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Abstract. The main goal of this article is to study the extend Struve and extended modified Struve matrix
functions by making use of extended Beta matrix function. In particular, we investigate certain important
properties of these extended matrix functions such as integral representation, differentiation formula and
hypergeometric representation of these functions. Finally, we obtain some results on the transform and
fractional calculus of these extended Struve and extended modified Struve matrix functions.

1. Introduction and preliminaries

A wide range of special functions in applied sciences are defined via improper integrals or infinite
series. During last decades, several special functions become essential tools for scientists and engineering
due to their applications in mathematical physics, engineering, and Lie theory. This inspire the study of the
extensions of the special functions. In last few years, many extensions of gamma function, beta function,
and Gauss hypergeometric functions have been studied by many researchers(see [4, 9, 27]).

Struve functions are mainly investigated because of their intrinsic mathematical importance in various
problems in many branches of physics and mathematics, because these functions are shown to be natural
particular solutions of a set of ordinary and partial differential equations. The Struve functions Hv(z), which
have close relationship with Bessel functions, appeared as special solutions of the inhomogeneous Bessel
second-order differential equations (see[32–34])
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where W = W(z) = Hv(z) + c1 Jv(z) + c2Yv(z), c1 and c2 are arbitrary constants, such that Jv(z) is the Bessel
functions of the first kind and Yv(z) is Bessel function of the second kind as follow
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The modified Struve LA(z) which closely related to the modified Bessel functions are solutions of the
equations

z2 d2W
dz2 + z

dW
dz
− (z2 + v2)W =

4
√
πΓ(v + 1

2 )
(
z
2

)v+1, (2)

where W =W(z) = LA(z) + c1Iv(z) + c2Mv(z), c1 and c2 are arbitrary constants, such that Iv(z) is the modified
Bessel functions of the first kind and Mv(z) is the modified Bessel function of the second kind as follow

Iv(z) =
∞∑

k=0

( z
2 )2k+v

k!Γ(v + k + 1)
, Mv(z) =

π
2

I−v(z) − Iv(z)
sin(vπ)

.

Nowadays, matrix generalization of special functions has become very important during last years. One
of the motivations is that special matrix functions provide solutions to some physical problems, another
is that special matrix functions are closely related to orthogonal matrix polynomials(see [10–13]). Special
matrix functions like gamma, beta and Bessel matrix function are frequently used in statistics[20, 28], Lie
groups theory [20, 29] and in the solution of matrix differential equations [5, 8, 15, 16, 21–23]. Recently,
a generalization of Gamma, Psi and Beta matrix functions and some properties are established in [1–3].
Very recently, Goyalet al. [14, 19] introduced an extension of the Beta matrix function using the Wiman
matrix function, thus studying various properties and relation-ships of that function and another study was
presented generalized hypergeometric Matrix functions via two-parameter Mittag-Leffler matrix function.

To discuss our main results, we need definition and results of some special matrix functions. Throughout
this paper, forCN denote the N-dimensional complex vector space andCN×N denote all square matrices with
N rows and N columns with entries are complex numbers, Re(z) and Im(z) denote the real and imaginary
parts of a complex number z, respectively. For any matrix A in CN×N, σ(A) is the spectrum of A, the set of
all eigenvalues of A, which will be denoted by ∥A∥, is defined by

∥A∥ = sup
x,0

∥Ax∥2
∥x∥2

,

where for a vector y in CN, ∥y∥2 = (yH y)
1
2 is Euclidean norm of y. I and 0 stand for the identity matrix and

the null matrix in CN×N, respectively. If f (z) and 1(z) are holomorphic functions of the complex variable z
which are defined in an open setΩ of the complex plane and A is a matrix inCN×N such that σ(A) ⊂ Ω, then,
from the properties of the matrix functional calculus (see [6, 17, 22]), it follows that f (A)1(A) = 1(A) f (A).
Furthermore, if B in CN×N is a matrix for which σ(B) ⊂ Ω and if AB = BA, then f (A)1(B) = 1(B) f (A). The
logarithmic norm of a matrix A in CN×N is defined as (see [8, 18])

µ(A) = lim
h→0

∥I + hA∥ − 1
h

= max{z : z ∈ σ(
A + A∗

2
)}. (3)

Suppose the number µ̃(A) is such that

µ̃(A) = −µ(−A) = min{z : z ∈ σ(
A + A∗

2
)}. (4)

Let A and B be two positive stable matrices in CN×N. The Gamma matrix function Γ(A) and the Beta matrix
function B(A,B) have been defined in [6, 17, 24, 25] as follows

Γ(A) =
∫
∞

0
e−ttA−Idt, B(A,B) =

∫ 1

0
tA−I(1 − t)B−Idt, (5)

where tA−I = exp((A − I) ln t). The reciprocal Gamma function denoted by Γ−1(z) = 1
Γ(z) is an entire function

of the complex variable z. Then the image of Γ−1(z) acting on A denoted by Γ−1(A) is a well-defined matrix.
For p, q ∈ Z+, we will denote Γ(A1) . . . Γ(Ap)Γ−1(B1) . . . Γ−1(Bq) by

Γ
( A1, . . . , Ap

B1, . . . , Bq

)
.
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Furthermore, if

A + nI is invertible for all integers n ≥ 0, (6)

then, the reciprocal gamma function is defined as [17]

Γ−1(A) = A(A + I) . . . (A + (n − 1)I)Γ−1(A + nI),n ≥ 1.

By application of the matrix functional calculus, for A in CN×N, then from [8, 15], the Pochhammer symbol
of a matrix argument defined by

(A)n =

{
A(A + I) . . . (A + (n − 1)I) = Γ−1(A)Γ(A + nI), n ≥ 1,
I, n = 0. (7)

Jódar and Cortés have proved in [24, 25] that

Γ(A) = lim
n−→∞

(n − 1)![(A)n]−1nA, (8)

where n ≥ 1is an integer. Let A and B be commuting matrices in CN×N such that the matrices A + nI, B + nI
and A + B + nI are invertible for every integer n ≥ 0, then , we have (see [6, 17, 25])

B(A,B) = Γ(A)Γ(B)[Γ(A + B)]−1. (9)

Let A,B and C be matrices in CN×N and C satisfy condition (6), then the hypergeometric matrix function of
2-numerator and 1-denominator for |z| < 1 is defined by the matrix power series (see [8, 25])

2F1(A,B; C; z) =
∑
n≥0

(A)n(B)n[(C)n]−1

n!
zn, (10)

Let A and B be positive stable matrices in CN×N then, the generalized Gamma matrix function Γ(A,B) has
been defined as follows (see [3])

Γ(A,B) =
∫
∞

0
tA−Ie−(It+ B

t )dt, tA−I = exp((A − I) ln t). (11)

Let A,B and Q be positive stable and commuting matrices in CN×N satisfying the condition (6). Then, the
extended Beta matrix function B(A,Q; B) is defined in the form (see [1])

B(A,Q; B) =
∫ 1

0
tA−I(1 − t)Q−I exp

( −B
t(1 − t)

)
dt. (12)

Let A,B,C,Q and C − Q be commuting positive stable matrices in CN×N and B,C and Q satisfying the
condition (6), then, the extended Gauss hypergeometric matrix and extended Kummer hypergeometric
matrix functions are defined in the forms (see [2])

2F(B)
1 (A,Q; C; z) = Γ(C)Γ−1(Q)Γ−1(C −Q)

∞∑
n=0

(A)nB(Q + nI,C −Q; B)
zn

n!
, (13)

1F(B)
1 (Q; C; z) = Γ(C)Γ−1(Q)Γ−1(C −Q)

∞∑
n=0

B(Q + nI,C −Q; B)
zn

n!
. (14)

The Struve matrix function is defined in the form (see [31])

HA(z) =
∞∑

n=0

(−1)nΓ−1(A + (n + 3
2 )I)

Γ(n + 3
2 )

(
z
2

)A+(2n+1)I, (15)
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where A is a matrix in CN×N satisfying µ̃(A) > −3
2 . The modified Struve matrix function LA(z) is defined as

follows

LA(z) =
∞∑

n=0

Γ−1(A + (n + 3
2 )I)

Γ(n + 3
2 )

(
z
2

)A+(2n+1)I, (16)

where A is a matrix in CN×N such that µ̃(A) > −3
2 . Later, Bakhet et al. [7] used B(A,Q; B) to extended Bessel

matrix function: let A and B are matrices in CN×N satisfying the condition (6)and µ̃(A) > − 1
2 , then, the

extended Bessel matrix function J(A,B)(z) is defined as

J(A,B)(z) =
( 1

2 )A Γ−1(A + I
2 )

√
π

∞∑
k=0

(−1)k

(2k)!
B((k +

1
2

)I,A +
I
2

; B)zA+2kI. (17)

The main object of this paper is to investigate various and study the extended Struve and extended
modified Struve matrix functions by using of extended beta matrix function, then the integral represen-
tations, differentiation formula and hypergeometric representation for the extended Struve and extended
modified Struve matrix functions are discussed. We also give connections with certain generalized gamma
matrix function under certain conditions. As an application, we present some results on the transform and
fractional calculus by the extended Struve and extended modified Struve matrix functions.

The section-wise treatment is as follows. In Section 2, we introduce the extended Struve and extended
modified Struve matrix functions, then establish the integral representations, differentiation formula and
hypergeometric representation of function. In Section 3, we study operators that are of the Riemann-
Liouville fractional integral, and of the Riemann-Liouville and Caputo fractional derivatives of extended
Struve and extended modified Struve matrix functions. Finally, we give conclusions in Section 4.

2. Extended Struve matrix function

In this section, we study and introduce extended Struve matrix function by extended Beta matrix
function. From (15), we can write the struve matrix function as follows

HA(z) =
2( z

2 )A+IΓ−1(A + I
2 )

√
π

∞∑
n=0

(−1)nB((n + 1)I,A +
I
2

)
z2n

(2n + 1)!
. (18)

Definition 2.1. Let A and B are commuting matrices in CN×N satisfying the spectral condition (6) and µ̃(A) > −1
2 ,

then, the extended Struve matrix function H(A,B)(z) is defined in the form

H(A,B)(z) =
2( z

2 )A+IΓ−1(A + I
2 )

√
π

∞∑
n=0

(−1)nB((n + 1)I,A +
I
2
,B)

z2n

(2n + 1)!
. (19)

Remark 2.2. Further, we note the following special cases of the extended Struve matrix function as follows
i- Putting B = 0 in (19) and using Properties of Pochhammer symbol, we get the Struve matrix function in (15)
ii- If taking A = α ∈ C1×1 and B = β ∈ C1×1, in (19), we find the Struve function in [34].

2.1. Integral representation and differentiation formula
In this subsection, we study and show some integral representations and differentials of extended Struve

matrix functions as follows

Theorem 2.3. Let A and B be commuting matrices in CN×N where A and A + nI are invertible for every integer
n ≥ 0 and µ̃(A) > −1

2 , then. The integral representation of extended Struve matrix function is as follows

H(A,B)(z) =
2( z

2 )AΓ−1(A + I
2 )

√
π

∫ 1

0
(1 − u2)A− I

2 sin(zu) exp
( −B
u2(1 − u2)

)
du. (20)



A. Bakhet, F. He / Filomat 36:10 (2022), 3381–3392 3385

Proof. Putting t = u2 in the (12) and using the properties of Beta matrix function, we get

B(A,Q; B) = 2
∫ 1

0
u2A−I(1 − u2)Q−I exp

( −B
u2(1 − u2)

)
du. (21)

By using (21) in (19), we find that

H(A,B)(z) =
4( z

2 )A+IΓ−1(A + I
2 )

√
π

∞∑
n=0

(−1)n

(2n + 1)!

∫ 1

0
u(2n+1)I(1 − u2)A− I

2 exp
( −B
u2(1 − u2)

)
z2ndu

=
4( z

2 )A+IΓ−1(A + I
2 )

√
π

∞∑
n=0

(−1)n

(2n + 1)!

∫ 1

0
u(2n+1)I(1 − u2)A− I

2 exp
( −B
u2(1 − u2)

)
z2ndu

=
2( z

2 )AΓ−1(A + I
2 )

√
π

∫ 1

0
(1 − u2)A− I

2 exp
( −B
u2(1 − u2)

) ∞∑
n=0

(−1)n(zu)2n+1

(2n + 1)!
du

=
2( z

2 )AΓ−1(A + I
2 )

√
π

∫ 1

0
(1 − u2)A− I

2 sin(zu) exp(
−B

u2(1 − u2)
)du.

(22)

This completes the proof.

Remark 2.4. Further, we note the following special cases of the integral representations of the extended Struve matrix
function as follows
i- Putting B = 0 in (20), we have the integral representations of Struve matrix function in [31]
ii - If taking A = α ∈ C1×1 and B = β ∈ C1×1, in (20), we find the integral representations of Struve function in [34].

Theorem 2.5. Let A and B are commuting positive stable matrices in CN×N satisfying the condition (6), we have the
differential of extended Struve matrix function as follows

( d
dz

)2[
z−AH(A,B)(z)

]
= z−AH(A,B)(z) + (A +

I
2

)z−(A+I)H(A+I,B)(z). (23)

Proof. By multiplying both members of (19) by z−A and differentiate each member with respect to z, we get

( d
dz

)2[
z−AH(A,B)(z)

]
=
( d
dz

)2[2( 1
2 )−(A+I)Γ−1(A + I

2 )
√
π

∞∑
n=0

(−1)n
B

(
(n + 1)I,A +

I
2
,B
) z2n+1

(2n + 1)!

]
=

2−AΓ−1(A + I
2 )

√
π

∞∑
n=1

(−1)n
B

(
(n + 1)I,A +

I
2
,B
) z2n−1

(2n − 1)!
.

(24)

By properties of extended beta matrix function in [1], we get

B(A,Q + I; B) +B(A + I,Q; B) = B(A,Q; B),

we find

( d
dz

)2[
z−AH(A,B)(z)

]
=

2−AΓ−1(A + I
2 )

√
π

∞∑
n=1

(−1)n

(2n − 1)!
z2n−1

[
B(nI,A +

I
2
,B) −B(nI,A +

3I
2
,B)
]
. (25)
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Replacing n by k + 1 in the above equation, we get( d
dz

)2[
z−AH(A,B)(z)

]
= −

2−AΓ−1(A + I
2 )

√
π

∞∑
k=0

(−1)n

(2k + 1)!
z2k+1
[
B((k + 1)I,A +

I
2
,B) −B((k + 1)I,A +

3I
2
,B)
]
.

= z−A
[2( z

2 )A+IΓ−1(A + I
2 )

√
π

∞∑
k=0

(−1)n

(2k + 1)!
z2kB
(
(k + 1)I,A +

I
2
,B
)]

+ (A +
I
2

)z−(A+I)
[2( z

2 )A+2IΓ−1(A + 3I
2 )

√
π

∞∑
k=0

(−1)n

(2k + 1)!
z2kB
(
(k + 1)I,A +

3I
2
,B
)]

= z−AH(A,B)(z) + (A +
I
2

)z−(A+I)H(A+I,B)(z),

(26)

which completes the proof of the required result.

2.2. Connections with certain generalized gamma matrix function
In the subsection, we give connections with certain generalized gamma matrix function.
Let A and B be commuting matrices in CN×N satisfying the condition µ̃(A) > −3

2 , then, the extended
Struve matrix function H(A,B)(z) is defined in the form

H(A,B)(z) =
∞∑

n=0

(−1)nΓ−1(A + (n + 3
2 )I,B)

Γ(n + 3
2 )

(
z
2

)A+(2n+1)I, (27)

Now, We give some properties of extended Struve matrix function as follows.

Theorem 2.6. Let A, B, C, and A − B are positive stable matrices in CN×N, such that A, B, C commute with each
other, we have

H(A,C)(z) = 2Γ−1(A − B,C)(
z
2

)A−B
∫ 1

0
(1 − t2)A−B−ItB+I exp

(
(
−C

t2(1 − t2)

)
H(B,C)(zt)dt. (28)

Proof. Consider the integral

F =
∫ 1

0
(1 − t2)A−B−ItB+I exp

( −C
t2(1 − t2)

)
H(B,C)(zt)dt,

we have

F =
∞∑

n=0

(−1)n

Γ(n + 3
2 )
Γ−1(B + (n +

3
2

)I,C)(
z
2

)B+(2n+1)I
∫ 1

0
(1 − t2)A−B−It2B+(2n+2)I exp

(
(
−C

t2(1 − t2)

)
dt. (29)

Putting u = t2 in (29), we get

F =
∞∑

n=0

(−1)n

2Γ(n + 3
2 )
Γ−1(B + (n +

3
2

)I,C)(
z
2

)B+(2n+1)I
∫ 1

0
(1 − u)A−B−IuB+(n+ 1

2 )I exp
( −C
u(1 − u)

)
du.

=
1
2

∞∑
n=0

(−1)n

Γ(n + 3
2 )

(
z
2

)B+(2n+1)IΓ−1(B + (n +
3
2

)I,C)B(A − B,B + (n +
3
2

)I; C)

=
1
2
Γ−1(B + (n +

3
2

)I,C)
∞∑

n=0

(−1)n

Γ(n + 3
2 )

(
z
2

)B+(2n+1)IΓ(A − B,C)Γ(B + (n +
3
2

)I,C)Γ−1(A + (n +
3
2

)I,C)

=
1
2
Γ(A − B,C)(

z
2

)B−AH(A,C)(z).

(30)

This completes the proof.
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Theorem 2.7. Let A, B are commuting positive stable matrices in CN×N, then each of the following properties holds
true

(i) d
dz [zAH(A,B)(z)] = zAH(A−I,B)(z);

(ii) d
dz [z−AH(A,B)(z)] = 2−AΓ−1(A+ 3

2 I,B)
√
π

− z−AH(A+I,B)(z).

Proof. (i) From (27), we have

d
dz

[zAH(A,B)(z)] =
d
dz

∞∑
n=0

(−1)nΓ−1(A + (n + 3
2 )I,B)z2A+(2n+1)I

2A+(2n+1)IΓ(n + 3
2 )

= 2
∞∑

n=0

(−1)nΓ−1(A + (n + 3
2 )I,B)(A + (n + 1

2 )I)z2A+2nI

2A+(2n+1)IΓ(n + 3
2 )

= zA
∞∑

n=0

(−1)nΓ−1(A + (n + 1
2 )I,B)zA+2nI

2A+2nIΓ(n + 3
2 )

= zAH(A−I,B)(z).

(ii) From (27), we have

d
dz

[z−AH(A,B)(z)] =
d
dz

∞∑
n=0

(−1)nΓ−1(A + (n + 3
2 )I,B)z(2n+1)I

2A+(2n+1)IΓ(n + 3
2 )

= 2
∞∑

n=0

(−1)nΓ−1(A + (n + 3
2 )I,B)z2nI

2A+(2n+1)IΓ(n + 1
2 )

= z−A
∞∑

n=0

(−1)nΓ−1(A + (n + 3
2 )I,B)zA+2nI

2A+2nIΓ(n + 1
2 )

.

A shift of index from n to k + 1 yields

d
dz

[z−AH(A,B)(z)] = z−A
∞∑

k=−1

(−1)k+1Γ−1(A + (k + 5
2 )I,B)zA+I+(2k+1)I

2A+I+(2k+1)IΓ(k + 3
2 )

= z−A Γ
−1(A + 3

2 I,B)zA

Γ( 1
2 )2A

− z−A
∞∑

k=0

(−1)kΓ−1(A + (k + 5
2 )I,B)zA+I+(2k+1)I

2A+I+(2k+1)IΓ(k + 3
2 )

=
2−AΓ−1(A + 3

2 I,B)
√
π

− z−AH(A+I,B)(z),

(31)

which completes the proof relation (ii).

2.3. Extended modified Struve matrix function
Definition 2.8. Let A and B be matrices in CN×N satisfying the spectral condition (6) and µ̃(A) > −1

2 , then, the
extended modified Struve matrix function L(A,B)(z) is defined in the form

L(A,B)(z) =
2( z

2 )A+IΓ−1(A + I
2 )

√
π

∞∑
n=0

B((n + 1)I,A +
I
2
,B)

z2n

(2n + 1)!
. (32)

Remark 2.9. Further, we note the following special cases of the extended modified Struve matrix function as follows
i- Putting B = 0 in (32), by using the properties of the Pochhammer symbol, we get the modified Struve matrix
function in (16)
ii- If taking A = α ∈ C1×1 and B = β ∈ C1×1 in (32), we find the modified Struve function in [34].
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Now, we give the integral representations of the extended modified Struve matrix function as

Theorem 2.10. Let A and B be commuting matrices in CN×N where A, A + nI and B are invertible and µ̃(A) > −1
2 ,

then

L(A,B)(z) =
2( z

2 )AΓ−1(A + I
2 )

√
π

∫ 1

0
(1 − t2)A− I

2 sinh(zt) exp
( −B
t2(1 − t2)

)
dt. (33)

Proof. By substitute the series for sinh(zt) in the right hand side (33), we have

R =
2( z

2 )AΓ−1(A + I
2 )

√
π

∫ 1

0
(1 − t2)A− I

2 sinh(zt) exp
( −B
t2(1 − t2)

)
dt

=
2( z

2 )AΓ−1(A + I
2 )

√
π

∞∑
n=0

(z)2n+1

(2n + 1)!

∫ 1

0
(1 − t2)A− I

2 t(2n+1)I exp
( −B
t2(1 − t2)

)
dt.

(34)

Putting t2 = u in (34) and using the properties of the extended Beta matrix function, we have

R =
2( z

2 )AΓ−1(A + I
2 )

√
π

∞∑
n=0

(z)(2n+1)

2(2n + 1)!

∫ 1

0
(1 − u)A− I

2 unI exp
( −B
u(1 − u)

)
du

=
2( z

2 )AΓ−1(A + I
2 )

√
π

∞∑
n=0

(z)(2n+1)

2(2n + 1)!
B(n + 1)I,A +

I
2
,B)

=L(A,B)(z),

(35)

which completes the proof relation (33).

2.4. Hypergeometric representation

Form the definition of the extended Struve matrix function in (19), we can write the extended hyperge-
ometric matrix function form of extended Struve matrix function

H(A,B)(z) =
2( z

2 )A+IΓ−1(A + 3I
2 )

√
π

(
Γ−1(A +

I
2

)Γ(A +
3I
2

)
∞∑

n=0

[( 3
2 I)n]−1B((n + 1)I,A + I

2 ,B)
n!

(−
z2

4
)n
)

=
2( z

2 )A+IΓ−1(A + 3I
2 )

√
π

1F(B)
2 (I;

3I
2
,A +

3I
2

;−
z2

4
),

(36)

where 1F(B)
2 (I; 3I

2 ,A +
3I
2 ;− z2

4 ) is called extended hypergeometric matrix function as (13).
In similar manner, we can write the extended hypergeometric matrix function form of extended modified

Struve matrix function

L(A,B)(z) =
2( z

2 )A+IΓ−1(A + 3I
2 )

√
π

1F(B)
2 (I;

3I
2
,A +

3I
2

;
z2

4
). (37)

3. Fractional calculus of extended Struve matrix function

In this section, we introduce and study operators that are of the Riemann- Liouville fractional integral,
and of the Riemann-Liouville and Caputo fractional derivatives of the extended Struve and extended Mod-
ified Struve matrix functions. The fractional order integral and derivative of Riemann-Liouville operator
of order µ and x > 0 such that Re(µ) > 0, which are given as follows (see[26, 30])

(Iµa f )(x) =
1
Γ(µ)

∫ x

a
(x − t)µ−1 f (t)dt (38)
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and

Dµa f (x) =
1

Γ(−µ)

∫ x

a
(x − t)−µ−1 f (t)dt. (39)

For the fractional order integral and derivative, we have the following definition (see[8]).

Definition 3.1. Let A be a positive stable matrix in CN×N and µ ∈ C such that Re(µ) > 0. Then, the Riemann-
Liouville fractional integral of order µ is defined

Iµ(xA) =
1
Γ(µ)

∫ x

0
(x − t)µ−1tAdt. (40)

The Riemann-Liouville fractional derivative of order µ is defined by

Dµ(xA) =
1

Γ(−µ)

∫ x

0
(x − t)−µ−1tAdt. (41)

Let A be a positive stable matrix in CN×N, such that Re(µ) > 0. Then, the Riemann-Liouville fractional
integral of order µ is defined (see[8])

Iµ(xA−I) = Γ(A)Γ−1(A + µI)xA+(µ−1)I. (42)

Lemma 3.2. Let A be a positive stable matrix inCN×N, such that Re(µ) > 0, we get the Riemann-Liouville fractional
derivative of order µ as follows

Dµ(xA−I) = Γ(A)Γ−1(A − µI)xA−(µ+1)I. (43)

Proof. From (41), we find that

Dµ(xA−I) =
1

Γ(−µ)

∫ x

0
(x − t)−µ−1tA−Idt =

1
Γ(−µ)

∫ x

0
x−µ−1(1 −

t
x

)−µ−1tA−Idt. (44)

putting u = t
x , we obtain

Dµ(xA−I) =
1

Γ(−µ)

∫ 1

0
x−µ−1(1 − u)−µ−1(ux)A−Idu =

xA−(µ+1)I

Γ(−µ)

∫ 1

0
(1 − u)(−µ−1)IuA−Idu

=
xA−(µ+1)I

Γ(−µ)
B(−µI,A) = Γ(A)Γ−1(A − µI)xA−(µ+1)I,

which yields assertion (43).

Thus we can rewrite (19) in this form

H(A,B)(z) = 2−A(z)A+I Γ−1(A +
3
2

I)
∞∑

n=0

Γ
( A + 3

2 I
I, A + 1

2 I

)
B((n + 1)I,A +

I
2

; B)
(−z

2 )2

( 3
2 )nn!

. (45)

Theorem 3.3. Let A, B and C are positive stable matrices in CN×N and A, B , C commute with each other, such that
Re(µ) > 0, we find integral operators representation of extended Struve matrix function as follows

Iµ
[
xC−I H(A,B)(wx)

]
=
√
πxA+C+µI Γ−1(A +

3
2

I)2F(B)
1 (I, I; A +

3
2

I; (
−wx

2
)2)

×

∞∑
n=0

Γ
( A + C + (2k + 1)I

A + C + (µ + 2k + 1)I, ( 3
2 + k)I

)
(
−wx

2
)2n, |wx| < 1.

(46)
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Proof. Form (45), we find

Iµ
[
xC−I H(A,B)(wx)

]
= 2−A(w)A+I Γ−1(A +

3
2

I)
∞∑

n=0

Γ
( A + 3

2 I
I, A + 1

2 I

)
B((n + 1)I,A +

I
2

; B)
(−wx

2 )2

( 3
2 )nn!

Iµ
[
xA+C+2nI

]
, (47)

and using (42), we have

Iµ
[
xC−I H(A,B)(wx)

]
=
√
πxA+C+µI(

w
2

)A+I Γ−1(A +
3
2

I)

×

∞∑
n=0

(I)nΓ
( A + 3

2 I
I, A + 1

2 I

)
n!

B((n + 1)I,A +
I
2

; B) Γ
( A + C + (2n + 1)I

3
2 I, A + C + µI

)
(
−wx

2
)2n

=
√
πxA+C+µI Γ−1(A +

3
2

I)2F(B)
1 (I, I; A +

3
2

I; (
−wx

2
)2)

×

∞∑
n=0

Γ
( A + C + (2k + 1)I

A + C + (µ + 2k + 1)I, ( 3
2 + k)I

)
(
−wx

2
)2n.

(48)

This completes the proof.

Theorem 3.4. Let A, B and C are positive stable matrices in CN×N and A, B , C commute with each other, such that
Re(µ) > 0, we have differential operators representation of extended Struve matrix function as follows

Dµ
[
xC−I H(A,B)(wx)

]
=
√
πxA+C−2I(

w
2

)A+I Γ−1(A +
3
2

I)2F(B)
1 (I, I; A +

3
2

I; (−
wx
2

)2)

×

∞∑
n=0

Γ
( A + C + (2k + 1)I

A + C + (µ + 2k + 1)I, ( 3
2 + k)I

)
(−

wx
2

)2, |wx| < 1.
(49)

Proof. By using (45) , we get

Dµ
[
xC−I H(A,B)(wx)

]
=2−A(w)A+I Γ−1(A +

3
2

I)

×

∞∑
n=0

Γ
( A + 3

2 I
I, A + 1

2 I

)
B((n + 1)I,A +

I
2

; B)
(−wx

2 )2

( 3
2 )nn!

Dµ
[
xA+C+(2n−1)I

]
,

(50)

from (43), we have

Dµ
[
xC−I H(A,B)(wx)

]
=
√
πxA+C−2I(

w
2

)A+I Γ−1(A +
3
2

I)

×

∞∑
n=0

(I)nΓ
( A + 3

2 I
I, A + 1

2 I

)
n!

B((n + 1)I,A +
I
2

; B) Γ
( A + C + (2n + 1)I

3
2 I, A + C + µI

)
(
−wx

2
)2

=
√
πxA+C−2I(

w
2

)A+I Γ−1(A +
3
2

I)2F(B)
1 (I, I; A +

3
2

I; (−
wx
2

)2)

×

∞∑
n=0

Γ
( A + C + (2k + 1)I

A + C + (µ + 2k + 1)I, ( 3
2 + k)I

)
(−

wx
2

)2.

(51)

This completes the proof.

Similar to Theorem 3.3 and Theorem 3.4, we can get the result about the fractional integral and the fractional
derivatives of extended modified Struve matrix function L(A,B)(z), we give the following statements without
proofs.
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Theorem 3.5. Let A, B and C are positive stable matrices in CN×N and A, B , C commute with each other, such that
Re(µ) > 0, we find integral operators representation of extended modified Struve matrix function as follows

Iµ
[
xC−I L(A,B)(wx)

]
=
√
πxA+C+µI Γ−1(A +

3
2

I)2F(B)
1 (I, I; A +

3
2

I; (
wx
2

)2)

×

∞∑
n=0

Γ
( A + C + (2k + 1)I

A + C + (µ + 2k + 1)I, ( 3
2 + k)I

)
(
wx
2

)2n, |wx| < 1.
(52)

Theorem 3.6. Let A, B and C are positive stable matrices in CN×N and A, B , C commute with each other, such that
Re(µ) > 0, we get differential operators representation of extended modified Struve matrix function as follows

Dµ
[
xC−I L(A,B)(wx)

]
=
√
πxA+C−2I(

w
2

)A+I Γ−1(A +
3
2

I)2F(B)
1 (I, I; A +

3
2

I; (
wx
2

)2)

×

∞∑
n=0

Γ
( A + C + (2k + 1)I

A + C + (µ + 2k + 1)I, ( 3
2 + k)I

)
(
wx
2

)2, |wx| < 1.
(53)

4. Conclusions

We conclude our analysis by remarking that the results presented in this article are new and very
potential for the extension of other special matrix functions. First, we have generalized extended Struve
and modified Struve matrix functions, then we have studied several basic properties like integral repre-
sentations, differentiation formulas, and transformations hypergeometric functions. The results presented
here articulating an interesting application in fractional calculus of these extended Struve and extended
modified Struve matrix functions.
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