Operator Matrices on the Bergman Space

Chinmayee Padhy ${ }^{\text {a }}$, Pabitra Kumar Jena ${ }^{\text {b }}$, S. K. Paikray ${ }^{\text {c }}$
${ }^{a}$ Department of Basic Science and Humanities, Silicon Institute Of Technology, Silicon West, Sason, Sambalpur-768200, Odisha, India.
${ }^{b}$ P. G. Department of Mathematics, Berhampur University, Bhanjabihar, Berhampur, Ganjam- 760007, Odisha, India
${ }^{c}$ Department of Mathematics, Veer Surendra Sai University of Technology, Burla- 768018, Odisha, India

Abstract

In this article, we characterize the sufficient and necessary conditions for positiveness of operator matrices with Toeplitz and little Hankel operators on the Bergman space. Further, we explore some conditions for operator matrices to be normal and unitary.

1. Introduction

Let \mathbb{D} be the open unit disk on the complex plane \mathbb{C}. Let $d A(z)=\frac{1}{\pi} d x d y$ be the normalized area measure. Let $L^{2}(\mathbb{D}, d A)$ be the space of complex valued, square integrable, measuring functions on \mathbb{C} with respect to the area measure. Let $A^{2}(\mathbb{D})$ be the closed subspace of $L^{2}(\mathbb{D}, d A)$ consisting of those functions in $L^{2}(\mathbb{D}, d A)$ that are analytic. The space $A^{2}(\mathbb{D})$ is referred to as the Bergman space of the unit disk \mathbb{D}.

For $z \in \mathbb{D}, K_{z}$ denote the reproducing kernel on $A^{2}(\mathbb{D})$. This function satisfies $f(z)=\left\langle f, K_{z}\right\rangle$ for all $f \in A^{2}(\mathbb{D})$. Let $k_{z}=\frac{K_{z}}{\left\|K_{z}\right\|_{2}}$ be the normalised reproducing kernel on $A^{2}(\mathbb{D})$. For any integer $n \geq 0$, let $e_{n}(z)=\sqrt{n+1} z^{n}$. Then, $\left\{e_{n}\right\}_{n=0}^{\infty}$ forms an orthonormal basis for $A^{2}(\mathbb{D})$. Let $L^{\infty}(\mathbb{D})$ be the Banach space consisting of essentially bounded Lebesgue measurable functions on \mathbb{D} with $\|f\|_{\infty}=\operatorname{ess} \sup \{|f(z)|: z \in \mathbb{D}\}$. The Toeplitz operator T_{ϕ} is defined on $A^{2}(\mathbb{D})$ by

$$
T_{\phi} h=P(\phi h), \quad \phi \in L^{\infty}(\mathbb{D})
$$

Thus we have

$$
\left(T_{\phi} h\right)(w)=\int_{\mathbb{D}} \frac{\phi(z) h(z)}{(1-\bar{z} w)^{2}} d A(z)
$$

for $h \in A^{2}(\mathbb{D})$ and $w \in \mathbb{D}$.
Similarly one can define the little Hankel operator S_{ϕ} is the operator defined on $A^{2}(\mathbb{D})$ by $S_{\phi} f=P J(\phi f)$ where $J: L^{2}(\mathbb{D}, d A) \rightarrow L^{2}(\mathbb{D}, d A)$, is defined as $J f(z)=f(\bar{z})$ and P is the orthogonal projection from $L^{2}(\mathbb{D}, d A)$ onto $A^{2}(\mathbb{D})$.

For $a \in \mathbb{D}$, define $U_{a} f(w)=k_{a}(w) f\left(\phi_{a}(w)\right)$, where f is the measurable function on \mathbb{D}. Let U_{a} be a bounded linear operator on $L^{2}(\mathbb{D}, d A)$ and also in $A^{2}(\mathbb{D})$ for all $a \in \mathbb{D}[2]$. Further, $U_{a}^{2}=I$, the identity operator,

[^0]which is easily verified and $U_{a}^{*}=U_{a}, U_{a}\left(A^{2}(\mathbb{D})\right) \subset A^{2}(\mathbb{D})$ and $U_{a}\left(\left(A^{2}(\mathbb{D})\right)^{\perp}\right) \subset\left(A^{2}(\mathbb{D})\right)^{\perp}$ for all $a \in \mathbb{D}$. Thus $U_{a} P=P U_{a}$ for all $a \in \mathbb{D}$. Similarly for $t \in \mathbb{T}$, where \mathbb{T} is the unit circle, there is another unitary operator R_{t} on $A^{2}(\mathbb{D})$ defined as $R_{t} f(z)=f(t z)$ and $R_{t}^{-1}=R_{t}^{*}=R_{\bar{t}}, f$ be any function on \mathbb{D}. To know details see [5]. We can define $E_{n, \phi}=\left\langle T_{\phi} \sqrt{n+1} z^{n}, \sqrt{n+1} z^{n}\right\rangle$. To know Bergman space in detail see [2].

Let H denote the separable infinite dimensional complex Hilbert space and the algebra of bounded linear operators on H is denoted by $\mathcal{L}(H)$. Let $H_{1}, H_{2}, \ldots H_{n}$ be the complex Hilbert spaces. An operator $A \in \mathcal{L}\left(\bigoplus_{i=1}^{n} H_{i}\right)$ may be expressed as an $n \times n$ operator matrix is of the form $A=\left[A_{i j}\right]$, where $A_{i j}$ is a bounded linear operator from H_{j} into H_{i}. If $(A x, x) \geq 0$ for all $x \in \bigoplus_{i=1}^{n} H_{i}$, then A is called positive and denoted by $A \geq 0$. The Berezin transform of a bounded linear operator S on $A^{2}(\mathbb{D})$ denoted by \widetilde{S} and is defined by

$$
\widetilde{S}(w)=\left\langle S k_{w}, k_{w}\right\rangle, \text { for } w \in \mathbb{D} .
$$

Let $\widetilde{\phi}(w)=\left\langle T_{\phi} k_{w}, k_{w}\right\rangle$ for $w \in \mathbb{D}$. That is, $\widetilde{\phi}=\widetilde{T_{\phi}}$. An operator A in $\mathcal{L}(H)$ has a polar decomposition $A=V|A|$, where V is the partial isometry (with $\operatorname{ker}(V)=\operatorname{ker}(A)$ and $\operatorname{ker}\left(V^{*}\right)=\operatorname{ker}\left(A^{*}\right)$) and $|A|=\left(A^{*} A\right)^{\frac{1}{2}}$. The Aluthge transformation of an operator was first introduced by Aluthge [3] defined as $\Delta(A)=|A|^{\frac{1}{2}} V|A|^{\frac{1}{2}}$. An operator A is said to be normal if $A^{*} A=A A^{*}$ and unitary if $A^{*} A=I=A A^{*}$. For operators A and B we can define $[A, B]=A B-B A$.

The organization of the paper is as follows: In section-2, we survey some well known lemmas and theorems relating to the positive operator matrices as well as positive operators. In section-3, we obtained some sufficient and necessary conditions for operator matrices to be positive and in the last section of the paper, we discussed some sufficient conditions for operator matrices to be normal as well as unitary.

2. Preliminaries

Let \mathcal{M}_{n} be the matrix algebra of all $n \times n$ matrices with entries in the complex field \mathbb{C}. We can write $A \geq 0$ if A is positive, that is $\langle A x, x\rangle \geq 0$ for all $x \in H$. To design our main results, we survey some well known lemmas and theorems relating to the positive operator matrices as well as positive operators which can be found in $[1,4,7,9,11,12]$.

Lemma 2.1. [1], (Corollary I.3.3) Let $R \in \mathcal{M}_{n}$. Then R is positive iff the block matrix $\left(\begin{array}{ll}R & R \\ R & R\end{array}\right)$ is positive.
Theorem 2.2. [1], (Theorem IX.5.9) The block matrix $\left(\begin{array}{cc}P & X \\ X^{*} & Q\end{array}\right)$ is positive iff $X=P^{\frac{1}{2}} K Q^{\frac{1}{2}}$ for some contraction K and $P, Q \in \mathcal{M}_{n}$ are positive.

Let us assume that $A=\left[A_{i j}\right]$ be a operator matrix.
Lemma 2.3. [9] Let A, B are positive and $C=D^{*}, \exists$ a contraction S such that $C=A^{\frac{1}{2}} S B^{\frac{1}{2}}$ iff the operator matrix $T=\left(\begin{array}{cc}A & C \\ D & B\end{array}\right) \geq 0$.

Another interesting result was given by Choi.
Lemma 2.4. [4] For operators P, Q and $R \in \mathcal{L}(H)$ with R being positive and invertible. The block matrix $\left(\begin{array}{cc}R & Q \\ Q^{*} & P\end{array}\right) \geq$ 0 if and only if $R \geq Q^{*} P^{-1} Q$.

Let H_{1} and H_{2} are Hilbert C^{*} modules. Suppose $\mathcal{L}\left(H_{1}, H_{2}\right)$ is the set of all bounded linear operators $T: H_{1} \rightarrow H_{2}$, which are adjointable. Fang derived one interesting result to show the positivity of an operator matrix on Hilbert A-module.

Proposition 2.5. [7] Let H_{1} and H_{2} are Hilbert A-modules. Let $A \in \mathcal{L}\left(H_{1}\right), C \in \mathcal{L}\left(H_{2}, H_{1}\right)$ and $B \in \mathcal{L}\left(H_{2}\right)$. Then $\left(\begin{array}{cc}A & C \\ C^{*} & B\end{array}\right) \geq 0$ iff $A \geq 0, B \geq 0$ and $|\Phi(\langle C y, x\rangle)|^{2} \leq \phi(\langle A x, x\rangle) \phi(\langle B y, y\rangle)$ for all $x \in \mathcal{L}\left(H_{1}\right), y \in \mathcal{L}\left(H_{2}\right)$ and $\phi \in S(A)$, where $S(A)$ is the state space of A.

Let A and B be two positive operators. Then, $A \sharp B$ is defined as

$$
A \sharp B=\max \left\{C \geq 0 \left\lvert\,\left(\begin{array}{ll}
A & C \\
C & B
\end{array}\right) \geq 0\right.\right\} .
$$

If the linear map $\phi^{n}: M_{n}(A) \rightarrow M_{n}(B)$ defined by $\phi^{n}\left(\left[a_{i, j}\right]\right)=\left[\phi\left(a_{i, j}\right)\right]$, where A and B are in C^{*} algebra, then ϕ is called completely positive. In 2017, Najafi [11] discussed on the positivity of block operator matrices.

Theorem 2.6. [11] Let $R \geq 0, S \geq 0$ and $T \geq 0$ such that $T \leq R \sharp S$. Then, \exists a unique map $\phi: \mathcal{L}(H) \rightarrow \mathcal{L}(H)$ such that $\left(\begin{array}{cc}\phi(R) & T \\ T & \phi(S)\end{array}\right) \geq 0$ and ϕ is completely positive. Furthermore, ϕ is trace preserving if dimension of H is finite. If A and B are two bounded linear operators on the Hilbert sapce satisfying $A B \geq 0, A^{2} B \geq 0$ and $A B^{2} \geq 0$ then we have the following results about the positivity of A and B.

Lemma 2.7. [12] If $\overline{\operatorname{Ran}(B)}=H$, then $A \geq 0$. Similarly, if $\overline{\operatorname{Ran}\left(A^{*}\right)}=H$, then $B \geq 0$.
Proposition 2.8. [12] If the operator $A B$ has its bounded inverse, then A, B are positive.
Theorem 2.9. [12] If A, B are semi-Fredholm operators and $\operatorname{ker}(A B)=0$, then A, B are positive.

3. Positive operator matrices

In this section, we obtained the necessary and sufficient conditions for operator matrices to be positive. Here, we used $S_{\psi^{+}}=S_{\psi}^{*}$ and $\psi^{+}(z)=\overline{\psi(\bar{z})}$, where S_{ψ} is a littile Hankel operator and for a Toeplitz operator $T_{\phi}, T_{\phi}^{*}=T_{\bar{\phi}}$.

Theorem 3.1. Let $\phi, \xi \in L^{\infty}(\mathbb{D})$ with $T_{\phi} \geq S_{\xi}^{*} S_{\xi}$. Assume that $p=\inf _{z \in \mathbb{D}}|\widetilde{\phi(z)}|>0$ and \exists a sequence $\eta=\left\{\xi_{n}\right\}_{n=0}^{\infty} \subset \mathbb{D}$ such that

$$
\lambda_{\phi}^{\eta}=\left(\sum_{n=0}^{\infty}\left(1-2 \operatorname{Re}\left(\widetilde{\phi\left(\overline{\xi_{n}}\right)} E_{n, \phi}\right)\right)+\left|\widetilde{\phi\left(\xi_{n}\right)}\right|^{2}\right)^{\frac{1}{2}}<\infty .
$$

If $p>\lambda_{\phi^{\prime}}^{n}$, then

$$
\left(\begin{array}{cc}
T_{\phi}-S_{\xi} S_{\xi}^{*} & \left(T_{\phi}-S_{\xi} S_{\xi}^{*}\right) S_{\xi} \\
S_{\xi}^{*}\left(T_{\phi}-S_{\xi} S_{\xi}^{*}\right) & T_{\phi}-S_{\xi}^{*} S_{\xi}+S_{\xi}^{*}\left(T_{\phi}-S_{\xi} S_{\xi}^{*}\right) S_{\xi}
\end{array}\right) \geq 0
$$

Proof. By [8], the Toeplitz operator T_{ϕ} is invertible. Let $W=S_{\xi} T_{\phi}^{-\frac{1}{2}}=T_{\phi}^{-\frac{1}{2}} S_{\xi}$. Then,

$$
\begin{aligned}
T_{\phi} \geq S_{\xi}^{*} S_{\xi} & \Rightarrow I \geq T_{\phi}^{-\frac{1}{2}} S_{\xi}^{*} S_{\xi} T_{\phi}^{-\frac{1}{2}}=W^{*} W \\
& \Rightarrow W \text { is contraction } \\
& \Rightarrow I \geq W W^{*}=T_{\phi}^{-\frac{1}{2}} S_{\xi} S_{\xi}^{*} T_{\phi}^{-\frac{1}{2}} \\
& \Rightarrow T_{\phi} \geq S_{\xi} S_{\xi}^{*} .
\end{aligned}
$$

Since $\left(\begin{array}{cc}T_{\phi}-S_{\xi} S_{\xi}^{*} & 0 \\ 0 & T_{\phi}-S_{\xi}^{*} S_{\xi}\end{array}\right)=$

$$
\left(\begin{array}{cc}
1 & 0 \\
-S_{\xi}^{*} & 1
\end{array}\right)\left(\begin{array}{cc}
T_{\phi}-S_{\xi} S_{\xi}^{*} & \left(T_{\phi}-S_{\xi} S_{\xi}^{*}\right) S_{\xi} \\
S_{\xi}^{*}\left(T_{\phi}-S_{\xi} S_{\xi}^{*}\right) & T_{\phi}-S_{\xi}^{*} S_{\xi}+S_{\xi}^{*}\left(T_{\phi}-S_{\xi} S_{\xi}^{*}\right) S_{\xi}
\end{array}\right)\left(\begin{array}{cc}
1 & -S_{\xi}^{*} \\
0 & 1
\end{array}\right)
$$

Then,

$$
\left(\begin{array}{cc}
T_{\phi}-S_{\xi} S_{\xi}^{*} & 0 \\
0 & T_{\phi}-S_{\xi}^{*} S_{\xi}
\end{array}\right) \text { and }\left(\begin{array}{cc}
T_{\phi}-S_{\xi} S_{\xi}^{*} & \left(T_{\phi}-S_{\xi} S_{\xi}^{*}\right) S_{\xi} \\
S_{\xi}^{*}\left(T_{\phi}-S_{\xi} S_{\xi}^{*}\right) & T_{\phi}-S_{\xi}^{*} S_{\xi}+S_{\xi}^{*}\left(T_{\phi}-S_{\xi} S_{\xi}^{*}\right) S_{\xi}
\end{array}\right)
$$

are congruent to each other. Thus,

$$
\left(\begin{array}{cc}
T_{\phi}-S_{\xi} S_{\xi}^{*} & 0 \\
0 & T_{\phi}-S_{\xi}^{*} S_{\xi}
\end{array}\right) \geq 0 \text { iff }\left(\begin{array}{cc}
T_{\phi}-S_{\xi} S_{\xi}^{*} & \left(T_{\phi}-S_{\xi} S_{\xi}^{*}\right) S_{\xi} \\
S_{\xi}^{*}\left(T_{\phi}-S_{\xi} S_{\xi}^{*}\right) & T_{\phi}-S_{\xi}^{*} S_{\xi}+S_{\xi}^{*}\left(T_{\phi}-S_{\xi} S_{\xi}^{*}\right) S_{\xi}
\end{array}\right) \geq 0
$$

Therefore, $T_{\phi} \geq S_{\xi} S_{\xi}^{*}$ and $T_{\phi} \geq S_{\xi}^{*} S_{\xi}$ combiningly implies,

$$
\left(\begin{array}{cc}
T_{\phi}-S_{\xi} S_{\xi}^{*} & 0 \\
0 & T_{\phi}-S_{\xi}^{*} S_{\xi}
\end{array}\right) \geq 0
$$

Hence the result follows.
Corollary 3.2. Let $\phi, \xi \in L^{\infty}(\mathbb{D})$. Then, $T_{\phi} \geq S_{\xi}^{*} S_{\xi}, T_{\phi}-S_{\xi} S_{\xi}^{*}=I$ and $p>\lambda_{\phi^{\prime}}^{n}$, defined as in theorem 3.1 implies $\left(\begin{array}{cc}I & S_{\xi} \\ S_{\xi}^{\star} & T_{\phi}\end{array}\right) \geq 0$

Proof. Since $\left(\begin{array}{cc}I & 0 \\ 0 & T_{\phi}-S_{\xi}^{\star} S_{\xi}\end{array}\right)=\left(\begin{array}{cc}1 & 0 \\ -S_{\xi}^{\star} & 1\end{array}\right)\left(\begin{array}{cc}1 & S_{\xi} \\ S_{\xi}^{\star} & T_{\phi}\end{array}\right)\left(\begin{array}{cc}1 & -S_{\xi} \\ 0 & 1\end{array}\right)$. It follows that $\left(\begin{array}{cc}I & S_{\xi} \\ S_{\xi}^{\star} & T_{\phi}\end{array}\right) \geq 0$ if and only if $T_{\phi} \geq S_{\xi}^{\star} S_{\xi}$

Theorem 3.3. Let $\phi, \xi \in L^{\infty}(\mathbb{D})$. Then,

$$
\left(\begin{array}{cc}
T_{\bar{\phi}}\left(T_{\phi}-S_{\xi} S_{\xi}^{*}\right) T_{\phi} & T_{\bar{\phi}}\left(T_{\phi}-S_{\xi} S_{\xi}^{*}\right) U_{a} \\
U_{a}^{*}\left(T_{\phi}-S_{\xi} S_{\xi}^{*}\right) T_{\phi} & U_{a}^{*}\left(T_{\phi}-S_{\xi} S_{\xi}^{*}\right) U_{a}+T_{\phi} T_{\bar{\phi}}
\end{array}\right) \geq 0 \text { iff } T_{\phi} \geq S_{\xi} S_{\xi}^{*}
$$

Proof. Since $\left(\begin{array}{cc}T_{\bar{\phi}}\left(T_{\phi}-S_{\xi} S_{\xi}^{*}\right) T_{\phi} & T_{\bar{\phi}}\left(T_{\phi}-S_{\xi} S_{\xi}^{*}\right) U_{a} \\ U_{a}^{*}\left(T_{\phi}-S_{\xi} S_{\xi}^{*}\right) T_{\phi} & U_{a}^{*}\left(T_{\phi}-S_{\xi} S_{\xi}^{*}\right) U_{a}+T_{\phi} T_{\bar{\phi}}\end{array}\right)=$

$$
\left(\begin{array}{cc}
T_{\bar{\phi}} & 0 \\
U_{a}^{*} & -T_{\phi}
\end{array}\right)\left(\begin{array}{cc}
T_{\phi}-S_{\xi} S_{\xi}^{*} & 0 \\
0 & I
\end{array}\right)\left(\begin{array}{cc}
T_{\phi} & U_{a} \\
0 & -T_{\bar{\phi}}
\end{array}\right)
$$

then, $T_{\phi} \geq S_{\xi} S_{\xi}^{*} \Leftrightarrow\left(\begin{array}{cc}T_{\phi}-S_{\xi} S_{\xi}^{*} & 0 \\ 0 & I\end{array}\right) \geq 0$. Hence proved.
Theorem 3.4. Let $\phi, \psi \in L^{\infty}(\mathbb{D})$. Then, $\left(\begin{array}{cc}T_{|\phi|} & S_{\psi^{+}} \\ S_{\psi} & T_{|\psi|}\end{array}\right) \geq 0$ for $\psi^{+}(z)=\overline{\psi(\bar{z})}$ if and only if $\left|\left\langle S_{\psi} K_{x}, K_{y}\right\rangle\right|^{2} \leq$ $\left\langle T_{|\phi|} K_{x}, K_{x}\right\rangle\left\langle T_{|\psi|} K_{y}, K_{y}\right\rangle$ for all $x, y \in \mathbb{D}$.

Proof. Suppose $\left(\begin{array}{cc}T_{|\phi|} & S_{\psi^{+}} \\ S_{\psi} & T_{|\psi|}\end{array}\right) \geq 0$. Since for any positive operator $A \in \mathcal{L}\left(A^{2}(\mathbb{D})\right)$, it follows from [10] that $\left|\left\langle A K_{x}, K_{y}\right\rangle\right|^{2} \leq\left\langle A K_{x}, K_{x}\right\rangle\left\langle A K_{y}, K_{y}\right\rangle$ for all $x, y \in \mathbb{D}$. Then we obtain,
$\left|\left\langle\left(\begin{array}{cc}T_{|\phi|} & S_{\psi^{+}} \\ S_{\psi} & T_{|\psi|}\end{array}\right)\binom{K_{x}}{0},\binom{0}{K_{y}}\right\rangle\right|^{2}$
$\leq\left\langle\left(\begin{array}{cc}T_{|\phi|} & S_{\psi^{+}} \\ S_{\psi} & T_{|\psi|}\end{array}\right)\binom{K_{x}}{0},\binom{K_{x}}{0}\right\rangle\left\langle\left(\begin{array}{cc}T_{|\phi|} & S_{\psi^{+}} \\ S_{\psi} & T_{|\psi|}\end{array}\right)\binom{0}{K_{y}},\binom{0}{K_{y}}\right\rangle$ for all $x, y \in \mathbb{D}$. Hence,

$$
\left.\left|\left\langle\binom{ T_{|\phi|} K_{x}}{S_{\psi} K_{x}},\binom{0}{K_{y}}\right\rangle\right|^{2} \leq\left\langle\binom{ T_{|\phi|} K_{x}}{S_{\psi} K_{x}},\binom{K_{x}}{0}\right\rangle\left\langle\binom{ S_{\psi^{+}} K_{y}}{T_{|\psi|} K_{y}},\binom{0}{K_{y}}\right)\right\rangle .
$$

Therefore,
$\left|\int_{\mathbb{D}}\binom{T_{\phi} K_{x}}{S_{\psi} K_{x}}\left(\frac{0}{K_{y}}\right) d A(z)\right|^{2}$
$\leq\left(\int_{\mathbb{D}}\binom{T_{|\phi|} K_{x}}{S_{\psi} K_{x}}\binom{\overline{K_{x}}}{0} d A(z)\right)\left(\int_{\mathbb{D}}\binom{S_{\psi^{+}} K_{y}}{T_{|\psi|} K_{y}}\left(\frac{0}{\overline{K_{y}}}\right) d A(z)\right)$.
That is,

$$
\left|\int_{\mathbb{D}}\binom{0}{S_{\psi} K_{x} \overline{K_{y}}} d A(z)\right|^{2} \leq\left(\int_{\mathbb{D}} T_{|\phi|} K_{x} \overline{K_{x}} d A(z)\right)\left(\int_{\mathbb{D}} T_{|\psi|} K_{y} \overline{K_{y}} d A(z)\right)
$$

Thus,

$$
\left|\left\langle S_{\psi} K_{x}, K_{y}\right\rangle\right|^{2} \leq\left\langle T_{|\phi|} K_{x}, K_{x}\right\rangle\left\langle T_{|\psi|} K_{y}, K_{y}\right\rangle
$$

for all $x, y \in \mathbb{D}$.
Conversely, assume that
$\left|\left\langle S_{\psi} K_{x}, K_{y}\right\rangle\right|^{2} \leq\left\langle T_{|\phi|} K_{x}, K_{x}\right\rangle\left\langle T_{|\psi|} K_{y}, K_{y}\right\rangle$ for all $x, y \in \mathbb{D}$. Then,

$$
\begin{aligned}
\left\langle\left(\begin{array}{cc}
T_{|\phi|} & S_{\psi^{+}} \\
S_{\psi} & T_{|\psi|}
\end{array}\right)\binom{K_{x}}{K_{y}},\binom{K_{x}}{K_{y}}\right\rangle & =\left\langle T_{|\phi|} K_{x}, K_{x}\right\rangle+\left\langle S_{\psi^{+}} K_{y}, K_{x}\right\rangle+\left\langle S_{\psi} K_{x}, K_{y}\right\rangle+\left\langle T_{|\psi|} K_{y}, K_{y}\right\rangle \\
& =\left\langle T_{|\phi|} K_{x}, K_{x}\right\rangle+2 \operatorname{Re}\left\langle S_{\psi} K_{x}, K_{y}\right\rangle+\left\langle T_{|\psi|} K_{y}, K_{y}\right\rangle \\
& \geq 2\left\langle T_{|\phi|} K_{x}, K_{x}\right\rangle^{\frac{1}{2}}\left\langle T_{|\psi|} K_{y}, K_{y}\right\rangle^{\frac{1}{2}}+2 \operatorname{Re}\left\langle S_{\psi} K_{x}, K_{y}\right\rangle \\
& \geq 2\left|\left\langle S_{\psi} K_{x}, K_{y}\right\rangle\right|+2 \operatorname{Re}\left\langle S_{\psi} K_{x}, K_{y}\right\rangle \\
& \geq 2\left|\left\langle S_{\psi} K_{x}, K_{y}\right\rangle\right|-2\left|\left\langle S_{\psi} K_{x}, K_{y}\right\rangle\right|=0 .
\end{aligned}
$$

Hence, $\left(\begin{array}{cc}T_{|\phi|} & S_{\psi^{+}} \\ S_{\psi} & T_{|\psi|}\end{array}\right) \geq 0$.
Theorem 3.5. Let $\phi, \psi \in L^{\infty}(\mathbb{D})$ where $\phi, \psi \geq 0$. Assume that T_{ϕ} and T_{ψ} are invertible and $\widetilde{T_{\psi o \psi_{a}}(z)}=\widetilde{T_{\phi}}(z), \forall z \in$ \mathbb{D}. If there exist an operator M with $\|M\| \leq 1$ such that $T_{\psi}^{\frac{1}{2}} M T_{\phi}^{\frac{1}{2}}=U_{a}, a \in \mathbb{D}$ and h, j are two non negative functions defined by $h(x)=x^{t}$ and $j(x)=x^{1-t}, 0<t \leq \frac{1}{2}$ and $0 \leq x<\infty$. Then, $\left(\begin{array}{cc}h\left(T_{\psi}\right)^{2} & U_{a} \\ U_{a} & j\left(T_{\phi}\right)^{2}\end{array}\right) \geq 0$.

Proof. Since $\phi, \psi \geq 0$, and T_{ϕ}, T_{ψ} are invertible and $\widetilde{T_{\psi o \psi_{a}}}(z)=\widetilde{T_{\phi}}(z), \forall z \in \mathbb{D}$, then $\left\langle T_{\psi o \psi_{a}} k_{z}, k_{z}\right\rangle=\left\langle T_{\phi} k_{z}, k_{z}\right\rangle$. Thus, $\left\langle U_{a} T_{\psi} U_{a} k_{z}, k_{z}\right\rangle=\left\langle T_{\phi} k_{z}, k_{z}\right\rangle, \forall z \in \mathbb{D}$. Therefore, $T_{\psi} U_{a}=U_{a} T_{\phi}\left(\because U_{a}\right.$ is self adjoint) that implies $h\left(T_{\psi}\right) U_{a}=U_{a} h\left(T_{\phi}\right)$, since h is a continuous function on $[0, \infty)$. As $h\left(T_{\phi}\right)=T_{\phi}^{t}$ and $j\left(T_{\phi}\right)=T_{\phi}^{1-t}$, therefore $h\left(T_{\phi}\right) j\left(T_{\phi}\right)=T_{\phi}$. Now

$$
\begin{aligned}
h\left(T_{\psi}\right) U_{a}=U_{a} h\left(T_{\phi}\right) & \Rightarrow h\left(T_{\psi}\right) U_{a} j\left(T_{\phi}\right)=U_{a} h\left(T_{\phi}\right) j\left(T_{\phi}\right) \\
& \Rightarrow h\left(T_{\psi}\right) U_{a} j\left(T_{\phi}\right)=U_{a} T_{\phi} \\
& \Rightarrow h\left(T_{\psi}\right) U_{a} j\left(T_{\phi}\right)=U_{a} T_{\phi}^{\frac{1}{2}} T_{\phi}^{\frac{1}{2}} \\
& \Rightarrow T_{\psi}^{\frac{-1}{2}} h\left(T_{\psi}\right) U_{a} j\left(T_{\phi}\right) T_{\phi}^{\frac{-1}{2}}=T_{\psi}^{\frac{-1}{2}} U_{a} T_{\phi}^{\frac{1}{2}} \quad\left(\because T_{\psi} \text { and } T_{\phi} \text { are invertible }\right) \\
& \Rightarrow h\left(T_{\psi}\right) T_{\psi}^{\frac{-1}{2}} U_{a} j\left(T_{\phi}\right) T_{\phi}^{\frac{-1}{2}}=U_{a} \quad\left(\because U_{a} T_{\psi}^{\frac{1}{2}}=T_{\phi}^{\frac{1}{2}} U_{a}\right) .
\end{aligned}
$$

Then,

$$
\left(\begin{array}{cc}
h\left(T_{\psi}\right)^{2} & U_{a} \\
U_{a} & j\left(T_{\phi}\right)^{2}
\end{array}\right)=\left(\begin{array}{cc}
h\left(T_{\psi}\right) T_{\psi}^{\frac{-1}{2}} & 0 \\
0 & j\left(T_{\phi}\right) T_{\phi}^{\frac{-1}{2}}
\end{array}\right)\left(\begin{array}{cc}
T_{\psi} & U_{a} \\
U_{a} & T_{\phi}
\end{array}\right)\left(\begin{array}{cc}
h\left(T_{\psi}\right) T_{\psi}^{\frac{-1}{2}} & 0 \\
0 & j\left(T_{\phi}\right) T_{\phi}^{\frac{-1}{2}}
\end{array}\right)
$$

Since $T_{\psi}^{\frac{1}{2}} M T_{\phi}^{\frac{1}{2}}=U_{a}, a \in \mathbb{D}$ with M as contraction, then by using [9], $\left(\begin{array}{ll}T_{\psi} & U_{a} \\ U_{a} & T_{\phi}\end{array}\right) \geq 0$, which completes the proof of the theorem.

Theorem 3.6. Let $\phi \in L^{\infty}(\mathbb{D}) .\left(\begin{array}{cc}I & T_{\phi} \\ T_{\bar{\phi}} & I\end{array}\right)$ is positive iff T_{ϕ} is contraction.
Proof. Suppose $\left(\begin{array}{cc}I & T_{\phi} \\ T_{\bar{\phi}} & I\end{array}\right) \geq 0$, so

$$
\begin{aligned}
\left\langle\left(\begin{array}{cc}
I & T_{\phi} \\
T_{\bar{\phi}} & I
\end{array}\right)\binom{f}{g},\binom{f}{g}\right\rangle & =\left\langle\binom{ f+T_{\phi} g}{T_{\bar{\phi}} f+g},\binom{f}{g}\right\rangle \\
& =\langle f, f\rangle+\left\langle T_{\phi} g, f\right\rangle+\left\langle T_{\bar{\phi}} f, g\right\rangle+\langle g, g\rangle \\
& =\|f\|^{2}+\|g\|^{2}+2 \operatorname{Re}\left(\left\langle T_{\phi} g, f\right\rangle\right) \\
& \geq 0
\end{aligned}
$$

By letting $f=-T_{\phi} g$, we have $\left\|T_{\phi} g\right\|^{2}+\|g\|^{2}-2 \operatorname{Re}\left(\left\langle T_{\phi} g, T_{\phi} g\right\rangle\right) \geq 0$. We recall that

$$
\operatorname{Re}\left(\left\langle T_{\phi} g, T_{\phi} g\right\rangle\right) \leq\left|\left\langle T_{\phi} g, T_{\phi} g\right\rangle\right|
$$

So $\left\|T_{\phi} g\right\|^{2}+\|g\|^{2}-2\left\|T_{\phi} g\right\|^{2} \geq 0$. That implies $\left\|T_{\phi} g\right\|^{2} \leq\|g\|^{2} \Rightarrow\left\langle T_{\phi} g, T_{\phi} g\right\rangle \leq\langle g, g\rangle$.
Therefore $T_{\phi}^{*} T_{\phi} \leq I$. Conversely, let $T_{\phi}^{*} T_{\phi} \leq I$. Since

$$
\left(\begin{array}{cc}
I & 0 \\
0 & I-T_{\bar{\phi}} T_{\phi}
\end{array}\right)=\left(\begin{array}{cc}
I & 0 \\
T_{\bar{\phi}} & I
\end{array}\right)\left(\begin{array}{cc}
I & T_{\phi} \\
T_{\bar{\phi}} & I
\end{array}\right)\left(\begin{array}{cc}
I & -T_{\phi} \\
0 & I
\end{array}\right) .
$$

Then $\left(\begin{array}{cc}I & T_{\phi} \\ T_{\bar{\phi}} & I\end{array}\right) \geq 0$. Hence proved.
Theorem 3.7. Let $\phi \in L^{\infty}(\mathbb{D})$. Then, $\left(\begin{array}{cc}\left|T_{\phi}\right| & T_{\bar{\phi}} \\ T_{\phi} & \left|T_{\bar{\phi}}\right|\end{array}\right) \geq 0$.
Proof. Let $Q=\left(\begin{array}{cc}0 & T_{\bar{\phi}} \\ T_{\phi} & 0\end{array}\right)$. Thus Q is self-adjoint. Therefore, $Q^{2}=\left(\begin{array}{cc}T_{\bar{\phi}} T_{\phi} & 0 \\ 0 & T_{\phi} T_{\bar{\phi}}\end{array}\right)$. Since the square root of a positive operator is unique, then $|Q|=\left(\begin{array}{cc}\left|T_{\phi}\right| & 0 \\ 0 & \left|T_{\bar{\phi}}\right|\end{array}\right)$. Again since Q is self-adjoint, therefore by using the spectral theory, $Q+|Q|$ is positive. Hence, $\left(\begin{array}{cc}\left|T_{\phi}\right| & T_{\bar{\phi}} \\ T_{\phi} & \left|T_{\bar{\phi}}\right|\end{array}\right) \geq 0$.

Theorem 3.8. Let $\phi \in L^{\infty}(\mathbb{D})$. Then,

$$
\left(\begin{array}{cc}
\Delta\left(T_{\phi}\right) & \left|T_{\phi}\right|^{\frac{1}{2}}\left|S_{\phi}\right|^{\frac{1}{2}} \\
\left|S_{\phi}\right|^{\frac{1}{2}}\left|T_{\phi}\right|^{\frac{1}{2}} & \Delta\left(S_{\phi}\right)
\end{array}\right) \geq 0 \text { iff }\left|\left\langle k_{z}, k_{w}\right\rangle\right|^{2} \leq\left\langle U k_{z}, k_{z}\right\rangle\left\langle V k_{w}, k_{w}\right\rangle, \forall k_{z}, k_{w} \in A^{2}(\mathbb{D})
$$

and $T_{\phi}=U\left|T_{\phi}\right|, S_{\phi}=V\left|S_{\phi}\right|$ be the polar decompositions of T_{ϕ} and S_{ϕ} respectively.

Proof. Since

$$
\begin{aligned}
\left(\begin{array}{cc}
\Delta\left(T_{\phi}\right) & \left|T_{\phi}\right|^{\frac{1}{2}}\left|S_{\phi}\right|^{\frac{1}{2}} \\
\left|S_{\phi}\right|^{\frac{1}{2}}\left|T_{\phi}\right|^{\frac{1}{2}} & \Delta\left(S_{\phi}\right)
\end{array}\right) & =\left(\begin{array}{cc}
\left|T_{\phi}\right|^{\frac{1}{2}} U\left|T_{\phi}\right|^{\frac{1}{2}} & \left|T_{\phi}\right|^{\frac{1}{2}}\left|S_{\phi}\right|^{\frac{1}{2}} \\
\left|S_{\phi}\right|^{\frac{1}{2}}\left|T_{\phi}\right|^{\frac{1}{2}} & \left|S_{\phi}\right|^{\frac{1}{2}} V\left|S_{\phi}\right|^{\frac{1}{2}}
\end{array}\right) \\
& =\left(\begin{array}{cc}
\left|T_{\phi}\right|^{\frac{1}{2}} & 0 \\
0 & \left|S_{\phi}\right|^{\frac{1}{2}}
\end{array}\right)\left(\begin{array}{cc}
U & I \\
I & V
\end{array}\right)\left(\begin{array}{cc}
\left|T_{\phi}\right|^{\frac{1}{2}} & 0 \\
0 & \left|S_{\phi}\right|^{\frac{1}{2}}
\end{array}\right)
\end{aligned}
$$

Assume that $T=S^{*} W S$, where $T=\left(\begin{array}{cc}\Delta\left(T_{\phi}\right) & \left|T_{\phi}\right|^{\frac{1}{2}}\left|S_{\phi}\right|^{\frac{1}{2}} \\ \left|S_{\phi}\right|^{\frac{1}{2}}\left|T_{\phi}\right|^{\frac{1}{2}} & \Delta\left(S_{\phi}\right)\end{array}\right), S=\left(\begin{array}{cc}\left|T_{\phi}\right|^{\frac{1}{2}} & 0 \\ 0 & \left|S_{\phi}\right|^{\frac{1}{2}}\end{array}\right)=S^{*}$ and $W=\left(\begin{array}{cc}U & I \\ I & V\end{array}\right)$. Since the operator matrices T and W are congruent between each other, so $T \geq 0$ iff $W \geq 0$. Now

$$
\begin{aligned}
\left\langle\left(\begin{array}{cc}
U & I \\
I & V
\end{array}\right)\binom{k_{z}}{k_{w}},\binom{k_{z}}{k_{w}}\right\rangle & =\left\langle\binom{ U k_{z}+k_{w}}{k_{z}+V k_{w}},\binom{k_{z}}{k_{w}}\right\rangle \\
& =\left\langle U k_{z}, k_{z}\right\rangle+\left\langle k_{z}, k_{w}\right\rangle+\left\langle k_{w}, k_{z}\right\rangle+\left\langle V k_{w}, k_{w}\right\rangle \\
& =\left\langle U k_{z}, k_{z}\right\rangle+\left\langle V k_{w}, k_{w}\right\rangle+2 \operatorname{Re}\left\langle k_{z}, k_{w w}\right\rangle \\
& \geq 2 \sqrt{ }\left(\left\langle U k_{z}, k_{z}\right\rangle\left\langle V k_{w}, k_{w}\right\rangle\right)-2 \mid\left\langle k_{z}, k_{w}\right\rangle \\
& \geq 0 .
\end{aligned}
$$

Therefore, $W \geq 0$ if $\left|\left\langle k_{z}, k_{w}\right\rangle\right|^{2} \leq\left\langle U k_{z}, k_{z}\right\rangle\left\langle V k_{w}, k_{w}\right\rangle$.
Conversely, suppose $W \geq 0$. Then $\left|\left\langle W k_{z}, k_{w}\right\rangle\right|^{2} \leq\left\langle W k_{z}, k_{z}\right\rangle\left\langle W k_{w}, k_{w}\right\rangle \quad \forall k_{z}, k_{w} \in A^{2}(\mathbb{D})$. That is

$$
\left|\left\langle\left(\begin{array}{cc}
U & I \\
I & V
\end{array}\right)\binom{k_{z}}{0},\binom{0}{k_{w}}\right\rangle\right|^{2} \leq\left\langle\left(\begin{array}{cc}
U & I \\
I & V
\end{array}\right)\binom{k_{z}}{0},\binom{k_{z}}{0}\right\rangle\left\langle\left(\begin{array}{cc}
U & I \\
I & V
\end{array}\right)\binom{0}{k_{w}},\binom{0}{k_{w}}\right\rangle
$$

Therefore, $W \geq 0$ that implies $\left|\left\langle k_{z}, k_{w}\right\rangle\right|^{2} \leq\left\langle U k_{z}, k_{z}\right\rangle\left\langle V k_{w}, k_{w}\right\rangle$. Hence equivalently, $T \geq 0$ iff $\left|\left\langle k_{z}, k_{w}\right\rangle\right|^{2} \leq$ $\left\langle U k_{z}, k_{z}\right\rangle\left\langle V k_{w}, k_{w}\right\rangle$. This completes the proof.

Corollary 3.9. Let $\phi, \psi \in L^{\infty}(\mathbb{D})$. Then,

$$
\left(\begin{array}{cc}
\Delta\left(T_{\phi}\right) & \left|T_{\phi}\right|^{\frac{1}{2}} U\left|S_{\psi}\right|^{\frac{1}{2}} \\
\left|S_{\psi}\right|^{\frac{1}{2}} U\left|T_{\phi}\right|^{\frac{1}{2}} & \Delta\left(S_{\psi}\right)+\Delta\left(T_{\phi}\right)
\end{array}\right) \geq 0 \text { iff }\langle U f, f\rangle\langle V g, g\rangle \geq 0 \quad \forall f, g \in A^{2}(\mathbb{D})
$$

with $T_{\phi}=U\left|T_{\phi}\right|$ and $S_{\psi}=V\left|S_{\psi}\right|$ be the polar decompositions of T_{ϕ} and S_{ψ} respectively.
Proof. Since, $\left(\begin{array}{cc}\Delta\left(T_{\phi}\right) & \left.\left|T_{\phi}{ }^{\frac{1}{2}} U\right| S_{\psi}\right|^{\frac{1}{2}} \\ \left|S_{\psi}\right|^{\frac{1}{2}} U\left|T_{\phi}\right|^{\frac{1}{2}} & \Delta\left(S_{\psi}\right)+\Delta\left(T_{\phi}\right)\end{array}\right)=$

$$
\left(\begin{array}{cc}
\left|T_{\phi}\right|^{\frac{1}{2}} & 0 \\
\left|S_{\psi}\right|^{\frac{1}{2}} & -\left|T_{\phi}\right|^{\frac{1}{2}}
\end{array}\right)\left(\begin{array}{cc}
U & 0 \\
0 & V
\end{array}\right)\left(\begin{array}{cc}
\left|T_{\phi}\right|^{\frac{1}{2}} & \left|S_{\psi}\right|^{\frac{1}{2}} \\
0 & -\left|T_{\phi}\right|^{\frac{1}{2}}
\end{array}\right)
$$

then, from Theorem- 3.8,

$$
\left(\begin{array}{cc}
U & 0 \\
0 & V
\end{array}\right) \geq 0 \text { iff }\langle U f, f\rangle\langle V g, g\rangle \geq 0
$$

Hence complete the assertion.
Theorem 3.10. Let $\phi, \psi \in L^{\infty}(\mathbb{D})$. Then, $\left(\begin{array}{cc}\left|S_{\psi}\right| & \Delta\left(T_{\phi}\right) \\ \Delta^{*}\left(T_{\phi}\right) & \left|T_{\phi}\right|\end{array}\right) \geq 0$ iff \exists a contraction M such that $\left|S_{\psi}\right|^{\frac{1}{2}} M=\left|T_{\phi}\right|^{\frac{1}{2}} U$, with $T_{\phi}=U\left|T_{\phi}\right|$ is the polar decomposition of T_{ϕ}, where U is the partial isometry.

Proof. Since $\left(\begin{array}{cc}\left|S_{\psi}\right| & \Delta\left(T_{\phi}\right) \\ \Delta^{*}\left(T_{\phi}\right) & \left|T_{\phi}\right|\end{array}\right)=$

$$
\left(\begin{array}{cc}
\left|S_{\psi}\right|^{\frac{1}{2}} & 0 \\
0 & \left|T_{\phi}\right|^{\frac{1}{2}}
\end{array}\right)\left(\begin{array}{cc}
I & \left|S_{\psi}\right|^{-\frac{1}{2}}\left|T_{\phi}\right|^{\frac{1}{2}} U \\
U^{*}\left|T_{\phi}\right|^{\frac{1}{2}}\left|S_{\psi}\right|^{-\frac{1}{2}} & I
\end{array}\right)\left(\begin{array}{cc}
\left|S_{\psi}\right|^{\frac{1}{2}} & 0 \\
0 & \left|T_{\phi}\right|^{\frac{1}{2}}
\end{array}\right)
$$

Then,

$$
\left(\begin{array}{cc}
\left|S_{\psi}\right| & \Delta\left(T_{\phi}\right) \\
\Delta^{*}\left(T_{\phi}\right) & \left|T_{\phi}\right|
\end{array}\right) \text { and }\left(\begin{array}{cc}
I & \left|S_{\psi}\right|^{-\frac{1}{2}}\left|T_{\phi}\right|^{\frac{1}{2}} U \\
U^{*}\left|T_{\phi}\right|^{\frac{1}{2}}\left|S_{\psi}\right|^{-\frac{1}{2}} & I
\end{array}\right)
$$

are congruent to each other. So by Theorem-3.6,

$$
\left(\begin{array}{cc}
I & M \\
M^{*} & I
\end{array}\right) \geq 0 \text { iff } I \geq M^{*} M
$$

where $M=\left|S_{\psi}\right|^{-\frac{1}{2}}\left|T_{\phi}\right|^{\frac{1}{2}} U$.
Theorem 3.11. Let $\phi \in L^{\infty}(\mathbb{D})$. Assume that $T_{\phi} T_{\bar{\phi}} \geq 0$ and $T_{\phi}^{2} T_{\phi}^{2} \geq 0$. Then

$$
W=\left(\begin{array}{cc}
T_{\bar{\phi}} T_{\phi}-T_{\phi} T_{\bar{\phi}} & T_{\bar{\phi}}^{2} T_{\phi}-T_{\phi} T_{\bar{\phi}}^{2} \\
T_{\bar{\phi}} T_{\phi}^{2}-T_{\phi}^{2} T_{\bar{\phi}} & T_{\bar{\phi}}^{2} T_{\phi}^{2}-T_{\phi}^{2} T_{\bar{\phi}}^{2}
\end{array}\right) \geq 0
$$

if \exists a contraction M such that

$$
T_{\phi} T_{\phi}^{2}=\left|T_{\bar{\phi}}\right| M\left|T_{\bar{\phi}}^{2}\right|
$$

Proof. Suppose $W \geq 0$. Then,

$$
\left(\begin{array}{cc}
T_{\bar{\phi}} T_{\phi} & T_{\bar{\phi}}^{2} T_{\phi} \\
T_{\bar{\phi}} T_{\phi}^{2} & T_{\bar{\phi}}^{2} T_{\phi}^{2}
\end{array}\right) \geq\left(\begin{array}{cc}
T_{\phi} T_{\bar{\phi}} & T_{\phi} T_{\phi}^{2} \\
T_{\phi}^{2} T_{\bar{\phi}} & T_{\phi}^{2} T_{\bar{\phi}}^{2}
\end{array}\right)
$$

Then by [9], $\left(\begin{array}{cc}T_{\phi} T_{\bar{\phi}} & T_{\phi} T_{\bar{\phi}}^{2} \\ T_{\phi}^{2} T_{\bar{\phi}} & T_{\phi}^{2} T_{\bar{\phi}}^{2}\end{array}\right) \geq 0$ iff \exists a M such that $\|M\| \leq 1$ and $T_{\phi} T_{\phi}^{2}=\left|T_{\bar{\phi}}\right| M\left|T_{\bar{\phi}}^{2}\right|$. Hence proved.

4. Unitary and normal operator matrices

In this section, we discussed some sufficient conditions for operator matrices to be normal as well as unitary.

Theorem 4.1. Let $\phi \in L^{\infty}(\mathbb{D})$ with $\|\phi\|_{\infty} \leq 1$. Then, $\left(\begin{array}{cc}T_{\phi} & \left(I-T_{\phi} T_{\bar{\phi}}\right)^{\frac{1}{2}} \\ \left(I-T_{\bar{\phi}} T_{\phi}\right)^{\frac{1}{2}} & -T_{\bar{\phi}}\end{array}\right)$ is unitary.
Proof. Since $\|\phi\|_{\infty} \leq 1$, so $\left\|T_{\phi}\right\| \leq\|\phi\|_{\infty} \leq 1$. Then, $I \geq T_{\phi} T_{\phi}$ that implies T_{ϕ} is contraction, which implies $I \geq T_{\phi} T_{\bar{\phi}}$. Consider $S=\left(\begin{array}{cc}T_{\phi} & \left(I-T_{\phi} T_{\bar{\phi}}\right)^{\frac{1}{2}} \\ \left(I-T_{\bar{\phi}} T_{\phi}\right)^{\frac{1}{2}} & -T_{\bar{\phi}}\end{array}\right)$
Now

$$
S^{*} S=\left(\begin{array}{cc}
I & T_{\bar{\phi}}\left(I-T_{\phi} T_{\bar{\phi}}\right)^{\frac{1}{2}}-\left(I-T_{\bar{\phi}} T_{\phi}\right)^{\frac{1}{2}} T_{\bar{\phi}} \\
\left(I-T_{\phi} T_{\bar{\phi}}\right)^{\frac{1}{2}} T_{\phi}-T_{\phi}\left(I-T_{\bar{\phi}} T_{\phi}\right)^{\frac{1}{2}} & I
\end{array}\right)
$$

and

$$
S S^{*}=\left(\begin{array}{cc}
I & T_{\phi}\left(I-T_{\bar{\phi}} T_{\phi}\right)^{\frac{1}{2}}-\left(I-T_{\phi} T_{\bar{\phi}}\right)^{\frac{1}{2}} T_{\phi} \\
\left(I-T_{\bar{\phi}} T_{\phi}\right)^{\frac{1}{2}} T_{\bar{\phi}}-T_{\bar{\phi}}\left(I-T_{\phi} T_{\bar{\phi}}\right)^{\frac{1}{2}} & I
\end{array}\right) .
$$

So $S^{*} S=S S^{*}=I$ when $T_{\phi}\left(I-T_{\phi} T_{\phi}\right)^{\frac{1}{2}}=\left(I-T_{\phi} T_{\bar{\phi}}\right)^{\frac{1}{2}} T_{\phi}$.
To prove this we use elementary concepts of operator theory. Put $W=\left(\begin{array}{cc}0 & T_{\bar{\phi}} \\ T_{\phi} & 0\end{array}\right), P=\left(\begin{array}{cc}I-T_{\bar{\phi}} T_{\phi} & 0 \\ 0 & I-T_{\phi} T_{\bar{\phi}}\end{array}\right)$.
It is clear that $P \geq 0$. Since $W P=P W$ for $P \geq 0$. That implies $W P^{\frac{1}{2}}=P^{\frac{1}{2}} W$.
So $W P^{\frac{1}{2}}=\left(\begin{array}{cc}0 & T_{\bar{\phi}} \\ T_{\phi} & 0\end{array}\right)\left(\begin{array}{cc}\left(I-T_{\bar{\phi}} T_{\phi}\right)^{\frac{1}{2}} & 0 \\ 0 & \left(I-T_{\phi} T_{\bar{\phi}}\right)^{\frac{1}{2}}\end{array}\right)=\left(\begin{array}{cc}0 & T_{\bar{\phi}}\left(I-T_{\phi} T_{\bar{\phi}}\right)^{\frac{1}{2}} \\ T_{\phi}\left(I-T_{\bar{\phi}} T_{\phi}\right)^{\frac{1}{2}} & 0\end{array}\right)$.
Similarly, $P^{\frac{1}{2}} W=\left(\begin{array}{cc}\left(I-T_{\bar{\phi}} T_{\phi}\right)^{\frac{1}{2}} & 0 \\ 0 & \left(I-T_{\phi} T_{\bar{\phi}}\right)^{\frac{1}{2}}\end{array}\right)\left(\begin{array}{cc}0 & T_{\bar{\phi}} \\ T_{\phi} & 0\end{array}\right)=\left(\begin{array}{cc}0 & \left(I-T_{\bar{\phi}} T_{\phi}\right)^{\frac{1}{2}} T_{\bar{\phi}} \\ \left(I-T_{\phi} T_{\bar{\phi}}\right)^{\frac{1}{2}} T_{\phi} & 0\end{array}\right)$.
Since $W P^{\frac{1}{2}}=P^{\frac{1}{2}} W$, then $T_{\phi}\left(I-T_{\bar{\phi}} T_{\phi}\right)^{\frac{1}{2}}=\left(I-T_{\phi} T_{\bar{\phi}}\right)^{\frac{1}{2}} T_{\phi}$. Hence S is unitary.
Theorem 4.2. Let $\phi, \psi \in L^{\infty}(\mathbb{D})$. Then, $\left(\begin{array}{cc}T_{\phi \circ \phi_{a}} & I \\ 0 & S_{\psi}\end{array}\right)$ is normal iff $U_{a} T_{\phi}=S_{\psi} U_{a}$ and $\left[T_{\bar{\phi}^{\prime}} T_{\phi}\right]=\left[S_{\psi}, S_{\psi^{+}}\right]$.
Proof. It is easy to verify that $\left(\begin{array}{cc}U_{a} & 0 \\ 0 & I\end{array}\right)$ is unitary. Since,

$$
\left(\begin{array}{cc}
T_{\phi \circ \phi_{a}} & I \\
0 & S_{\psi}
\end{array}\right)=\left(\begin{array}{cc}
U_{a}^{*} & 0 \\
0 & I
\end{array}\right)\left(\begin{array}{cc}
T_{\phi} & U_{a} \\
0 & S_{\psi}
\end{array}\right)\left(\begin{array}{cc}
U_{a} & 0 \\
0 & I
\end{array}\right)
$$

then, $\left(\begin{array}{cc}T_{\phi_{0 \phi_{a}}} & I \\ 0 & S_{\psi}\end{array}\right)$ and $\left(\begin{array}{cc}T_{\phi} & U_{a} \\ 0 & S_{\psi}\end{array}\right)$ are unitarily equivalent. Therefore, $\left(\begin{array}{cc}T_{\phi_{0} \phi_{a}} & I \\ 0 & S_{\psi}\end{array}\right)$ is normal iff $\left(\begin{array}{cc}T_{\phi} & U_{a} \\ 0 & S_{\psi}\end{array}\right)$ is normal. Hence, $\left(\begin{array}{cc}T_{\phi} & U_{a} \\ 0 & S_{\psi}\end{array}\right)$ is normal iff $U_{a} T_{\phi}=S_{\psi} U_{a}$ and $T_{\bar{\phi}} T_{\phi}+S_{\psi^{+}} S_{\psi}=T_{\phi} T_{\bar{\phi}}+S_{\psi} S_{\psi^{+}}$.

Theorem 4.3. Let $\phi, \psi \in L^{\infty}(\mathbb{D})$ and $e^{i \theta}$ be any complex number in \mathbb{C}. Then, $\left(\begin{array}{ccc}U_{a} & 0 & 0 \\ 0 & T_{\psi} & e^{i \theta} S_{\psi} \\ 0 & e^{-(i \theta)} S_{\psi}^{*} & T_{\phi}\end{array}\right)$ is
(i) normal iff T_{ϕ}, T_{ψ} are normal and S_{ψ} intertwines with T_{ϕ} and T_{ψ} as well as $T_{\bar{\phi}}$ and $T_{\bar{\psi}}$ respectively.
(ii) unitary iff T_{ϕ}, T_{ψ} are unitary and $T_{\psi} S_{\psi}-S_{\psi} T_{\phi}=I=T_{\bar{\psi}} S_{\psi}-S_{\psi} T_{\bar{\phi}}$.

Proof. Since

$$
\left(\begin{array}{ccc}
U_{a} & 0 & 0 \\
0 & T_{\psi} & e^{i \theta} S_{\psi} \\
0 & e^{-(i \theta)} S_{\psi}^{*} & T_{\phi}
\end{array}\right)=\left(\begin{array}{ccc}
U_{a}^{*} & 0 & 0 \\
0 & I & 0 \\
0 & 0 & e^{-(i \theta)} I
\end{array}\right)\left(\begin{array}{ccc}
U_{a} & 0 & 0 \\
0 & T_{\psi} & S_{\psi} \\
0 & S_{\psi}^{*} & T_{\phi}
\end{array}\right)\left(\begin{array}{ccc}
U_{a} & 0 & 0 \\
0 & I & 0 \\
0 & 0 & e^{i \theta} I
\end{array}\right) .
$$

Then, $\left(\begin{array}{ccc}U_{a} & 0 & 0 \\ 0 & T_{\psi} & e^{i \theta} S_{\psi} \\ 0 & e^{-(i \theta)} S_{\psi}^{*} & T_{\phi}\end{array}\right)$ is normal iff $\left(\begin{array}{ccc}U_{a} & 0 & 0 \\ 0 & T_{\psi} & S_{\psi} \\ 0 & S_{\psi}^{*} & T_{\phi}\end{array}\right)$ is normal. Therefore, from the direct computation $\left(\begin{array}{ccc}U_{a} & 0 & 0 \\ 0 & T_{\psi} & S_{\psi} \\ 0 & S_{\psi}^{*} & T_{\phi}\end{array}\right)$ is normal iff $T_{\phi} T_{\bar{\phi}}=T_{\bar{\phi}} T_{\phi}, T_{\psi} T_{\bar{\psi}}=T_{\bar{\psi}} T_{\psi}, T_{\phi} S_{\psi}=S_{\psi} T_{\psi}, T_{\bar{\phi}} S_{\psi}=S_{\psi} T_{\bar{\psi}}$. Similarly, the proof of (ii) is same as the proof of (i).

Theorem 4.4. Let $\phi, \psi \in L^{\infty}(\mathbb{D})$. Then, $\left(\begin{array}{ccc}R_{t} & 0 & 0 \\ 0 & T_{\phi \circ \phi_{a}} & R_{t}^{*} S_{\psi} \\ 0 & 0 & T_{\psi}\end{array}\right)$ is
(i) normal iff S_{ψ} is normal and $T_{\bar{\phi}} S_{\psi}=S_{\psi} T_{\bar{\psi}},\left[T_{\bar{\phi}}, T_{\phi}\right]=\left[T_{\psi}, T_{\bar{\psi}}\right]=S_{\psi}^{*} S_{\psi}$.
(ii) unitary iff S_{ψ} is unitary, $\left[T_{\bar{\phi}}, T_{\phi}\right]=\left[T_{\psi}, T_{\bar{\psi}}\right]=S_{\psi}^{*} S_{\psi}=I$ and $T_{\bar{\phi}} S_{\psi}=S_{\psi} T_{\bar{\psi}}=0$.

Proof. Since

$$
\left(\begin{array}{ccc}
R_{t} & 0 & 0 \\
0 & T_{\phi \circ \phi_{a}} & R_{t}^{*} S_{\psi} \\
0 & 0 & T_{\psi}
\end{array}\right)=\left(\begin{array}{ccc}
R_{t}^{*} & 0 & 0 \\
0 & R_{t}^{*} & 0 \\
0 & 0 & I
\end{array}\right)\left(\begin{array}{ccc}
R_{t} & 0 & 0 \\
0 & T_{\phi} & S_{\psi} \\
0 & 0 & T_{\psi}
\end{array}\right)\left(\begin{array}{ccc}
R_{t} & 0 & 0 \\
0 & R_{t} & 0 \\
0 & 0 & I
\end{array}\right),
$$

then,

$$
\left(\begin{array}{ccc}
R_{t} & 0 & 0 \\
0 & T_{\phi \circ \phi_{a}} & R_{t}^{*} S_{\psi} \\
0 & 0 & T_{\psi}
\end{array}\right) \text { and }\left(\begin{array}{ccc}
R_{t} & 0 & 0 \\
0 & T_{\phi} & S_{\psi} \\
0 & 0 & T_{\psi}
\end{array}\right)
$$

are unitarily equivalent. Again since,

$$
\left(\begin{array}{ccc}
R_{t} & 0 & 0 \\
0 & T_{\phi} & S_{\psi} \\
0 & 0 & T_{\psi}
\end{array}\right)\left(\begin{array}{ccc}
R_{t}^{*} & 0 & 0 \\
0 & T_{\bar{\phi}} & 0 \\
0 & S_{\psi}^{*} & T_{\bar{\psi}}
\end{array}\right)=\left(\begin{array}{ccc}
R_{t} R_{t}^{*} & 0 & 0 \\
0 & T_{\phi} T_{\bar{\phi}}+S_{\psi} S_{\psi}^{*} & S_{\psi} T_{\bar{\psi}} \\
0 & T_{\psi} S_{\psi}^{*} & T_{\psi} T_{\bar{\psi}}
\end{array}\right) .
$$

Again since

$$
\left(\begin{array}{ccc}
R_{t}^{*} & 0 & 0 \\
0 & T_{\bar{\phi}} & 0 \\
0 & S_{\psi}^{*} & T_{\bar{\psi}}
\end{array}\right)\left(\begin{array}{ccc}
R_{t} & 0 & 0 \\
0 & T_{\phi} & S_{\psi} \\
0 & 0 & T_{\psi}
\end{array}\right)=\left(\begin{array}{ccc}
R_{t} R_{t}^{*} & 0 & 0 \\
0 & T_{\bar{\phi}} T_{\phi} & T_{\bar{\phi}} S_{\psi} \\
0 & S_{\psi}^{*} T_{\psi} & S_{\psi}^{*} S_{\psi}+T_{\bar{\psi}} T_{\psi}
\end{array}\right) .
$$

It is easy to prove that $\left(\begin{array}{ccc}R_{t} & 0 & 0 \\ 0 & T_{\phi \circ \phi_{a}} & R_{t}^{*} S_{\psi} \\ 0 & 0 & T_{\psi}\end{array}\right)$ is normal iff S_{ψ} is normal and $T_{\bar{\phi}} S_{\psi}=S_{\psi} T_{\bar{\psi}},\left[T_{\bar{\phi}}, T_{\phi}\right]=$ $\left[T_{\psi}, T_{\bar{\psi}}\right]=S_{\psi}^{*} S_{\psi}$. Similarly, one can easily prove $\left(\begin{array}{ccc}R_{t} & 0 & 0 \\ 0 & T_{\phi \circ \phi_{a}} & R_{t}^{*} S_{\psi} \\ 0 & 0 & T_{\psi}\end{array}\right)$ is unitary if and only if S_{ψ} is unitary, $\left[T_{\bar{\phi}}, T_{\phi}\right]=\left[T_{\psi}, T_{\bar{\psi}}\right]=S_{\psi}^{*} S_{\psi}=I$ and $T_{\bar{\phi}} S_{\psi}=S_{\psi} T_{\bar{\psi}}=0$.

References

[1] R. Bhatia, Matrix analysis, Springer Verlag, New York, 1997.
[2] K. Zhu, Operator Theory in Fuction Spaces, Monographs and textbooks in pure and applied Mathematics, 139, Marcel Dekker, New York, 1990.
[3] A. Aluthge, On p-hyponormal operators for $0<p<1$, Integr. Equat. Oper. Th., 13(1990), 307-315.
[4] M. D. Choi, Some assorted inequalities for positive linear maps on C*-algebras, J. Oper. Th., 4(1980), 271-285.
[5] N. Das and P. K. Jena, Asymptotic properties of composition operators on the Bergman space, New Zealand J. Math., 39(2009), 215-239.
[6] R. G. Douglas, On majorization, factorization and range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc., 17(1966), 413-415.
[7] X. Fang, J. Yu and H. Yao, Solutions to operator equations on Hilbert C*-modules, Linear Algebra Appl., 431(2009), 2142 -2153.
[8] M. Gurdal and F. Sohret, Some results for Toeplitz operators on the Bergman space, Appl. Math. Comput., 218(2011), 789-793.
[9] J. C. Hou and H. K. Du, Norm inequalities of positive operator matrices, Integr. Equat. Oper. Th., 22(1995), 281-294.
[10] T. Kato, Notes on some inequalities for linear operators, Math. Ann., 125(1952), 208-212.
[11] H. Najafi, Operator means and positivity of block operators, Math. Z., DOI:10.1007/s00209-017-1958-0, 2017, 1-10.
[12] S. Wada, On some operators whose products are positive, Nihonkai Math. J., 10(1999), 111-115.

[^0]: 2020 Mathematics Subject Classification. 47B38, 47B33, 47B35
 Keywords. Positive operators, Normal operators, Unitary operators, Toeplitz operators, little Hankel operators, Bergman spaces.
 Received: 12 April 2020; Revised: 12 August 2022; Accepted: 29 August 2022
 Communicated by Dragan S. Djordjević
 Corresponding author: Pabitra Kumar Jena
 Email addresses: chinmayee.padhy83@gmail.com (Chinmayee Padhy), pabitramath@gmail.com (Pabitra Kumar Jena), skpaikray_math@vssut.ac.in (S. K. Paikray)

