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Abstract. In this article, we characterize the sufficient and necessary conditions for positiveness of operator
matrices with Toeplitz and little Hankel operators on the Bergman space. Further, we explore some
conditions for operator matrices to be normal and unitary.

1. Introduction

LetD be the open unit disk on the complex plane C. Let dA(z) = 1
πdxdy be the normalized area measure.

Let L2(D, dA) be the space of complex valued, square integrable, measuring functions on C with respect to
the area measure. Let A2(D) be the closed subspace of L2(D, dA) consisting of those functions in L2(D, dA)
that are analytic. The space A2(D) is referred to as the Bergman space of the unit diskD.

For z ∈ D, Kz denote the reproducing kernel on A2(D). This function satisfies f (z) = ⟨ f ,Kz⟩ for all
f ∈ A2(D). Let kz =

Kz
∥Kz∥2

be the normalised reproducing kernel on A2(D). For any integer n ≥ 0, let

en(z) =
√

n + 1zn. Then, {en}
∞

n=0 forms an orthonormal basis for A2(D). Let L∞(D) be the Banach space
consisting of essentially bounded Lebesgue measurable functions onD with ∥ f ∥∞ = ess sup{| f (z)| : z ∈ D}.
The Toeplitz operator Tϕ is defined on A2(D) by

Tϕh = P(ϕh), ϕ ∈ L∞(D).

Thus we have

(Tϕh)(w) =
∫
D

ϕ(z)h(z)
(1 − zw)2 dA(z),

for h ∈ A2(D) and w ∈ D.
Similarly one can define the little Hankel operator Sϕ is the operator defined on A2(D) by Sϕ f = PJ(ϕ f )
where J : L2(D, dA)→ L2(D, dA), is defined as J f (z) = f (z) and P is the orthogonal projection from L2(D, dA)
onto A2(D).

For a ∈ D, define Ua f (w) = ka(w) f (ϕa(w)),where f is the measurable function onD. Let Ua be a bounded
linear operator on L2(D, dA) and also in A2(D) for all a ∈ D [2]. Further, U2

a = I, the identity operator,
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which is easily verified and U∗a = Ua,Ua(A2(D)) ⊂ A2(D) and Ua((A2(D))⊥) ⊂ (A2(D))⊥ for all a ∈ D. Thus
UaP = PUa for all a ∈ D. Similarly for t ∈ T, where T is the unit circle, there is another unitary operator Rt
on A2(D) defined as Rt f (z) = f (tz) and R−1

t = R∗t = Rt, f be any function onD. To know details see [5]. We
can define En,ϕ = ⟨Tϕ

√
n + 1zn,

√
n + 1zn

⟩. To know Bergman space in detail see [2].
Let H denote the separable infinite dimensional complex Hilbert space and the algebra of bounded

linear operators on H is denoted by L(H). Let H1, H2, ... Hn be the complex Hilbert spaces. An operator
A ∈ L(

⊕n
i=1 Hi) may be expressed as an n×n operator matrix is of the form A = [Ai j],where Ai j is a bounded

linear operator from H j into Hi. If (Ax, x) ≥ 0 for all x ∈
⊕n

i=1 Hi, then A is called positive and denoted by
A ≥ 0. The Berezin transform of a bounded linear operator S on A2(D) denoted by S̃ and is defined by

S̃(w) = ⟨Skw, kw⟩, for w ∈ D.

Let ϕ̃(w) = ⟨Tϕkw, kw⟩ for w ∈ D. That is, ϕ̃ = T̃ϕ.An operator A inL(H) has a polar decomposition A = V|A|,
where V is the partial isometry (with ker(V) = ker(A) and ker(V∗) = ker(A∗)) and |A| = (A∗A)

1
2 . The Aluthge

transformation of an operator was first introduced by Aluthge [3] defined as ∆(A) = |A|
1
2 V|A|

1
2 . An operator

A is said to be normal if A∗A = AA∗ and unitary if A∗A = I = AA∗. For operators A and B we can define
[A,B] = AB − BA.

The organization of the paper is as follows: In section-2, we survey some well known lemmas and
theorems relating to the positive operator matrices as well as positive operators. In section-3, we obtained
some sufficient and necessary conditions for operator matrices to be positive and in the last section of the
paper, we discussed some sufficient conditions for operator matrices to be normal as well as unitary.

2. Preliminaries

LetMn be the matrix algebra of all n×n matrices with entries in the complex field C.We can write A ≥ 0
if A is positive, that is ⟨Ax, x⟩ ≥ 0 for all x ∈ H. To design our main results, we survey some well known
lemmas and theorems relating to the positive operator matrices as well as positive operators which can be
found in [1, 4, 7, 9, 11, 12].

Lemma 2.1. [1], (Corollary I.3.3) Let R ∈ Mn. Then R is positive iff the block matrix
(

R R
R R

)
is positive.

Theorem 2.2. [1], (Theorem IX.5.9) The block matrix
(

P X
X∗ Q

)
is positive iff X = P

1
2 KQ

1
2 for some contraction K

and P,Q ∈ Mn are positive.

Let us assume that A = [Ai j] be a operator matrix.

Lemma 2.3. [9] Let A, B are positive and C = D∗, ∃ a contraction S such that C = A
1
2 SB

1
2 iff the operator matrix

T =
(

A C
D B

)
≥ 0.

Another interesting result was given by Choi.

Lemma 2.4. [4] For operators P,Q and R∈ L(H) with R being positive and invertible. The block matrix
(

R Q
Q∗ P

)
≥

0 if and only if R ≥ Q∗P−1Q.

Let H1 and H2 are Hilbert C∗ modules. Suppose L(H1,H2) is the set of all bounded linear operators
T : H1 → H2, which are adjointable. Fang derived one interesting result to show the positivity of an
operator matrix on Hilbert A−module.
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Proposition 2.5. [7] Let H1 and H2 are Hilbert A−modules. Let A ∈ L(H1), C ∈ L(H2,H1) and B ∈ L(H2).

Then
(

A C
C∗ B

)
≥ 0 iff A ≥ 0, B ≥ 0 and |Φ(⟨Cy, x⟩)|2 ≤ ϕ(⟨Ax, x⟩)ϕ(⟨By, y⟩) for all x ∈ L(H1), y ∈ L(H2) and

ϕ ∈ S(A), where S(A) is the state space of A.

Let A and B be two positive operators. Then, A♯B is defined as

A♯B = max
{

C ≥ 0|
(

A C
C B

)
≥ 0

}
.

If the linear map ϕn : Mn(A) → Mn(B) defined by ϕn([ai, j]) = [ϕ(ai, j)], where A and B are in C∗ algebra,
then ϕ is called completely positive. In 2017, Najafi [11] discussed on the positivity of block operator
matrices.

Theorem 2.6. [11] Let R ≥ 0, S ≥ 0 and T ≥ 0 such that T ≤ R♯S. Then, ∃ a unique map ϕ : L(H)→ L(H) such

that
(
ϕ(R) T

T ϕ(S)

)
≥ 0 and ϕ is completely positive. Furthermore, ϕ is trace preserving if dimension of H is finite.

If A and B are two bounded linear operators on the Hilbert sapce satisfying AB ≥ 0, A2B ≥ 0 and AB2
≥ 0

then we have the following results about the positivity of A and B.

Lemma 2.7. [12] If Ran(B) = H, then A ≥ 0. Similarly, if Ran(A∗) = H, then B ≥ 0.

Proposition 2.8. [12] If the operator AB has its bounded inverse, then A , B are positive.

Theorem 2.9. [12] If A, B are semi-Fredholm operators and ker(AB) = 0, then A, B are positive.

3. Positive operator matrices

In this section, we obtained the necessary and sufficient conditions for operator matrices to be positive.
Here, we used Sψ+ = S∗ψ and ψ+(z) = ψ(z), where Sψ is a littile Hankel operator and for a Toeplitz operator
Tϕ, T∗ϕ = Tϕ.

Theorem 3.1. Let ϕ, ξ ∈ L∞(D) with Tϕ ≥ S∗ξSξ.Assume that p = inf
z∈D
|ϕ̃(z)| > 0 and ∃ a sequence η = {ξn}

∞

n=0 ⊂ D

such that
ληϕ = (Σ∞n=0(1 − 2Re(˜ϕ(ξn)En,ϕ)) + |ϕ̃(ξn)|2)

1
2 < ∞.

If p > λn
ϕ, then (

Tϕ − SξS∗ξ (Tϕ − SξS∗ξ)Sξ
S∗ξ(Tϕ − SξS∗ξ) Tϕ − S∗ξSξ + S∗ξ(Tϕ − SξS∗ξ)Sξ

)
≥ 0.

Proof. By [8], the Toeplitz operator Tϕ is invertible. Let W = SξT
−

1
2

ϕ = T−
1
2

ϕ Sξ. Then,

Tϕ ≥ S∗ξSξ ⇒ I ≥ T−
1
2

ϕ S∗ξSξT
−

1
2

ϕ =W∗W

⇒W is contraction

⇒ I ≥WW∗ = T−
1
2

ϕ SξS∗ξT
−

1
2

ϕ

⇒ Tϕ ≥ SξS∗ξ.
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Since
(

Tϕ − SξS∗ξ 0
0 Tϕ − S∗ξSξ

)
=

(
1 0
−S∗ξ 1

) (
Tϕ − SξS∗ξ (Tϕ − SξS∗ξ)Sξ

S∗ξ(Tϕ − SξS∗ξ) Tϕ − S∗ξSξ + S∗ξ(Tϕ − SξS∗ξ)Sξ

) (
1 −S∗ξ
0 1

)
.

Then, (
Tϕ − SξS∗ξ 0

0 Tϕ − S∗ξSξ

)
and

(
Tϕ − SξS∗ξ (Tϕ − SξS∗ξ)Sξ

S∗ξ(Tϕ − SξS∗ξ) Tϕ − S∗ξSξ + S∗ξ(Tϕ − SξS∗ξ)Sξ

)
are congruent to each other. Thus,(

Tϕ − SξS∗ξ 0
0 Tϕ − S∗ξSξ

)
≥ 0 i f f

(
Tϕ − SξS∗ξ (Tϕ − SξS∗ξ)Sξ

S∗ξ(Tϕ − SξS∗ξ) Tϕ − S∗ξSξ + S∗ξ(Tϕ − SξS∗ξ)Sξ

)
≥ 0.

Therefore, Tϕ ≥ SξS∗ξ and Tϕ ≥ S∗ξSξ combiningly implies,(
Tϕ − SξS∗ξ 0

0 Tϕ − S∗ξSξ

)
≥ 0.

Hence the result follows.

Corollary 3.2. Let ϕ, ξ ∈ L∞(D). Then, Tϕ ≥ S∗ξSξ, Tϕ − SξS∗ξ = I and p > λn
ϕ, defined as in theorem 3.1 implies(

I Sξ
S⋆ξ Tϕ

)
≥ 0

Proof. Since
(

I 0
0 Tϕ − S⋆ξSξ

)
=

(
1 0
−S⋆ξ 1

) (
1 Sξ

S⋆ξ Tϕ

) (
1 −Sξ
0 1

)
. It follows that

(
I Sξ

S⋆ξ Tϕ

)
≥ 0 if and

only if Tϕ ≥ S⋆ξSξ

Theorem 3.3. Let ϕ, ξ ∈ L∞(D). Then,(
Tϕ(Tϕ − SξS∗ξ)Tϕ Tϕ(Tϕ − SξS∗ξ)Ua

U∗a(Tϕ − SξS∗ξ)Tϕ U∗a(Tϕ − SξS∗ξ)Ua + TϕTϕ

)
≥ 0 i f f Tϕ ≥ SξS∗ξ.

Proof. Since
(

Tϕ(Tϕ − SξS∗ξ)Tϕ Tϕ(Tϕ − SξS∗ξ)Ua

U∗a(Tϕ − SξS∗ξ)Tϕ U∗a(Tϕ − SξS∗ξ)Ua + TϕTϕ

)
=

(
Tϕ 0
U∗a −Tϕ

) (
Tϕ − SξS∗ξ 0

0 I

) (
Tϕ Ua
0 −Tϕ

)

then, Tϕ ≥ SξS∗ξ ⇔
(

Tϕ − SξS∗ξ 0
0 I

)
≥ 0. Hence proved.

Theorem 3.4. Let ϕ,ψ ∈ L∞(D). Then,
(

T|ϕ| Sψ+
Sψ T|ψ|

)
≥ 0 for ψ+(z) = ψ(z̄) if and only if |⟨SψKx,Ky⟩|

2
≤

⟨T|ϕ|Kx,Kx⟩⟨T|ψ|Ky,Ky⟩ for all x, y ∈ D.

Proof. Suppose
(

T|ϕ| Sψ+
Sψ T|ψ|

)
≥ 0. Since for any positive operator A ∈ L(A2(D)), it follows from [10] that

|⟨AKx,Ky⟩|
2
≤ ⟨AKx,Kx⟩⟨AKy,Ky⟩ for all x, y ∈ D. Then we obtain,
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〈(

T|ϕ| Sψ+
Sψ T|ψ|

) (
Kx
0

)
,

(
0

Ky

)〉∣∣∣∣∣∣2
≤

〈(
T|ϕ| Sψ+
Sψ T|ψ|

) (
Kx
0

)
,

(
Kx
0

)〉 〈(
T|ϕ| Sψ+
Sψ T|ψ|

) (
0

Ky

)
,

(
0

Ky

)〉
for all x, y ∈ D. Hence,∣∣∣∣∣∣

〈(
T|ϕ|Kx
SψKx

)
,

(
0

Ky

)〉∣∣∣∣∣∣2 ≤
〈(

T|ϕ|Kx
SψKx

)
,

(
Kx
0

)〉 〈(
Sψ+Ky
T|ψ|Ky

)
,

(
0

Ky

)〉
.

Therefore,∣∣∣∣∣∣
∫
D

(
TϕKx
SψKx

) (
0

Ky

)
dA(z)

∣∣∣∣∣∣2
≤

(∫
D

(
T|ϕ|Kx
SψKx

) (
Kx
0

)
dA(z)

) (∫
D

(
Sψ+Ky
T|ψ|Ky

) (
0

Ky

)
dA(z)

)
.

That is, ∣∣∣∣∣∣
∫
D

(
0

SψKxKy

)
dA(z)

∣∣∣∣∣∣2 ≤
(∫
D

T|ϕ|KxKxdA(z)
) (∫

D

T|ψ|KyKydA(z)
)
.

Thus,
|⟨SψKx,Ky⟩|

2
≤ ⟨T|ϕ|Kx,Kx⟩⟨T|ψ|Ky,Ky⟩

for all x, y ∈ D.
Conversely, assume that
|⟨SψKx,Ky⟩|

2
≤ ⟨T|ϕ|Kx,Kx⟩⟨T|ψ|Ky,Ky⟩ for all x, y ∈ D. Then,〈(

T|ϕ| Sψ+
Sψ T|ψ|

) (
Kx
Ky

)
,

(
Kx
Ky

)〉
= ⟨T|ϕ|Kx,Kx⟩ + ⟨Sψ+Ky,Kx⟩ + ⟨SψKx,Ky⟩ + ⟨T|ψ|Ky,Ky⟩

= ⟨T|ϕ|Kx,Kx⟩ + 2Re⟨SψKx,Ky⟩ + ⟨T|ψ|Ky,Ky⟩

≥ 2⟨T|ϕ|Kx,Kx⟩
1
2 ⟨T|ψ|Ky,Ky⟩

1
2 + 2Re⟨SψKx,Ky⟩

≥ 2|⟨SψKx,Ky⟩| + 2Re⟨SψKx,Ky⟩

≥ 2|⟨SψKx,Ky⟩| − 2|⟨SψKx,Ky⟩| = 0.

Hence,
(

T|ϕ| Sψ+
Sψ T|ψ|

)
≥ 0.

Theorem 3.5. Let ϕ,ψ ∈ L∞(D) where ϕ,ψ ≥ 0. Assume that Tϕ and Tψ are invertible and ˜Tψoψa (z) = T̃ϕ(z),∀z ∈

D. If there exist an operator M with ∥M∥ ≤ 1 such that T
1
2
ψMT

1
2
ϕ = Ua, a ∈ D and h, j are two non negative functions

defined by h(x) = xt and j(x) = x1−t, 0 < t ≤ 1
2 and 0 ≤ x < ∞. Then,

(
h(Tψ)2 Ua

Ua j(Tϕ)2

)
≥ 0.

Proof. Since ϕ,ψ ≥ 0, and Tϕ, Tψ are invertible and ˜Tψoψa (z) = T̃ϕ(z),∀z ∈ D, then ⟨Tψoψa kz, kz⟩ = ⟨Tϕkz, kz⟩.
Thus, ⟨UaTψUakz, kz⟩ = ⟨Tϕkz, kz⟩,∀z ∈ D. Therefore, TψUa = UaTϕ (∵ Ua is self adjoint) that implies
h(Tψ)Ua = Uah(Tϕ), since h is a continuous function on [0,∞). As h(Tϕ) = Tt

ϕ and j(Tϕ) = T1−t
ϕ , therefore

h(Tϕ) j(Tϕ) = Tϕ. Now

h(Tψ)Ua = Uah(Tϕ)⇒ h(Tψ)Ua j(Tϕ) = Uah(Tϕ) j(Tϕ)
⇒ h(Tψ)Ua j(Tϕ) = UaTϕ

⇒ h(Tψ)Ua j(Tϕ) = UaT
1
2
ϕT

1
2
ϕ

⇒ T
−1
2
ψ h(Tψ)Ua j(Tϕ)T

−1
2
ϕ = T

−1
2
ψ UaT

1
2
ϕ (∵ Tψ and Tϕ are invertible)

⇒ h(Tψ)T
−1
2
ψ Ua j(Tϕ)T

−1
2
ϕ = Ua (∵ UaT

1
2
ψ = T

1
2
ϕUa).
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Then,(
h(Tψ)2 Ua

Ua j(Tϕ)2

)
=

 h(Tψ)T
−1
2
ψ 0

0 j(Tϕ)T
−1
2
ϕ


(

Tψ Ua
Ua Tϕ

)  h(Tψ)T
−1
2
ψ 0

0 j(Tϕ)T
−1
2
ϕ

 .
Since T

1
2
ψMT

1
2
ϕ = Ua, a ∈ D with M as contraction, then by using [9],

(
Tψ Ua
Ua Tϕ

)
≥ 0, which completes the

proof of the theorem.

Theorem 3.6. Let ϕ ∈ L∞(D).
(

I Tϕ
Tϕ I

)
is positive iff Tϕ is contraction.

Proof. Suppose
(

I Tϕ
Tϕ I

)
≥ 0, so

〈(
I Tϕ

Tϕ I

) (
f
1

)
,

(
f
1

)〉
=

〈(
f + Tϕ1
Tϕ f + 1

)
,

(
f
1

)〉
= ⟨ f , f ⟩ + ⟨Tϕ1, f ⟩ + ⟨Tϕ f , 1⟩ + ⟨1, 1⟩

= ∥ f ∥2 + ∥1∥2 + 2Re(⟨Tϕ1, f ⟩)
≥ 0

By letting f = −Tϕ1, we have ∥Tϕ1∥2 + ∥1∥2 − 2Re(⟨Tϕ1,Tϕ1⟩) ≥ 0. We recall that

Re(⟨Tϕ1,Tϕ1⟩) ≤ |⟨Tϕ1,Tϕ1⟩|.

So ∥Tϕ1∥2 + ∥1∥2 − 2∥Tϕ1∥2 ≥ 0. That implies ∥Tϕ1∥2 ≤ ∥1∥2 ⇒ ⟨Tϕ1,Tϕ1⟩ ≤ ⟨1, 1⟩.
Therefore T∗ϕTϕ ≤ I. Conversely, let T∗ϕTϕ ≤ I. Since(

I 0
0 I − TϕTϕ

)
=

(
I 0

Tϕ I

) (
I Tϕ

Tϕ I

) (
I −Tϕ
0 I

)
.

Then
(

I Tϕ
Tϕ I

)
≥ 0. Hence proved.

Theorem 3.7. Let ϕ ∈ L∞(D). Then,
(
|Tϕ| Tϕ
Tϕ |Tϕ|

)
≥ 0.

Proof. Let Q =
(

0 Tϕ
Tϕ 0

)
. Thus Q is self-adjoint. Therefore, Q2 =

(
TϕTϕ 0

0 TϕTϕ

)
. Since the square root

of a positive operator is unique, then |Q| =
(
|Tϕ| 0

0 |Tϕ|

)
. Again since Q is self-adjoint, therefore by using

the spectral theory, Q + |Q| is positive. Hence,
(
|Tϕ| Tϕ
Tϕ |Tϕ|

)
≥ 0.

Theorem 3.8. Let ϕ ∈ L∞(D). Then,(
∆(Tϕ) |Tϕ|

1
2 |Sϕ|

1
2

|Sϕ|
1
2 |Tϕ|

1
2 ∆(Sϕ)

)
≥ 0 i f f |⟨kz, kw⟩|

2
≤ ⟨Ukz, kz⟩⟨Vkw, kw⟩, ∀kz, kw ∈ A2(D)

and Tϕ = U|Tϕ|, Sϕ = V|Sϕ| be the polar decompositions of Tϕ and Sϕ respectively.
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Proof. Since(
∆(Tϕ) |Tϕ|

1
2 |Sϕ|

1
2

|Sϕ|
1
2 |Tϕ|

1
2 ∆(Sϕ)

)
=

(
|Tϕ|

1
2 U|Tϕ|

1
2 |Tϕ|

1
2 |Sϕ|

1
2

|Sϕ|
1
2 |Tϕ|

1
2 |Sϕ|

1
2 V|Sϕ|

1
2

)
=

(
|Tϕ|

1
2 0

0 |Sϕ|
1
2

) (
U I
I V

) (
|Tϕ|

1
2 0

0 |Sϕ|
1
2

)

Assume that T = S∗WS,where T =
(
∆(Tϕ) |Tϕ|

1
2 |Sϕ|

1
2

|Sϕ|
1
2 |Tϕ|

1
2 ∆(Sϕ)

)
, S =

(
|Tϕ|

1
2 0

0 |Sϕ|
1
2

)
= S∗ and W =

(
U I
I V

)
.

Since the operator matrices T and W are congruent between each other, so T ≥ 0 iff W ≥ 0. Now〈(
U I
I V

) (
kz
kw

)
,

(
kz
kw

)〉
=

〈(
Ukz + kw
kz + Vkw

)
,

(
kz
kw

)〉
= ⟨Ukz, kz⟩ + ⟨kz, kw⟩ + ⟨kw, kz⟩ + ⟨Vkw, kw⟩

= ⟨Ukz, kz⟩ + ⟨Vkw, kw⟩ + 2Re⟨kz, kw⟩

≥ 2
√

(⟨Ukz, kz⟩⟨Vkw, kw⟩) − 2|⟨kz, kw⟩|

≥ 0.

Therefore, W ≥ 0 if |⟨kz, kw⟩|
2
≤ ⟨Ukz, kz⟩⟨Vkw, kw⟩.

Conversely, suppose W ≥ 0. Then |⟨Wkz, kw⟩|
2
≤ ⟨Wkz, kz⟩⟨Wkw, kw⟩ ∀kz, kw ∈ A2(D). That is∣∣∣∣∣∣

〈(
U I
I V

) (
kz
0

)
,

(
0
kw

)〉∣∣∣∣∣∣2 ≤
〈(

U I
I V

) (
kz
0

)
,

(
kz
0

)〉 〈(
U I
I V

) (
0
kw

)
,

(
0
kw

)〉
.

Therefore, W ≥ 0 that implies |⟨kz, kw⟩|
2
≤ ⟨Ukz, kz⟩⟨Vkw, kw⟩. Hence equivalently, T ≥ 0 iff |⟨kz, kw⟩|

2
≤

⟨Ukz, kz⟩⟨Vkw, kw⟩. This completes the proof.

Corollary 3.9. Let ϕ , ψ ∈ L∞(D). Then,(
∆(Tϕ) |Tϕ|

1
2 U|Sψ|

1
2

|Sψ|
1
2 U|Tϕ|

1
2 ∆(Sψ) + ∆(Tϕ)

)
≥ 0 i f f ⟨U f , f ⟩⟨V1, 1⟩ ≥ 0 ∀ f , 1 ∈ A2(D)

with Tϕ = U|Tϕ| and Sψ = V|Sψ| be the polar decompositions of Tϕ and Sψ respectively.

Proof. Since,
(

∆(Tϕ) |Tϕ|
1
2 U|Sψ|

1
2

|Sψ|
1
2 U|Tϕ|

1
2 ∆(Sψ) + ∆(Tϕ)

)
=

(
|Tϕ|

1
2 0

|Sψ|
1
2 −|Tϕ|

1
2

) (
U 0
0 V

) (
|Tϕ|

1
2 |Sψ|

1
2

0 −|Tϕ|
1
2

)
then, from Theorem- 3.8, (

U 0
0 V

)
≥ 0 i f f ⟨U f , f ⟩⟨V1, 1⟩ ≥ 0.

Hence complete the assertion.

Theorem 3.10. Letϕ , ψ ∈ L∞(D).Then,
(
|Sψ| ∆(Tϕ)
∆∗(Tϕ) |Tϕ|

)
≥ 0 iff ∃ a contraction M such that |Sψ|

1
2 M = |Tϕ|

1
2 U,

with Tϕ = U|Tϕ| is the polar decomposition of Tϕ, where U is the partial isometry.
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Proof. Since
(
|Sψ| ∆(Tϕ)
∆∗(Tϕ) |Tϕ|

)
=

(
|Sψ|

1
2 0

0 |Tϕ|
1
2

) (
I |Sψ|−

1
2 |Tϕ|

1
2 U

U∗|Tϕ|
1
2 |Sψ|−

1
2 I

) (
|Sψ|

1
2 0

0 |Tϕ|
1
2

)
Then, (

|Sψ| ∆(Tϕ)
∆∗(Tϕ) |Tϕ|

)
and

(
I |Sψ|−

1
2 |Tϕ|

1
2 U

U∗|Tϕ|
1
2 |Sψ|−

1
2 I

)
are congruent to each other. So by Theorem-3.6,(

I M
M∗ I

)
≥ 0 i f f I ≥M∗M,

where M = |Sψ|−
1
2 |Tϕ|

1
2 U.

Theorem 3.11. Let ϕ ∈ L∞(D). Assume that TϕTϕ ≥ 0 and T2
ϕT2

ϕ
≥ 0. Then

W =

 TϕTϕ − TϕTϕ T2
ϕ

Tϕ − TϕT2
ϕ

TϕT2
ϕ − T2

ϕTϕ T2
ϕ

T2
ϕ − T2

ϕT2
ϕ

 ≥ 0

if ∃ a contraction M such that
TϕT2

ϕ = |Tϕ|M|T
2
ϕ
|

Proof. Suppose W ≥ 0. Then,  TϕTϕ T2
ϕ

Tϕ
TϕT2

ϕ T2
ϕ

T2
ϕ

 ≥
 TϕTϕ TϕT2

ϕ

T2
ϕTϕ T2

ϕT2
ϕ


Then by [9],

 TϕTϕ TϕT2
ϕ

T2
ϕTϕ T2

ϕT2
ϕ

 ≥ 0 iff ∃ a M such that ∥M∥ ≤ 1 and TϕT2
ϕ = |Tϕ|M|T

2
ϕ
|. Hence proved.

4. Unitary and normal operator matrices

In this section, we discussed some sufficient conditions for operator matrices to be normal as well as
unitary.

Theorem 4.1. Let ϕ ∈ L∞(D) with ∥ϕ∥∞ ≤ 1. Then,

 Tϕ (I − TϕTϕ)
1
2

(I − TϕTϕ)
1
2 −Tϕ

 is unitary.

Proof. Since ∥ϕ∥∞ ≤ 1, so ∥Tϕ∥ ≤ ∥ϕ∥∞ ≤ 1. Then, I ≥ TϕTϕ that implies Tϕ is contraction, which implies

I ≥ TϕTϕ. Consider S =

 Tϕ (I − TϕTϕ)
1
2

(I − TϕTϕ)
1
2 −Tϕ


Now

S∗S =

 I Tϕ(I − TϕTϕ)
1
2 − (I − TϕTϕ)

1
2 Tϕ

(I − TϕTϕ)
1
2 Tϕ − Tϕ(I − TϕTϕ)

1
2 I


and

SS∗ =

 I Tϕ(I − TϕTϕ)
1
2 − (I − TϕTϕ)

1
2 Tϕ

(I − TϕTϕ)
1
2 Tϕ − Tϕ(I − TϕTϕ)

1
2 I

 .
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So S∗S = SS∗ = I when Tϕ(I − TϕTϕ)
1
2 = (I − TϕTϕ)

1
2 Tϕ.

To prove this we use elementary concepts of operator theory. Put W =
(

0 Tϕ
Tϕ 0

)
,P =

(
I − TϕTϕ 0

0 I − TϕTϕ

)
.

It is clear that P ≥ 0. Since WP = PW for P ≥ 0. That implies WP
1
2 = P

1
2 W.

So WP
1
2 =

(
0 Tϕ

Tϕ 0

)  (I − TϕTϕ)
1
2 0

0 (I − TϕTϕ)
1
2

 =  0 Tϕ(I − TϕTϕ)
1
2

Tϕ(I − TϕTϕ)
1
2 0

 .
Similarly, P

1
2 W =

 (I − TϕTϕ)
1
2 0

0 (I − TϕTϕ)
1
2

 ( 0 Tϕ
Tϕ 0

)
=

 0 (I − TϕTϕ)
1
2 Tϕ

(I − TϕTϕ)
1
2 Tϕ 0

 .
Since WP

1
2 = P

1
2 W, then Tϕ(I − TϕTϕ)

1
2 = (I − TϕTϕ)

1
2 Tϕ. Hence S is unitary.

Theorem 4.2. Let ϕ,ψ ∈ L∞(D). Then,
(

Tϕ◦ϕa I
0 Sψ

)
is normal iff UaTϕ = SψUa and [Tϕ,Tϕ] = [Sψ,Sψ+ ].

Proof. It is easy to verify that
(

Ua 0
0 I

)
is unitary. Since,

(
Tϕ◦ϕa I

0 Sψ

)
=

(
U∗a 0
0 I

) (
Tϕ Ua
0 Sψ

) (
Ua 0
0 I

)

then,
(

Tϕ◦ϕa I
0 Sψ

)
and

(
Tϕ Ua
0 Sψ

)
are unitarily equivalent. Therefore,

(
Tϕ◦ϕa I

0 Sψ

)
is normal iff(

Tϕ Ua
0 Sψ

)
is normal. Hence,

(
Tϕ Ua
0 Sψ

)
is normal iffUaTϕ = SψUa and TϕTϕ + Sψ+Sψ = TϕTϕ + SψSψ+ .

Theorem 4.3. Let ϕ,ψ ∈ L∞(D) and eiθ be any complex number in C. Then,


Ua 0 0
0 Tψ eiθSψ
0 e−(iθ)S∗ψ Tϕ

 is

(i) normal iff Tϕ, Tψ are normal and Sψ intertwines with Tϕ and Tψ as well as Tϕ and Tψ respectively.

(ii) unitary iff Tϕ, Tψ are unitary and TψSψ − SψTϕ = I = TψSψ − SψTϕ.

Proof. Since 
Ua 0 0
0 Tψ eiθSψ
0 e−(iθ)S∗ψ Tϕ

 =
 U∗a 0 0

0 I 0
0 0 e−(iθ)I




Ua 0 0
0 Tψ Sψ
0 S∗ψ Tϕ


 Ua 0 0

0 I 0
0 0 eiθI

 .

Then,


Ua 0 0
0 Tψ eiθSψ
0 e−(iθ)S∗ψ Tϕ

 is normal iff


Ua 0 0
0 Tψ Sψ
0 S∗ψ Tϕ

 is normal. Therefore, from the direct computa-

tion


Ua 0 0
0 Tψ Sψ
0 S∗ψ Tϕ

 is normal iff TϕTϕ = TϕTϕ, TψTψ = TψTψ, TϕSψ = SψTψ, TϕSψ = SψTψ. Similarly, the

proof of (ii) is same as the proof of (i).

Theorem 4.4. Let ϕ,ψ ∈ L∞(D). Then,

 Rt 0 0
0 Tϕ◦ϕa R∗tSψ
0 0 Tψ

 is
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(i) normal iff Sψ is normal and TϕSψ = SψTψ , [Tϕ,Tϕ] = [Tψ,Tψ] = S∗ψSψ.

(ii) unitary iff Sψ is unitary, [Tϕ,Tϕ] = [Tψ,Tψ] = S∗ψSψ = I and TϕSψ = SψTψ = 0.

Proof. Since  Rt 0 0
0 Tϕ◦ϕa R∗tSψ
0 0 Tψ

 =
 R∗t 0 0

0 R∗t 0
0 0 I


 Rt 0 0

0 Tϕ Sψ
0 0 Tψ


 Rt 0 0

0 Rt 0
0 0 I

 ,
then,  Rt 0 0

0 Tϕ◦ϕa R∗tSψ
0 0 Tψ

 and

 Rt 0 0
0 Tϕ Sψ
0 0 Tψ


are unitarily equivalent. Again since, Rt 0 0

0 Tϕ Sψ
0 0 Tψ




R∗t 0 0
0 Tϕ 0
0 S∗ψ Tψ

 =


RtR∗t 0 0
0 TϕTϕ + SψS∗ψ SψTψ
0 TψS∗ψ TψTψ

 .
Again since 

R∗t 0 0
0 Tϕ 0
0 S∗ψ Tψ


 Rt 0 0

0 Tϕ Sψ
0 0 Tψ

 =


RtR∗t 0 0
0 TϕTϕ TϕSψ
0 S∗ψTψ S∗ψSψ + TψTψ

 .
It is easy to prove that

 Rt 0 0
0 Tϕ◦ϕa R∗tSψ
0 0 Tψ

 is normal iff Sψ is normal and TϕSψ = SψTψ , [Tϕ,Tϕ] =

[Tψ,Tψ] = S∗ψSψ. Similarly, one can easily prove

 Rt 0 0
0 Tϕ◦ϕa R∗tSψ
0 0 Tψ

 is unitary if and only if Sψ is unitary,

[Tϕ,Tϕ] = [Tψ,Tψ] = S∗ψSψ = I and TϕSψ = SψTψ = 0.
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