold \((\hat{N}, P, g)\). Then the submanifold \(N \) is called pointwise slant submanifold if at each point \(p \in N, \) the slant angle \(\varphi(Y_1) \) between \(PY_1 \) and \(T_p\hat{N} \) is independent of the choice of the non-zero vector \(Y_1 \in T_pN. \) In this case, the slant angle gives rise to a real-valued function \(\varphi : TN - \{0\} \rightarrow \mathbb{R} \) which is called the slant function of the pointwise slant submanifold. If \(\alpha Y \) is the projection of \(PY_1 \) over \(N, \) they can be characterized as \(\alpha^2 = \mu l d. \)
We say that a semi-Riemannian submanifold N of a para-Hermitian manifold (\tilde{N}, P, g) is called a pointwise slant if for every non-lightlike $Y_1 \in \Gamma(TN)$, the quotient $g(\alpha Y_1, \alpha Y_1)/g(PY_1, PY_1)$ is non-constant. A submanifold is called invariant if it is a pointwise slant with slant function zero. It is called anti-invariant if $\alpha Y_1 = 0$ for all $Y_1 \in \Gamma(TN)$. In other cases, it is called a proper pointwise slant submanifolds.

Definition 2.1. Let N be a proper pointwise slant submanifold of a para-Hermitian manifold (\tilde{N}, P, g). We say that it is of

(i) type 1 if for any spacelike (timelike) vector field $Y_1 \in \Gamma(TN)$, αY_1 is timelike (spacelike), and $\frac{\|\alpha Y_1\|}{\|PY_1\|} > 1$,

(ii) type 2 if for any spacelike (timelike) vector field $Y_1 \in \Gamma(TN)$, αY_1 is timelike (spacelike), and $\frac{\|\alpha Y_1\|}{\|PY_1\|} < 1$.

The proof of the following result is the same as slant submanifolds (see [2] and [3]), therefore we omit its proof.

Theorem 2.2. Let N be a semi-Riemannian submanifold of a para-Hermitian manifold (\tilde{N}, P, g). Then,

(i) N is a pointwise slant submanifold of type 1 if and only if for any spacelike (timelike) vector field $Y_1 \in \Gamma(TN)$, αY_1 is timelike (spacelike), and there exists a function $\mu \in (1, \infty)$ such that

$$\alpha^2 Y_1 = \mu Y_1. \tag{8}$$

If φ denotes the slant function of N then $\mu = \cosh^2 \varphi$.

(ii) N is a pointwise slant submanifold of type 2 if and only if for any spacelike (timelike) vector field $Y_1 \in \Gamma(TN)$, αY_1 is timelike (spacelike), and there exists a function $\mu \in (0, 1)$ such that

$$\alpha^2 Y_1 = \mu Y_1. \tag{9}$$

If φ denotes the slant function of N then $\mu = \cos^2 \varphi$.

In every case, a real-valued function φ is called the slant function of the proper pointwise slant submanifold. From the Theorem 2.2, we have:

Corollary 2.3. Let D be a distribution on N. Then,

(i) D is a proper pointwise slant of type 1 if and only if for any spacelike (timelike) vector field $Y_1 \in \Gamma(D)$, αY_1 is timelike (spacelike), and there exists a function $\mu \in (1, \infty)$ such that

$$(\alpha Q_\varphi)^2 Y_1 = \mu Y_1 \tag{10}$$

where Q_φ denotes the orthogonal projection on D. Also, in this case $\mu = \cosh^2 \varphi$.

(ii) D is a proper pointwise slant of type 2 if and only if for any spacelike (timelike) vector field $Y_1 \in \Gamma(D)$, αY_1 is timelike (spacelike), and there exists a function $\mu \in (0, 1)$ such that

$$(\alpha Q_\varphi)^2 Y_1 = \mu Y_1 \tag{11}$$

where Q_φ denotes the orthogonal projection on D. Also, in this case $\mu = \cos^2 \varphi$.

In every case, a real-valued function φ is called the slant function of the proper pointwise slant distribution.

Let us point out that for both proper pointwise slant distributions of type 1 and 2, if Y_1 is a spacelike tangent vector field, then αY_1 is a timelike tangent vector field. So, all type 1, and type 2 proper pointwise slant distributions are neutral.

Remember that a para-holomorphic distribution satisfies $PD = D$, so every para-holomorphic distribution is a pointwise slant distribution with slant function zero. It is called a totally real distribution if $PD \subseteq T^\perp N$, therefore every totally distribution is anti-invariant.

If D is a para-holomorphic distribution, then $\|\alpha Y_1\| = \|PY_1\|$ for all $Y_1 \in \Gamma(D)$. If D is a totally real distribution, then $\|\alpha Y_1\| = 0$, for all $Y_1 \in \Gamma(D)$.
3. Proper pointwise hemi-slant submanifolds

In this section we define and study proper pointwise hemi-slant submanifold of a para-Kaehler manifold \((\tilde{N}, P, g)\).

Definition 3.1. A semi-Riemannian submanifold \(N\) of a para-Hermitian \((\tilde{N}, P, g)\) is called a pointwise bi-slant submanifold if the tangent space admits a decomposition \(T_N = D_\tau \oplus D_\phi\) with both \(D_\tau\) and \(D_\phi\) pointwise slant distributions with slant functions \(\tau\) and \(\phi\).

It is called a pointwise semi-slant submanifold if the tangent space admits a decomposition \(T_N = D_\tau \oplus D_\phi\) with \(D_\tau\) a para-holomorphic distribution and \(D_\phi\) a proper pointwise slant distribution with slant function \(\phi\).

It is called a pointwise hemi-slant submanifold if the tangent space admits a decomposition \(T_N = D_\tau \oplus D_\phi\) with \(D_\tau\) a totally real distribution and \(D_\phi\) a proper pointwise slant distribution with slant function \(\phi\).

Note that given a pseudo-Euclidean space \(R_n^{2n}\) with coordinates \((x_1, ..., x_{2n})\) on \(R_n^{2n}\), we can naturally choose an almost paracomplex structure \(P\) on \(R_n^{2n}\) as follows:

\[
P(\frac{\partial}{\partial x_{2i}}) = \frac{\partial}{\partial x_{2i-1}}, \quad P(\frac{\partial}{\partial x_{2i-1}}) = -\frac{\partial}{\partial x_{2i}}
\]

where \(i = 1, ..., n\). Let \(R_n^{2n}\) be a pseudo-Euclidean space of signature \((+, r, +, ..., +, -)\) with respect to the canonical basis \((\frac{\partial}{\partial x_1}, ..., \frac{\partial}{\partial x_{2n}})\).

Now, we can present some examples of proper pointwise hemi-slant submanifolds.

Example 3.2. Let \(N\) be a semi-Riemannian submanifold of \(R_n^{2n}\) defined by the immersion \(\phi : N \to R_n^{2n}\):

\[
\phi(u, v, t, s) = (\sin u, \cos v, \cos u, \cos v, t, k_1, k_2, s),
\]

such that \(u \neq v \neq 0\), for non-vanishing functions \(u\) and \(v\) on \(N\). Then \(N\) is a neutral pointwise hemi-slant submanifold of type 2 with neutral anti-invariant distribution \(D_\perp = \text{Span}\{Y_3 = \frac{\partial}{\partial x_1}, Y_4 = \frac{\partial}{\partial x_2}\}\) and the neutral pointwise slant distribution of type 2 \(D_\phi = \text{Span}\{Y_1 = \cos u \frac{\partial}{\partial x_1} - \sin u \frac{\partial}{\partial x_2}, Y_2 = \cos v \frac{\partial}{\partial x_2} - \sin v \frac{\partial}{\partial x_1}\}\) with slant function \(\phi = u - v\).

Example 3.3. Let \(N\) be a semi-Riemannian submanifold of \(R_n^{2n}\) defined by the immersion \(\phi : N \to R_n^{2n}\):

\[
\phi(u, v, t, s) = (v, \sinh u, \cosh u, u, t, k_1, k_2, s),
\]

such that \(u > 2\) and \(v \neq 0\), for non-vanishing function \(u\) on \(N\). Then \(N\) is a neutral pointwise hemi-slant submanifold of type 1 with neutral anti-invariant distribution \(D_\perp = \text{Span}\{Y_3 = \frac{\partial}{\partial x_1}, Y_4 = \frac{\partial}{\partial x_2}\}\) and the neutral pointwise slant distribution of type 1 \(D_\phi = \text{Span}\{Y_1 = \cosh u \frac{\partial}{\partial x_1} + \sinh u \frac{\partial}{\partial x_2}, Y_2 = \frac{\partial}{\partial x_2}\}\) with slant function \(\phi = \cosh^{-1}(\sqrt{\frac{u}{\sqrt{2}}}u)\).

Let \(N\) be a proper pointwise slant hemi-slant submanifold of a para-Kaehler manifold \((\tilde{N}, P, g)\), and set the projections on the distributions \(D_\perp\) and \(D_\phi\) by \(Q_\perp\) and \(Q_\phi\), respectively. Then we can write

\[
Y_1 = Q_\perp Y_1 + Q_\phi Y_1
\]

for any spacelike (timelike) vector field \(Y_1 \in \Gamma(TN)\). Applying \(P\) to equation (12) and using (6), we get

\[
PY_1 = \beta Q_\perp Y_1 + \alpha Q_\perp Y_1 + \beta Q_\phi Y_1. \tag{13}
\]

From (13), we have

\[
\beta Q_\perp Y_1 \in \Gamma(D_\perp), \quad \alpha Q_\perp Y_1 = 0, \tag{14}
\]
for any spacelike (timelike) vector field \(Y \). Using (6) in (13), we obtain
\[
\alpha Y_1 = \alpha Q_\varphi Y_1, \quad \beta Y_1 = \beta Q_\varphi Y_1 + \beta Q_\varphi Y_1
\]
for any spacelike (timelike) vector field \(Y_1 \). Since \(\Gamma(D_\varphi) \) is a proper pointwise slant distribution, from Theorem 2.2 and Corollary 2.3, we conclude that
\[
\text{Proposition 3.5.}\quad \text{Let } N \text{ be a proper pointwise hemi-slant submanifold of a para-Kaehler manifold.}
\]

In a similar way, we obtain:
\[
\phi \alpha Y_2 = 0 \quad \text{for any spacelike (timelike) vector field } Y_2 \in \Gamma(TN) \quad \text{orthogonal to } D.
\]

Moreover, if \(\varphi \) denotes the slant function of \(N \) then \(\mu = \cosh^2 \varphi \).

Proof. Let \(N \) be a proper pointwise hemi-slant submanifold of \((\tilde{N}, P, g) \). By setting \(\mu = \cosh^2 \varphi \) and using (14) and (15), we obtain that \(D = D_\varphi \), which follows a and b. Conversely, (a) and (b) imply that \(TN = D \oplus D_\perp \).

Since \(\alpha(D) \subseteq D_\perp \), we received from (b) that \(D_\perp \) is a totally real distribution.

In a similar way, we obtain:

Proposition 3.6. Let \(N \) be a proper pointwise hemi-slant submanifold of a para-Kaehler manifold \((\tilde{N}, P, g) \). Then \(N \) is a proper pointwise hemi-slant submanifold if and only if \(\alpha \in (1, \infty) \) and a distribution of type 2 \(D \) on \(N \) such that
\[
\alpha Y_1 = \alpha Q_\varphi Y_1, \quad \beta Y_1 = \beta Q_\varphi Y_1 + \beta Q_\varphi Y_1
\]
for any spacelike (timelike) vector field \(Y_1 \). Since \(\alpha(D) \subseteq D_\perp \), we received from (b) that \(D_\perp \) is a totally real distribution.

From the above Propositions, we have:

Corollary 3.7. Let \(N \) be a proper pointwise hemi-slant submanifold of a para-Kaehler manifold \((\tilde{N}, P, g) \). Then \(D_\varphi \) is a proper pointwise slant distribution of
\[
\text{type 1 if and only if } g(\alpha Y_1, \alpha Y_2) = -\cosh^2 \varphi g(Y_1, Y_2), \quad g(\beta Y_1, \beta Y_2) = \sinh^2 \varphi g(Y_1, Y_2),
\]
\[
\text{type 2 if and only if } g(\alpha Y_1, \alpha Y_2) = -\cos^2 \varphi g(Y_1, Y_2), \quad g(\beta Y_1, \beta Y_2) = -\sin^2 \varphi g(Y_1, Y_2)
\]
for all spacelike (timelike) vector fields \(Y_1, Y_2 \in \Gamma(D_\varphi) \).

Using (1), (6) and (7), the Propositions 3.4 and 3.5, we get:

Lemma 3.8. Let \(N \) be a proper pointwise hemi-slant submanifold of a para-Kaehler manifold \((\tilde{N}, P, g) \). Then \(D_\varphi \) is a proper pointwise slant distribution of
\[
\text{type 1 if and only if } (a) \alpha Y_1 = (-\sinh^2 \varphi) Y_1, \quad (b) \beta Y_1 = -\beta a Y_1,
\]
\[
\text{type 2 if and only if } (a) \alpha Y_1 = (\sin^2 \varphi) Y_1, \quad (b) \beta Y_1 = -\beta a Y_1,
\]
for all spacelike (timelike) vector field \(Y_1 \in \Gamma(D_\varphi) \).

Now we examine the conditions for integrability and totally geodesic foliation of distributions associated with the definition of proper pointwise hemi-slant submanifolds of a para-Kaehler manifold.

Theorem 3.9. Let \(N \) be a proper pointwise hemi-slant submanifold of a para-Kaehler manifold \((\tilde{N}, P, g) \). Then the totally real distribution \(D_\perp \) is integrable.
Proof. It is known that is a para-Kaehler manifold, then \(dF = 0 \), where \(d \) is exterior derivative and \(F \) is the fundamental 2-form defined \(F(Y_1, Y_2) = g(Y_1, PY_2) \) for any spacelike (timelike) vector fields \(Y_1, Y_2 \in \Gamma(\mathcal{T}N) \) (see [23]). Since \(F \) is closed \((dF = 0) \), for any spacelike (timelike) vector fields \(Y_1, Y_2, Y_3 \in \Gamma(\mathcal{D}_p) \) we have

\[
3dF(aY_1, Y_2, Y_3) = aY_1F(Y_2, Y_3) - Y_2F(aY_1, Y_3) + Y_3F(aY_1, Y_2)
= -\mathcal{F}([aY_1, Y_2], Y_3) + \mathcal{F}([aY_1, Y_3], Y_2) - \mathcal{F}([Y_2, Y_3], aY_1) = 0.
\]

Since \(\mathcal{D}_1 \) and \(\mathcal{D}_p \) are orthogonal and \(\mathcal{D}_1 \) is anti-invariant, using Proposition 3.4 and (6) we get

\[
Y_2g(\beta\alpha Y_1, Y_3) - \cosh^2 \varphi g([Y_2, Y_3], Y_1) - g([Y_2, Y_3], \beta\alpha Y_1) = 0.
\]

Since \([Y_2, Y_3] \in \Gamma(\mathcal{T}N) \) and \(\beta\alpha Y_1 \in \Gamma(\mathcal{T}N) \), we obtain

\[
\cosh^2 \varphi g([Y_2, Y_3], Y_1) = 0.
\]

Since \(N \) is a proper pointwise hemi-slant submanifold and \(Y_1, Y_2, Y_3 \) are all non-zero, we have \([Y_2, Y_3] \in \Gamma(\mathcal{D}_p) \). \(\square \)

Note that the Theorem 3.8 holds for proper pointwise slant submanifold \(N_{sp} \) of type 2.

From the Theorem 3.8, we have:

Corollary 3.9. Let \(N \) be a proper pointwise hemi-slant submanifold of a para-Kaehler manifold \((\tilde{N}, \mathcal{P}, g)\). Then the totally real distribution \(\mathcal{D}_1 \) is integrable if and only if for any spacelike (timelike) vector fields \(Y_1, Y_2 \in \Gamma(\mathcal{D}_1) \) the shape operator satisfies \(\mathcal{A}_{PY_2}Y_1 = \mathcal{A}_{PY_1}Y_2 \).

Theorem 3.10. Let \(N \) be a proper pointwise hemi-slant submanifold of a para-Kaehler manifold \((\tilde{N}, \mathcal{P}, g)\). Then the totally real distribution \(\mathcal{D}_1 \) defines a totally geodesic foliation if and only if for every spacelike (timelike) vector fields \(Y_1 \in \Gamma(\mathcal{D}_1) \) and \(Y_3 \in \Gamma(\mathcal{D}_p) \), \(\mathcal{A}_{PY_1}Y_3 = \mathcal{A}_{PY_3}Y_1 \).

Proof. For any spacelike (timelike) vector fields \(Y_1, Y_2 \in \Gamma(\mathcal{D}_1) \) and \(Y_3 \in \Gamma(\mathcal{D}_p) \), using (1)-(7) we get

\[
\begin{aligned}
g(\nabla Y_1, Y_2, Y_3) &= -g(\nabla Y_1, PY_2, PY_3) \\
& = -g(\nabla Y_1, PY_2, \alpha Y_3) + g(\nabla Y_1, Y_2, \alpha\beta Y_3) \\
& + g(\nabla Y_1, Y_2, \beta\beta Y_3).
\end{aligned}
\]

From (4), (5) and Lemma 3.7(type 1), we obtain

\[
\begin{aligned}
g(\nabla Y_1, Y_2, Y_3) &= g(\mathcal{A}_{PY_2}Y_1, \alpha Y_3) - \sinh^2 \varphi g(\nabla Y_1, Y_2, Y_3) \\
& = -g(\mathcal{A}_{PY_3}Y_1, Y_2).
\end{aligned}
\]

Using (3), we get

\[
\cosh^2 \varphi g(\nabla Y_1, Y_2, Y_3) = g(\mathcal{A}_{PY_2}Y_3, Y_1) - g(\mathcal{A}_{PY_3}Y_2, Y_1).
\]

\(\square \)

Now, analogous to the proof of the Theorems 3.8 and 3.10 we give the following results for proper pointwise hemi-slant submanifolds.

Theorem 3.11. Let \(N \) be a proper pointwise hemi-slant submanifold of a para-Kaehler manifold \((\tilde{N}, \mathcal{P}, g)\). Then the proper pointwise slant distribution \(\mathcal{D}_p \) is integrable if and only if

\[
g(\mathcal{A}_{PY_3}Y_1 - \mathcal{A}_{PY_1}Y_2, Y_3) = g(\mathcal{A}_{PY_1}Y_1 - \mathcal{A}_{PY_3}Y_2, Y_3)
\]

for every spacelike (timelike) vector fields \(Y_1 \in \Gamma(\mathcal{D}_1) \) and \(Y_2, Y_3 \in \Gamma(\mathcal{D}_p) \).
Warped products \(N_{14} \times_h N_{24} \) in para-Kaehler manifolds

Let \((N_1,g_1)\) and \((N_2,g_2)\) be two semi-Riemannian manifolds, let \(h : N_1 \rightarrow R_+\), and let \(\eta_1 : N_1 \times N_2 \rightarrow N_1\) and \(\eta_2 : N_1 \times N_2 \rightarrow N_2\) the projection maps given by \(\eta_1(r,s) = r\) and \(\eta_2(r,s) = s\) for all \((r,s) \in N_1 \times N_2\). The warped product[17] \(N = N_1 \times N_2 \) is the manifold \(N_1 \times N_2 \) equipped with the semi-Riemannian structure such that

\[
g(Y_1,Y_2) = g_1(\eta_1 Y_1, \eta_1 Y_2) + (h \circ \eta_2)^2 g_2(\eta_2 Y_1, \eta_2 Y_2)
\]

for every spacelike(timelike) vector fields \(Y_1, Y_2 \in \Gamma(TN) \), here \(\ast \) denotes the tangent map. The function \(h \) is called the warping function of the warped product manifold. In particular, if the warping function is constant, then the manifold \(N \) is said to be trivial.

Lemma 4.1. (17) For spacelike(timelike) vector fields \(Y_1, Y_2 \in \Gamma(TN_1) \) and \(Y_3, Y_4 \in \Gamma(TN_2) \), we get on warped product manifold \(N = N_1 \times_h N_2 \) that

(a)\(V_1 Y_2 \in \Gamma(TN_1) \),

(b)\(V_1 Y_3 = V_2 Y_1 = (\frac{\partial}{\partial x_1}) Y_3 \),

(c)\(V_1 Y_4 = -\frac{\partial \psi(x_5 \ldots x_8)}{\partial x_4} \),

where \(V \) denotes the Levi-Civita connection on \(N \) and \(\nabla h \) is the gradient of \(h \) defined by \(g(\nabla h, Y_1) = Y_1 h \).

It is also important to note that for a warped product \(N = N_1 \times_h N_2, N_1 \) is totally geodesic and \(N_2 \) is totally umbilical in \(N \).

In this section, we investigate the existence of warped product submanifolds \(N_{14} \times_h N_{24} \) of para-Kaehler manifolds such that \(N_{14} \) is a proper pointwise slant submanifold and \(N_{24} \) is a totally real submanifold of \(N \). First, we are going to give some examples of a warped product pointwise hemi-slant submanifold of the form \(N_{14} \times_h N_{24} \).

Example 4.2. Consider a semi-Riemannian submanifold of \(R^8_+ \) with the cartesian coordinates \((x_1, \ldots, x_8)\) and the almost para-complex structure

\[
P(\frac{\partial}{\partial x_i}) = \frac{\partial}{\partial x_{i-1}}, \quad P(\frac{\partial}{\partial x_{i-1}}) = \frac{\partial}{\partial x_i}, \quad 1 \leq i \leq 4.
\]

Let \(R^8_+ \) be a semi-Euclidean space of signature \((+,\ldots,+,+,-\ldots,-)\) with respect to the canonical basis \((\frac{\partial}{\partial x_1}, \ldots, \frac{\partial}{\partial x_8})\). Let \(N \) be defined by the immersion \(\psi \) as follows

\[
\psi(u,v,t) = (\sinh u, v, u, \cosh u, \cosh(t^3), a, \sinh(t^3), b)
\]

for any non-vanishing function \(u \) on \(N \), where \(a, b \) are constants and \(u > 1 \). Then the tangent space \(TN \) of \(N \) is spanned by the following vectors

\[
\psi_u = \cosh u \frac{\partial}{\partial x_1} + \frac{\partial}{\partial x_3} + \sinh u \frac{\partial}{\partial x_4}, \quad \psi_v = \frac{\partial}{\partial x_2}.
\]
Thus, \(N \) is a warped product submanifold of the form \(N = D \phi \).

It is easy to see that \(P \chi \) and \(P \psi \) are integrable. If we denote the integral manifolds of \(D \phi \) and \(D \psi \) by \(N_{1\phi} \) and \(N_{2\phi} \), respectively, then the metric tensor of \(N \) is given by

\[
\frac{ds^2}{\sqrt{\cosh^2(2t^3)}} = 2du^2 - dv^2 + 9t^4 \cosh(2t^3) dt^2.
\]

Thus, \(N \) is a warped product submanifold of the form \(N = N_{1\phi} \times_\theta N_{2\phi} \) in \(R^8 \) with the warping function \(h = 3t^2 \sqrt{\cosh(2t^3)} \).

Example 4.3. Let \(N \) be an immersed semi-Riemannian submanifold of a para-Kaehler manifold \(\tilde{N} \) (as given in Example 4.2) defined by

\[
\psi(x, y, z) = (\sin x, \sin y, \cos x, \cos y, \cos \epsilon^z, a, \sin \epsilon^z, b),
\]

such that \(u \neq v \neq 0 \), for non-vanishing functions \(u \) and \(v \) on \(N \). Then the tangent space \(TN \) of \(N \) is spanned by the following vectors:

\[
\psi_x = \cos x \frac{\partial}{\partial x_1} - \sin x \frac{\partial}{\partial x_3}, \quad \psi_y = \cos y \frac{\partial}{\partial x_2} - \sin y \frac{\partial}{\partial x_4},
\]

\[
\psi_z = -\epsilon \sin(\epsilon^z) \frac{\partial}{\partial x_5} + \epsilon \cos(\epsilon^z) \frac{\partial}{\partial x_7}.
\]

Thus, we consider \(D_\phi = \text{span}\{\psi_x, \psi_y\} \) is a spacelike totally real distribution and \(D_\psi = \text{span}\{\psi_x, \psi_z\} \) is a neutral proper poitwise slant distribution of type 2 with slant function \(\varphi = u - v \). It is easy to observe that \(D_\phi \) and \(D_\psi \) are integrable. If we denote the integral manifolds of \(D_\phi \) and \(D_\psi \) by \(N_{1\phi} \) and \(N_{2\phi} \), respectively, then the metric tensor of \(N \) is given by

\[
ds^2 = dx^2 - dy^2 + \epsilon^z \, dz^2.\]

Hence, \(N \) is a 3-dimensional pointwise hemi-slant warped product submanifold of \(R^8 \) with the warping function \(h = \epsilon^z \).

Example 4.4. Let \(N \) be defined by the immersion \(\psi \) as follows

\[
\psi(x, y, z, t) = (\sinh x, \sinh y, \cosh x, \sinh(z + t), z, \sinh(z + t), t)
\]

for any non-vanishing functions \(x \) and \(y \) on \(N \). Then the tangent space \(TN \) of \(N \) is spanned by the following vectors

\[
\psi_x = \cosh x \frac{\partial}{\partial x_1} + \sinh x \frac{\partial}{\partial x_4}, \quad \psi_y = \cosh y \frac{\partial}{\partial x_2} + \sinh y \frac{\partial}{\partial x_3},
\]

\[
\psi_z = \cosh(z + t) \frac{\partial}{\partial x_5} + \frac{\partial}{\partial x_6} + \cosh(z + t) \frac{\partial}{\partial x_7}, \quad \psi_t = \cosh(z + t) \frac{\partial}{\partial x_5} + \cosh(z + t) \frac{\partial}{\partial x_7} + \frac{\partial}{\partial x_8}.
\]

It is easy to see that \(P \psi_x \) and \(P \psi_x \perp TN = \text{span}\{\psi_x, \psi_y, \psi_z, \psi_t\} \) and thus, we consider \(D_\phi = \text{span}\{\psi_x, \psi_y\} \) is a spacelike totally real distribution and \(D_\psi = \text{span}\{\psi_x, \psi_y\} \) is a neutral proper poitwise slant distribution of type 1 with slant function \(\alpha^2 = \cosh^2(x - y) \). It is easy to observe that \(D_\phi \) and \(D_\psi \) are integrable. If we denote the integral manifolds of \(D_\phi \) and \(D_\psi \) by \(N_{1\phi} \) and \(N_{2\phi} \), respectively, then the metric tensor of \(N \) is given by

\[
ds^2 = dx^2 - dy^2 + \cosh(2(z + t))(dz^2 + dt^2).
\]

Thus, \(N \) is a pointwise hemi-slant warped product submanifold of the form \(N = N_{1\phi} \times_\theta N_{2\phi} \) in \(R^8 \) with the warping function \(h = \sqrt{\cosh(2(z + t))} \).
Now we will consider warped product pointwise hemi-slant submanifolds \(N = N_{1p} \times h N_{2\perp} \) such that \(N_{1p} \) is a neutral proper pointwise slant submanifold and \(N_{2\perp} \) is a totally real submanifold of a para-Kaehler manifold \(\tilde{N} \).

Lemma 4.5. Let \(N = N_{1p} \times h N_{2\perp} \) be a pointwise hemi-slant warped product submanifold of a para-Kaehler manifold \(\tilde{N} \). Then
\[
g(\mathcal{A}_{PY_1}a_1Y_1, Y_3) = (-cosh^2 \varphi)(Y_1 \ln h)g(Y_3, Y_4) + g(\mathcal{A}_{\beta a}Y_1, Y_3, Y_4) \tag{19}
\]
for any spacelike(timelike) vector fields \(Y_1, Y_2 \in \Gamma(TN_{1p}) \) and \(Y_3, Y_4 \in \Gamma(TN_{2\perp}) \).

Proof. From (1)- (6) we obtain
\[
g(\mathcal{A}_{PY_1}a_1Y_1, Y_3) = -g(\nabla_{Y_1}Y_1, Y_4) + g(\nabla_{Y_1}p\beta aY_1, Y_4). \tag{20}
\]
Using Lemma 4.1, Lemma 3.7(type 1) and (7) we get
\[
g(\mathcal{A}_{PY_1}a_1Y_1, Y_3) = -(Y_1 \ln h)g(Y_3, Y_4) + g(\nabla_{Y_1}(-\sinh^2 \varphi)Y_1, Y_4) + g(\nabla_{Y_1}(-\beta aY_1), Y_4). \tag{21}
\]
From the fact that \(\varphi \) is slant function and using (4) we obtain
\[
g(\mathcal{A}_{PY_1}a_1Y_1, Y_3) = -(Y_1 \ln h)g(Y_3, Y_4) - (\sinh^2 \varphi)g(\nabla_{Y_1}Y_1, Y_4) + g(\mathcal{A}_{\beta a Y_1}Y_3, Y_4),
\]
since \(g(Y_1, Y_4) = 0 \). Using (3) we have
\[
g(\mathcal{A}_{PY_1}a_1Y_1, Y_3) = (-cosh^2)(Y_1 \ln h)g(Y_3, Y_4) + g(\mathcal{A}_{\beta a Y_1}Y_3, Y_4).
\]

\[\square\]

Theorem 4.6. Let \(N \) be a pointwise hemi-slant warped product submanifold of a para-Kaehler manifold \(\tilde{N} \). Then \(N \) is locally isometric to pointwise hemi-slant warped product submanifold of the form \(N = N_{1p} \times h N_{2\perp} \) if and only if the shape operator of \(N \) satisfies
\[
\mathcal{A}_{PY_1}Y_1 - \mathcal{A}_{\beta a Y_1}Y_4 = (-cosh^2 \varphi)(Y_1 \ln h)Y_4, \tag{21}
\]
for some function \(\tau \) on \(N \) such that \(Y_3(\tau) = 0 \), where spacelike(timelike) vector fields \(Y_1, Y_2 \in \Gamma(D_{h}) \) and \(Y_3, Y_4 \in \Gamma(D_{\perp}) \).

Proof. Let us consider that \(N \) is a pointwise hemi-slant warped product submanifold of a para-Kaehler manifold \(\tilde{N} \). Then, Lemma 4.5, we have (21). We know that \(h \) is a function on \(N_2 \), therefore setting \(\tau = \ln h \) implies that \(Y_3(\tau) = 0 \). Conversely we assume that \(N \) is a pointwise hemi-slant submanifold of \(\tilde{N} \) such that (21) holds. Taking the inner product of (21) with \(Y_2 \), we can say from Theorem 3.12 that the integral manifold \(N_{1p} \) of \(D_{h} \) is totally geodesic foliation in \(N \). Thus, by Corollary 3.9 the distribution \(D_{\perp} \) is integrable if and only if
\[
g(\mathcal{A}_{PY_1}a_1Y_4, a_1Y_1) = g(\mathcal{A}_{PY_1}a_1Y_1, Y_3) \tag{22}
\]
for any spacelike(timelike) vector fields \(Y_1, Y_2 \in \Gamma(D_{h}) \) and \(Y_3, Y_4 \in \Gamma(D_{\perp}) \). From (19) and (22) we obtain
\[
g(\mathcal{A}_{PY_1}a_1Y_4, a_1Y_1) = (-cosh^2 \varphi)g(\nabla_{Y_1}Y_1, Y_4) + g(\mathcal{A}_{\beta a Y_1}Y_3, Y_4) \tag{23}
\]
on the other hand, taking the inner product of (21) with \(Y_3 \) we obtain
\[
g(\mathcal{A}_{PY_1}a_1Y_1 - \mathcal{A}_{\beta a Y_1}Y_4, Y_3) = g((-cosh^2 \varphi)(Y_1 \ln h)Y_4, Y_3). \tag{24}
\]
Using type 1 (17), (3)-(5) and the fact that

\[-g(\sigma_\perp(Y_3, Y_4), Y_1) = g(Y_1(\tau)Y_3, Y_4) = g(Y_3, Y_4)g(\nabla \tau, Y_1). \]

Thus \(\sigma_\perp(Y_3, Y_4) = g(Y_3, Y_4)(-\nabla \tau) \), here \(\sigma_\perp \) is a second fundamental form of \(D_\perp \) in \(N \) and \(\nabla \tau \) is a gradient of \(\tau = \ln h \). Hence the integrable manifold \(N_2 \) of \(D_\perp \) is totally umbilical submanifold in \(N \) and its mean curvature is non-zero and parallel and \(Y_3(\tau) = 0 \) for every spacelike (timelike) vector field \(Y_3 \in \Gamma(D_\perp) \). Therefore, from Theorem 1.2 ([22], page 211), we deduce that \(N \) is a pointwise hemi-slant warped product submanifold of \(\bar{N} \). \(\square \)

Now we maintain a necessary and sufficient condition for a warped product submanifold of the form \(N = N_{1p} \times N_{2\perp} \) to be a semi-Riemannian product.

Theorem 4.7. A pointwise hemi-slant warped product submanifold of the form \(N = N_{1p} \times N_{2\perp} \) of a para-Kaehler manifold \(\bar{N} \) is simply a locally semi-Riemannian product if and only if the shape operator satisfies \(\mathcal{A}_{\beta\alpha}Y_1 = 0 \) for every spacelike (timelike) vector field \(Y_3 \in \Gamma(N_{1p}) \) and \(Y_1, Y_2 \in \Gamma(N_{2\perp}) \).

Proof. For all spacelike (timelike) vector fields \(Y_3 \in \Gamma(N_{1p}) \) and \(Y_1, Y_2 \in \Gamma(N_{2\perp}) \), using (1)-(3) we have

\[g(\nabla Y_1 Y_3, Y_2) = -g(\nabla Y_1 PY_3, PY_2). \]

From (1),(2) and (6) we get

\[g(Y_1, Y_3, Y_2) = g(\nabla Y_1, a^2 Y_3, Y_2) + g(\nabla Y_1, \beta a Y_3, Y_2) - g(\nabla Y_1, \beta Y_3, PY_2). \]

Using type 1 (17), (3)-(5) and the fact that \(g(Y_2, Y_3) = 0 \), we obtain

\[g(\nabla Y_1, Y_3, Y_2) = (\cosh^2 \varphi)g(\nabla Y_1, Y_3, Y_2) - g(\sigma(Y_1 Y_2), \beta a Y_3) - g(\nabla Y_1^\perp, \beta Y_3, PY_2). \] (25)

Hence, from Lemma 4.1, we get

\[(\sinh^2 \varphi)(Y_3 \ln h)g(Y_1, Y_2) = g(\sigma(Y_1 Y_2), \beta a Y_3) + g(\nabla Y_1^\perp, \beta Y_3, PY_2). \] (26)

Interchanging \(Y_1 \) and \(Y_2 \) in (26) and then, subtracting from (26), we have:

\[g(\nabla Y_1^\perp, \beta Y_3, PY_2) = g(\nabla Y_1^\perp, \beta Y_3, PY_1). \] (27)

Furthermore from (1),(3),(4) and (6) we obtain

\[g(\nabla Y_1^\perp, \beta Y_3, PY_2) = -(Y_3 \ln h)g(Y_1, Y_2) - g(\nabla Y_1, a Y_3, PY_2). \] (28)

Again by interchanging \(Y_1 \) and \(Y_2 \) in (28) we conclude that (27) holds if and only if

\[g(\nabla Y_1, a Y_3, PY_2) = -g(\nabla Y_1, PY_2, a Y_3) = 0. \] (29)

Using type 1,(17) and (1)-(6) we have

\[(-\cosh^2 \varphi)(Y_3 \ln h)g(Y_1, Y_2) + g(\sigma(Y_1 Y_2), \beta a Y_3) = 0. \] (30)

Hence, from (30) we can say that \(h \) is constant if and only if \(g(\sigma(Y_1 Y_2), \beta a Y_3) = 0 \), since \(N_{1p} \) is proper pointwise slant submanifold and \(Y_3 \) is non-zero spacelike (timelike) vector field. \(\square \)

We say that a hemi-slant submanifold is mixed geodesic if

\[\sigma(Y_1, Y_3) = 0 \] (31)

for all spacelike (timelike) vector fields \(Y_1 \in \Gamma(D\varphi) \) and \(Y_3 \in \Gamma(D\perp) \).
Lemma 4.8. For a mixed geodesic pointwise hemi-slant warped product submanifold $N = N_{1p} \times_b N_{2\perp}$ of a para-Kaehler manifold \tilde{N}, we obtain
\[
\begin{align*}
g(\alpha(Y_1, Y_2), PY_3) &= 0 \\
(\alpha_1 \ln h) g(\sigma(Y_3, Y_4) = g(\sigma(Y_3, Y_4), \beta Y_1) \\
\end{align*}
\]
for spacelike(timelike) vector fields $Y_1, Y_2 \in \Gamma(N_{1p})$ and $Y_3, Y_4 \in \Gamma(N_{2\perp})$.

Proof. From (1) and (2) we obtain $g(\sigma(Y_1, Y_2), PY_3) = -g(\tilde{\nabla}_Y Y_2, Y_3)$. From here, $g(\sigma(Y_1, Y_2), Y_3) = g(\tilde{\nabla}_Y Y_2, Y_3) = 0$. Using (6), we have $g(\sigma(Y_1, Y_2), Y_3) = g(\tilde{\nabla}_Y Y_2, Y_3) + g(\sigma(Y_1, Y_3), \beta Y_2)$. Thus from Lemma 4.1 we get (32).

In a similar way, we have (33). □

Note that the Lemma 4.8 holds for proper pointwise slant submanifold N_{1p} of type 2.

5. An optimal inequality

We establish general sharp geometric inequality for proper pointwise hemi-slant warped product submanifolds of the form $N_{1p} \times_b N_{2\perp}$ of a para-Kaehler manifold (\tilde{N}, P, g).

Let $x \in N$ and $\{E_1, ..., E_m, \tilde{E}_1, ..., \tilde{E}_n, PE_1, ..., PE_m, \tilde{E}_1, ..., \tilde{E}_n\}$ be an orthonormal basis of the tangent space $T_x N$ such that $\{E_1, ..., E_m, \tilde{E}_1, ..., \tilde{E}_n\}$ are tangent to N at x and $\{PE_1, ..., PE_m, \tilde{E}_1, ..., \tilde{E}_n\}$ are normal to \tilde{N}, and thus $T_x \tilde{N} = T_x N \oplus T_x^\perp N$. Now, we can take $\{E_1, ..., E_m, \tilde{E}_1, ..., \tilde{E}_n\}$ in such a way that $\{E_1, ..., E_m\}$ form an orthonormal basis of \mathcal{D}_\perp and $\{\tilde{E}_1, ..., \tilde{E}_n\}$ form an orthonormal basis of \mathcal{D}_\parallel, where $\dim \mathcal{D}_\perp = m$ and $\dim \mathcal{D}_\parallel = n$. We can take $\{PE_1, ..., PE_m, \tilde{E}_1, ..., \tilde{E}_n\}$ in such a way that $\{PE_1, ..., PE_m\}$ form an orthonormal frame of $P(\mathcal{D}_\perp)$ and $\{\tilde{E}_1, ..., \tilde{E}_n\}$ form an orthonormal frame of $\beta(\mathcal{D}_\parallel)$. Since the metric on N_{1p} of a warped product $N_{1p} \times_b N_{2\perp}$ is neutral, it is even-dimensional([9]). Thus $n = 2p$. Then, we can choose a orthonormal frames $\{\tilde{E}_1, ..., \tilde{E}_{2p}\}$ of \mathcal{D}_\parallel and $\{E_1, ..., E_{2p}\}$ of $\beta(\mathcal{D}_\parallel)$ in such a way that
\[
\begin{align*}
\tilde{E}_1 &= \sech \varphi \tilde{E}_1, ..., \tilde{E}_{2p} = \sech \varphi \tilde{E}_{2p-1}, \text{ (type1)} \\
\tilde{E}_1 &= \csch \varphi \tilde{E}_1, ..., \tilde{E}_{2p} = \csch \varphi \tilde{E}_{2p}, \text{ (type1)}
\end{align*}
\]
where φ is the slant function. We note that such an orthonormal frame is called an adapted frame ([2]).

Let us consider
\begin{itemize}
 \item on \mathcal{D}_\perp : an orthonormal basis $\{E_i\}_{i=1, ..., m}$ where $m = \text{boy} \mathcal{D}_\perp$; moreover, one can suppose that $e_i = g(E_i, E_i) = 1$.
 \item on $P(\mathcal{D}_\perp)$: an orthonormal basis $\{PE_i\}_{i=1, ..., m}$ where $m = \text{boy} P(\mathcal{D}_\perp)$ and $e_i' = g(P E_i, E_i) = -1$.
 \item on \mathcal{D}_\parallel : an orthonormal basis $\{\tilde{E}_i\}_{i=1, ..., n}$ where $n = \text{boy} \mathcal{D}_\parallel$ and $\tilde{e}_i = g(\tilde{E}_i, \tilde{E}_i) = \mp 1$.
 \item on $\beta(\mathcal{D}_\parallel)$: an orthonormal basis $\{\tilde{E}_i\}_{i=1, ..., n}$, where $n = \text{boy} \beta(\mathcal{D}_\parallel)$ and $\tilde{e}_i = g(\tilde{E}_i, \tilde{E}_i) = \mp 1$.
\end{itemize}

Theorem 5.1. Let $N = N_{1p} \times_b N_{2\perp}$ be a mixed geodesic warped product submanifold of a para-Kaehler manifold \tilde{N} such that N_{1p} is a n–dimensional neutral proper pointwise slant submanifold and $N_{2\perp}$ is a m–dimensional totally real submanifold of N. Suppose that $N_{2\perp}$ is spacelike. Then, the squared norm of the second fundamental form $\|\sigma\|^2$ of N satisfies
\[
\|\sigma\|^2 \leq m \coth^2 \varphi \|\nabla \ln h\|^2,
\]
where $\nabla \ln h$ is the gradient of $\ln h$.

Proof. Since $\|\sigma\|^2 = \|\sigma(\mathcal{D}_\parallel, \mathcal{D}_\parallel)\|^2 + 2\|\sigma(\mathcal{D}_\parallel, \mathcal{D}_\perp)\|^2 + \|\sigma(\mathcal{D}_\perp, \mathcal{D}_\perp)\|^2$, if N is mixed geodesic we obtain
\[
\|\sigma\|^2 = \|\sigma(\mathcal{D}_\parallel, \mathcal{D}_\parallel)\|^2 + \|\sigma(\mathcal{D}_\perp, \mathcal{D}_\perp)\|^2.
\]
The first factor of the right hand side of (35) can be written as
\[||\sigma(D_{\psi}, D_{\phi})||^2 = \sum_{r=1}^{2^{p+m}} \sum_{c,d=1}^{2^p} g(\sigma(\mathcal{E}_r, \mathcal{E}_d), E_r)^2. \]

Using the adapted frame, we have
\[||\sigma(D_{\psi}, D_{\phi})||^2 = \sum_{i=1}^{m} \sum_{c,d=1}^{2^p} g(\sigma(\mathcal{E}_c, \mathcal{E}_d), PE_i)^2 + \sum_{s=1}^{2^p} \sum_{c,d=1}^{2^p} g(\sigma(\mathcal{E}_c, \mathcal{E}_d), csch\phi\beta\mathcal{E}_s)^2. \] (36)

From (32), we get
\[||\sigma(D_{\psi}, D_{\phi})||^2 = \sum_{s=1}^{2^p} \sum_{c,d=1}^{2^p} g(\sigma(\mathcal{E}_c, \mathcal{E}_d), csch\phi\beta\mathcal{E}_s)^2. \] (37)

On the other hand we can write the second factor of the right side of (35) as
\[||\sigma(D_{\perp}, D_{\perp})||^2 = \sum_{i,j=1}^{m} g(\sigma(E_i, E_j), E_i)^2. \]

Using the adapted frame we arrive at
\[||\sigma(D_{\perp}, D_{\perp})||^2 = \sum_{k=1}^{m} \sum_{i,j=1}^{m} g(\sigma(E_i, E_j), PE_k)^2 + \sum_{c=1}^{2^p} \sum_{i,j=1}^{m} g(\sigma(E_i, E_j), csch\phi\beta\mathcal{E}_c)^2. \] (38)

From (33), we get
\[||\sigma(D_{\perp}, D_{\perp})||^2 = \sum_{k=1}^{m} \sum_{i,j=1}^{m} g(\sigma(E_i, E_j), PE_k)^2 + m \sum_{c=1}^{2^p} csch^2\varphi(a\mathcal{E}_c \ln h)^2. \] (39)

Further we can write (39) as
\[||\sigma(D_{\perp}, D_{\perp})||^2 = \sum_{k=1}^{m} \sum_{i,j=1}^{m} g(\sigma(E_i, E_j), PE_k)^2 + m(csch^2\varphi(a\mathcal{E}_1 \ln h)^2
\hspace{1cm} + csch^2\varphi(a\mathcal{E}_2 \ln h)^2 + \ldots + csch^2\varphi(a\mathcal{E}_{2^p} \ln h)^2). \] (40)

From (40) and using the adapted frame, we have
\[||\sigma(D_{\perp}, D_{\perp})||^2 = \sum_{k=1}^{m} \sum_{i,j=1}^{m} g(\sigma(E_i, E_j), PE_k)^2 + m(coth^2\varphi(sech\phi\alpha\mathcal{E}_1 \ln h)^2
\hspace{1cm} + csch^2\varphi(sech\phi\alpha\mathcal{E}_1 \ln h)^2 + coth^2\varphi(sech\phi\alpha\mathcal{E}_2 \ln h)^2
\hspace{1cm} + csch^2\varphi(sech\phi\alpha\mathcal{E}_2 \ln h)^2 + \ldots + coth^2\varphi(sech\phi\alpha\mathcal{E}_{2^p-1} \ln h)^2
\hspace{1cm} + csch^2\varphi(sech\phi\alpha\mathcal{E}_{2^p-1} \ln h)^2). \]

Using the Proposition 3.4, we obtain
\[||\sigma(D_{\perp}, D_{\perp})||^2 = \sum_{k=1}^{m} \sum_{i,j=1}^{m} g(\sigma(E_i, E_j), PE_k)^2 + m \sum_{c=1}^{2^p} (coth^2(\mathcal{E}_{2^p-1} \ln h)^2 + \mathcal{E}_{2^p-1} \ln h)^2
\hspace{1cm} \sum_{k=1}^{m} \sum_{i,j=1}^{m} g(\sigma(E_i, E_j), PE_k)^2 + m \coth^2 ||\mathcal{V}(\ln h)||^2. \] (41)
From (35), (37) and (41) we obtain (34). If the equality sign of (34) holds identically, then \(N_{1\varphi} \) is totally geodesic and \(N_{2\perp} \) a totally umbilical submanifold in \(N \).

Remark 5.2. If the manifold \(N_{2\perp} \) of Theorem 5.1 is timelike, then (34) shall be replaced by

\[
\|\sigma\|^2 \geq m \coth^2 \varphi \|\nabla (\ln h)\|^2.
\]

(42)

In a similar way, for proper pointwise slant submanifold \(N_{1\varphi} \) of type 2, we obtain the following result:

Theorem 5.3. Let \(N = N_{1\varphi} \times_h N_{2\perp} \) be a mixed geodesic warped product submanifold of a para-Kaehler manifold \(\tilde{N} \) such that \(N_{1\varphi} \) is an \(n \)-dimensional neutral proper pointwise slant submanifold and \(N_{2\perp} \) is a \(m \)-dimensional totally real submanifold of \(N \). Suppose that \(N_{2\perp} \) is spacelike (respectively, timelike). Then, the squared norm of the second fundamental form \(\|\sigma\|^2 \) of \(N \) satisfies

\[
\|\sigma\|^2 \leq m \cot^2 \varphi \|\nabla (\ln h)\|^2 \quad \text{(respectively, } \|\sigma\|^2 \geq m \cot^2 \varphi \|\nabla (\ln h)\|^2)
\]

(43)

where \(\nabla (\ln h) \) is the gradient of \(\ln h \).

References