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Abstract. This paper is devoted to the existence of positive periodic solutions for sytem of a class
of nonlinear delay differential equations with periodic conditions. Our analysis is based on Mawhin
coincidence degree theorem. An example is also presented to illustrate the effectiveness of the main result.

1. Introduction

In this paper, we first consider the nonlinear nonautonomous delayed differential system d2x
dt2 = F (t, x (t − τ1 (t) , . . . , x (t − τn) ,u (t − δ (t)))) , t ∈ [0, ω] ,

d4u
dt4 = a (t) u (t) + η (t) f (x (t − σ (t))), t ∈ [0, ω] ,

(1)

subject with the following periodic boundary conditions

 x(i) (0) = x(i) (ω) = 0, i ∈ {0, 1} ,
u(i) (0) = u(i) (ω) = 0, i ∈ {0, 1, 2, 3} ,

(2)

where f
(
t, y1, y2, . . . , yn, yn+1

)
∈ C

(
[0, ω] ×Rn+1,R

)
,

δ (·) ∈ C (R,R) , a (·) , η (·) ∈ C
(
R,R∗+

)
are ω−periodic functions with respect to t and ω > 0.

It is well-known that second-order and fourth-order equation (1) under consideration can be reduced in an
obvious way to a systems of the first-order

dx
dt
=

(
0 1
0 0

)
u +

(
0

F (t, x (t − τ1 (t)) , . . . , x (t − τn (t)) ,u (t − δ (t)))

)
,

and

du
dt
=


0 1 0 0
0 0 1 0
0 0 0 1

a(t) 0 0 0

 u +


0
0
0

η (t) f (x (t − σ (t)))

 .
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with boundary conditions x (0) = x (ω) , u (0) = u (ω) respectively.
Delay differential equations (DDEs) are used to model biological, physical, and sociological processes, as
well as naturally occurring oscillatory systems (see, for example [1, 32]. It is known that, in delay differential
equations, the presence of the delay term causes the difficulties in analysis of differential equations. In many
biological phenomena and engineering applications the dynamics of the system is determined in part by
a feedback loop. When this feedback is delayed signicantly compared to the time scale of the dynamics,
such systems are often described by DDEs. The analysis of DDEs is considerably more difficult than that of
ordinary differential equations (ODEs), since the phase space of the dynamics of DDEs is effectively infinite
dimensional. Much progress has been made in studying DDEs, and we refer to [23] for overviews and
highlights. Nevertheless, it is fair to say that even for the study of relatively simple dynamic structures
such as periodic solutions a great desire for new exible, generally applicable techniques remains.

In recent years, there has been considerable interest in the existence of periodic solutions of the following
equation

u′ (t) − a (t) 1 (u (t)) u (t) = λb (t) f (t,u (t − τ (t))) , t ∈ [0, ω] ,

where a, b ∈ C (R, [0,+∞)) are ω−periodic functions with
∫ ω

0 a (t) dt > 0,
∫ ω

0 b (t) dt > 0 and τ is a
continuous ω−periodic function, see [21]. It is usually difficult to solve these kinds of delay differential
equations analytically or to show the existence of periodic solutions for the problem associeted with it ( for
more details, see [36]). This equation has been proposed as a model for a variety of physiological processes
and conditions including production of blood cells, respiration, and cardiac arrhythmias, see, for instence
[24] and the references therein. For example, Mackey-Glass equation [32], a scalar DDE with a single delay
and a nonpolynomial nonlinearity

u′ (t) = −βu (t) + α
u (t − τ)

1 + u (t − τ)ρ
,

this DDE, which models the concentration of white blood cells in a subject, is one of the first scalar DDEs
that was conjectured to exhibit chaotic behaviour. In this equation, α is the production rate of new cells
and β is the rate at which the cells die. The delay parameter τ > 0 models the time it takes for the subject’s
body to observe the concentration and react, by either increasing or decreasing cell production and the
positive real (i.e., not necessarily integer) parameter ρ models the assumption that the production of new
cells will abruptly stop if the concentration is higher than the critical concentration, for more details, see [36].

Boundary value problems at resonance have been investigated for many years. The existence results
obtained by different approaches, as example, the following methods have devoloped : coicidence de-
gree theory due to Mawhin [33, 34], coinsidence theorem of Schauder type [41], topological degree [37], a
Leggett-Williams typ theorem for coincidences [25], fixed point index theorem [28], a method refered as the
shift argument combined with krasnoselskii fixed point or with monotone method coupled with, upper and
lower method [4, 6, 7, 29]. For some developement on the existence results of the boundary value problems
at resonance for the case that dimension of the kernel can be arbitrary, we can refer to [2, 5, 18, 30, 36]. In
recent years, many different kinds of nonlinear boundary value problems, using different approches have
been studied by many researchers, see for example [8–17, 20–22].

To the best of our knowledge, few results can be found in the literature conserning boundary value
problem for differential equations with delay at resonance and nonlinear delay differential system at res-
onance [19, 25, 26]. From this point of view, it is imperative to study nonlinear delay differential system.
Moreover, it has been noticed that most works existing in the literature and [19, 26] on the topic are based
on the nonlinear homogenuous delay systems (i.e., the differential equations are the same order). But in
this paper we focus to study nonlinear mixed delay system.
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Here is brief outline of the paper. The next section provides the definitions and preliminaries results. Then,
we present the existence results in Section 3 for problem (1) − (2). The argument are based on coincidence
degree theorem of Mawhin. An illustrative example is also presented.

2. Preliminaries

Let X = C [0, ω] equipped with the norm ∥u∥ = max
t∈[0,ω]

|u (t)|. We denote

C−ω = {u (t) ∈ X, u (t) < 0, u (ω + t) = u (t) , t ∈ [0, ω]} . (3)

Lemma 2.1. For ρ > 0 and h ∈ X, the equation v(4) (t) − ρ4v (t) = h (t) , t ∈ [0, ω] ,
v(i) (0) = v(i) (ω) , i ∈ {0, 1, 2, 3} ,

(4)

has a unique ω-periodic solution which is of the form

v (t) =

ω∫
0

G (t, s) (−h (s)) ds,

where

G (t, s) =


exp(ρ(t−s))+exp(ρ(s+ω−t))

4ρ3(exp(ρω)−1) +
sinρ(t−s)−sinρ(t−s−ω)

4ρ3(1−cosρω) , 0 ≤ s ≤ t ≤ ω,
exp(ρ(t+ω−s))+exp(ρ(s−t))

4ρ3(exp(ρω)−1) +
sinρ(s−t)−sinρ(s−ω−t)

4ρ3(1−cosρω) , 0 ≤ t ≤ s ≤ ω.
(5)

Proof. It is easy to check that the associated homogeneous equation of (4) has the solution

v (t) = c1exp
(
ρt

)
+ c2exp

(
−ρt

)
+ c3 cos

(
ρt

)
+ c4 sin

(
ρt

)
.

Applying the method of the variation of parameters, we have

c
′

1 (t) =
exp

(
−ρt

)
h (t)

4ρ3 , c
′

2 (t) =
−exp

(
ρt

)
h (t)

4ρ3 ,

c
′

3 (t) =
sin

(
ρt

)
h (t)

2ρ3 , c
′

4 (t) =
− cos

(
ρt

)
h (t)

2ρ3 ,

and then

c1 (t) = c1 (0) +

t∫
0

exp
(
−ρs

)
h (s)

4ρ3 ds, c2 (t) = c2 (0) +

t∫
0

−exp
(
ρ
)

h (s)
4ρ3 ds.

c3 (t) = c3 (0) +

t∫
0

sin
(
ρs

)
h (s)

2ρ3 ds, c4 (t) = c4 (0) +

t∫
0

− cos
(
ρs

)
h (s)

2ρ3 ds.

Noting that v(i) (0) = v(i) (ω) , i ∈ {0, 1, 2, 3}, we obtain

c1 (0) =

ω∫
0

exp
(
ρ (ω − s)

)
4ρ3 (

1 − exp
(
ρω

))h (s) ds, c2 (0) =

ω∫
0

exp
(
ρs

)
4ρ3 (

1 − exp
(
ρω

))h (s) ds.
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c3 (0) = −

ω∫
0

sin
(
ρs

)
− sin

(
ρ (s − ω)

)
4ρ3 (

1 − cos
(
ρω

)) h (s) ds, c4 (0)) = −

ω∫
0

cos
(
ρ (s − ω)

)
− cos

(
ρs

)
4ρ3 (

1 − cosρω
) h (s) ds.

Therefore

v (t) = c1 (t) exp
(
ρt

)
+ c2 (t) exp

(
−ρt

)
+ c3 (t) cos

(
ρt

)
+ c4 (t) sin

(
ρt

)
,

=

t∫
0

[
exp

(
ρ (t − s)

)
+ exp

(
ρ (s + ω − t)

)
4ρ3 (

exp
(
ρω

)
− 1

) +
sin

(
ρ (t − s)

)
− sin

(
ρ (t − s − ω)

)
4ρ3 (

1 − cos
(
ρω

)) ]
(−h (s)) ds

+

ω∫
t

[
exp

(
ρ (t + ω − s)

)
+ exp

(
ρ (s − t)

)
4ρ3 (

exp
(
ρω

)
− 1

) +
sin

(
ρ (s − t)

)
− sin

(
ρ (s − t − ω)

)
4ρ3 (

1 − cos
(
ρω

)) ]
(−h (s)) ds

=

ω∫
0

G (t, s) (−h (s)) ds,

where G (t, s) is defined as in (5).
By a direct calculation, we obtain the solution u satisfies the periodic boundary value condition of the
problem (4).

We shall using in the sequel the following property. Note that, from the property of periodicity, for all
h ∈ X, we know

ω∫
0

h (s) ds =

t+ω∫
t

h (s) ds, t ∈ [0, ω] .

Now, we compute the lower and an upper bound of the Green’s function defined in (5).

Lemma 2.2. The Green’s function satisfies the equality
∫ ω

0 G (t, s) ds = 1
ρ4 and ifρ < πω holds, then 0 < l ≤ G (t, s) ≤ L

for all t ∈ [0, ω] and s ∈ [0, ω], where

l =
1

4ρ3 (
exp

(
ρω

)
− 1

) ,
and

L =
1 + exp

(
ρω

)
4ρ3 (

exp
(
ρω

)
− 1

) + 1
2ρ3 (

1 − cosρω
) .

Proof. From (5), we obtain
∫ ω

0 G (t, s) ds = 1
ρ4 . If ρ < πω , we get G (t, s) > 0 for all t ∈ [0, ω] and s ∈ [0, ω].

Next, we compute a lower and an upper bound for G (t, s) , s ∈ [0, ω]. We have

1
4ρ3 (

exp
(
ρω

)
− 1

) ≤ exp
(
ρ (t − s)

)
+ exp

(
ρ (s + ω − t)

)
4ρ3 (

exp
(
ρω

)
− 1

) ≤ G (t, s) ,

and

G (t, s) =
exp

(
ρ (t − s)

)
+ exp

(
ρ (s + ω − t)

)
4ρ3 (

exp
(
ρω

)
− 1

) +
sin

(
ρ (t − s)

)
− sin

(
ρ (t − s − ω)

)
4ρ3 (

1 − cos
(
ρω

)) ,
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≤
1 + exp

(
ρ (ω)

)
4ρ3 (

exp
(
ρω

)
− 1

) + sin
(
ρ
(
t − s − 1

2ω +
1
2ω

))
− sin

(
ρ
(
t − s − 1

2ω −
1
2ω

))
4ρ3 (

1 − cos
(
ρω

)) ,

≤
1 + exp

(
ρω

)
4ρ3 (

exp
(
ρω

)
− 1

) + 2 cos
(
ρ
(
t − s − 1

2ω
))

sin
(
ρ
(

1
2ω

))
4ρ3 (

1 − cos
(
ρω

)) ,

≤
1 + exp

(
ρω

)
4ρ3 (

exp
(
ρω

)
− 1

) + 1
2ρ3 (

1 − cos
(
ρω

)) .
Consider the existence of positive periodic solutions for the fourth-order nonlinear differential equation

with ω-periodic boundary value conditions in (4),

v(4) (t) − a (t) v (t) = η (t) f (u (t − τ (t))) ,

where f ∈ C ([0, ω] × [0,∞) , [0,∞)), a ∈ C ([0, ω] , (0,∞)) and f (t,u) > 0 for u > 0.

We introduce the following abbreviations ( for more details, see [3]).

a∗ = max {a (t) : t ∈ [0, ω]} , a∗ = min {a (t) : t ∈ [0, ω]} , ρ = 4√a∗.

It is easy to see that, for any h ∈ C−ω, the following boundary value problem v(4) (t) − a (t) v (t) = h (t) , t ∈ (0, ω) ,
v(i) (0) = v(i) (ω) , i ∈ {0, 1, 2, 3} ,

(6)

is equivalent to the following boundary value problem

 v(4) (t) − a∗v (t) = (a (t) − a∗) v (t) + h (t) ,
v(i) (0) = v(i) (ω) , i ∈ {0, 1, 2, 3} ,

(7)

Define operators A, B : X→ X by

(Ah) (t) =

ω∫
0

G (t, s) (−h (s)) ds, (Bu) (t) = (a (t) − a∗) u (t) . (8)

Let Θ : X→ X be a operator defined by

(Θh) (t) = (I − AB)−1 (Ah) (t) ,

where h ∈ C−ω.

Lemma 2.3. (See [3]) Let h ∈ C−ω. Then, v ∈ C [0, ω] is a solution of v(4) (t) − a∗v (t) = (a (t) − a∗) v (t) + h (t) ,
v(i) (0) = v(i) (ω) , i ∈ {0, 1, 2, 3} ,

if and only if

v (t) = (I − AB)−1 (Ah) (t) = (Θh) (t) , t ∈ [0, ω] ,

where A and B defined by (8).

Lemma 2.4. (see [3]) Let ρ < πω holds. Then, Θ is a continuous mapping satisfying the following condition:

(Θu) (t) > 0, u ∈ C [0, ω] .
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3. Main Results

In this section, we state and prove the existence results. The proof is based on the following theorem,
wich can be found in [31].

We first recall some notations and an abstract existence results of coincidence degree theory due to Mawhin
[7, 9, 15]. Let

X = Z = C ([0, ω]) = {x ∈ C (R,R) : x (t + ω) = x (t)} ,

be two real Banach spaces endowed with the norm

∥x∥ = max
t∈R
|x (t)| = max

t∈[0,ω]
|x (t)| .

Definition 3.1. A linear operator L : domL ⊂ X→ Z is called to be a Fredholm operator provided that
(i) KerL is finite dimensional,
(ii) ImL is closed and has finite codimension.
In addition the Fredholm of idex of L is defined by the integer number

indL = dim KerL − co dim ImL.

From Definition 3.1, it follows that if L : domL ⊂ Y → Z is a Fredholm of index zero (that is, ImL,
the image of L, KerL, the kernel of L is finite dimensional with the same dimension as the Z/ImL) and
it is a linear operator, then there exist continuous projections P : X → X and Q : Z → Z such that
ImP = KerL, KerQ = ImL and Y = KerL⊕KerP, Z = ImL⊕ ImQ. It follows that L |domL∩KerP→ ImL is invertible,
we denote the inverse of that map by KP.
LetΩ be an open bounded subset of Y such that domL∩Ω , ϕ, the map N : Y→ Z is said to be L− compact
on Ω if the map QN : Ω→ Z is bounded and KP (I −Q) N : Ω→ Y is compact.

Definition 3.2. Let L be a Fredholm operator of index zero. The operator N : X→ Z is said to be L− compact inΩ
provided that
(i) the map QN : Ω→ Z is cotinuous QN

(
Ω

)
is bounded in Z,

(ii) the map KP,QN : Ω→ X is completely continuous.
In addition, we say that N is L−completely continuous if it is L−compact on every bounded set in X.

We will formulate the boundary value problem (1)− (2) as Lu = Nu where L and N are approriate operators.
To obtain our existence results we use the following fixed point theorem of (Mawhin 1979).

Theorem 3.3. (See [31]) Let L be a Fredholm operator of index zero and N be L − compact on Ω. Assume that the
following conditions are satisfied:
(i) Lu , λNu for every (u, λ) ∈ [(domL \ KerL) ∩ ∂Ω] × (0, 1).
(ii) Nu < ImL for every u ∈ KerL ∩ ∂Ω.
(iii) de1 (QN |KerL,Ω ∩ KerL, 0) , 0,
where Q : Z→ Z is a projection as above with ImL = KerQ.
Then the abstract equation Lu = Nu has at least one solution in domL ∩Ω.

Let us list the following assumptions.
(H1) For t ∈ [0, ω] and u ∈ C [0, ω],

η (t) f (x (t − σ (t))) < 0. (9)
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(H2) There exists a constant C > 0 such that, if x (t) and u (t) are continuous ω−periodic function and satisfy

ω∫
0

F (t, x (t − τ1 (t) , . . . , x (t − τn) ,u (t − δ (t)))) dt = 0,

then we have
ω∫

0

F (t, x (t − τ1 (t) , . . . , x (t − τn) ,u (t − δ (t)))) dt ≤ C.

(H3) There exists a constant H > 0 such that when vi ≥ H, i = 1, 2, . . . ,n + 1,

F (t, v1, v2, . . . , vn+1) > 0, F (t,−v1,−v2, . . . ,−vn+1) < 0,

uniformly hold for [0,∞).

Theorem 3.4. Let the conditions (H1) , (H2) and (H3) hold. Then, the system (1) − (2) has at least one positive
ω−periodic solution.

For the Proof of Theorem 3.4, we shall apply Theorem 3.3 and the following Lemmas. Before we state our
lemmas, we say that L is a Fredholm operator of index zero, that is, ImL is closed and dim KerL = co dim ImL.
This implies that there exist a continuous projections P : Y→ Y and Q : Z→ Z such that ImP = KerL and
KerQ = ImL. For this purpose, we must define P by (12) (see later), by setting

Ry = aω +

ω∫
0

(ω − s) y (s) ds, ∀a ∈ R,

the linear continuous projector operator Q defined by

Qy (t) =
1
C
·
(
Ry

)
· t,

where C = aω +
∫ ω

0
(ω − t) tdt , 0, t ∈ (0, ω] and the generalized inverse operator KP : ImL→ X ∩ KerP of L

defined by

KPy (t) =

t∫
0

(t − s) y (s) ds.

Lemma 3.5. (i) The operator L : domL ⊂ Y→ Z is a Fredholm operator of index zero.
(ii) For every y ∈ ImL, we have∥∥∥KPy

∥∥∥ ≤ ∥∥∥y
∥∥∥

1
.

Proof. It is obvious that u (t) is the unique ω−periodic solution of second equation in (1) for x ∈ C [0, ω].
Therefore, the existence problem of ω−periodic solution of (1) − (2) is equivalent to that of ω−periodic
solutions of the equation

d2x (t)
dt2 = F (t, x (t − τ1 (t)) , . . . , x (t − τn) , Θ (t − δ (t))) ,

where Θ defined in Lemma 2.3.
Let X = C1 [0, 1] , Z = L1 [0, ω], define the linear operator L : domL ⊂ X→ Z by

Lx = x′′, x ∈ domL,
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where

domL =
{
u ∈W2,1 (0, 1) : u (0) = u (ω) = 0

}
,

and define N : X→ Z by

Nx = F (t, x (t − τ1 (t)) , . . . , x (t − τn) , Θ (t − δ (t))) . (10)

It is clear that

KerL = {x ∈ domL ⊂ X : Lx = 0}

= {x ∈ domL ⊂ X : x′′ = 0}

= {x ∈ domL : x (t) = at, a ∈ R} ≃ R.

Now, we show that

ImL =

y ∈ Z : at +

ω∫
0

(ω − s) y (s) ds = 0, a ∈ R, t ∈ [0, ω]

 . (11)

Since the problem

x′′ = y,

has a solution x (t) that satisfies the conditions x(i) (0) = x(i) (ω) = 0, i ∈ {0, 1} if and only if

at +

ω∫
0

(ω − s)3 y (s) ds = 0.

Let C = aω +
∫ ω

0
(ω − t) tdt , 0, t ∈ (0, ω]. By simple calculation, we get C = ω6

(
6a + ω2

)
.

Now, we need to show that the operator Q is projector. From Qy (t) = 1
C ·

(
Ry

)
· t, it is clear that dim ImQ = 1.

We have(
Q2y

)
(t) =

(
Q

(
Qy

))
(t)

=
1
C

( 1
C

Ry
) aω +

ω∫
0

(ω − t) tds

 t

=
1
C

(
Ry

)
t

=
(
Qy

)
(t) ,

which implies that the operator Q is projector. Furthermore, ImL = KerQ.

In order, to show Z = ImL ⊕ ImQ, it remains to shows two following steps.

Step 1. For y ∈ Z, let y =
(
y −Qy

)
+Qy, since Q

(
y −Qy

)
= Qy −Q2y = 0, we know

(
y −Qy

)
∈ KerQ = ImL

and Qy ∈ ImQ. Thus Z = ImL + ImQ.
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Step 2. Let y ∈ ImL ∩ ImQ. Since y ∈ ImQ, then there exists ρ ∈ R such that y (t) = ρt, t ∈ [0, ω]. Since
y ∈ ImL = KerQ, then

0 = ρ
(
Ry

)
(t) = ρ

aω +

ω∫
0

(ω − t) tds

 = ρC.

Since C , 0, then ρ = 0, so we have y (t) = 0, t ∈ [0, ω]. Which implies ImL ∩ ImQ = {0}.

As consequence of Step 1 and Step 2, we deduce that

Z = ImL ⊕ ImQ,

and so

dimKerL = co dim ImL = dim ImQ = 1.

Then IndL = dim KerL − co dim ImL = 1 − 1 = 0.
Thus L is Fredholm operayor of index zero.

We are now ready to give the other projector employed in the proof of (ii). Define the other projector
P : X→ X by

(Pu) (t) = u′′ (0) t, t ∈ [0, ω] , (12)

Note that KerP = {u ∈ X : u′ (0) t = 0} = {u ∈ X : u′ (0) = 0} and ImP = KerL.
Similarly, we shall prove that the operator P is projector and Y = KerP ⊕ KerL. Fistly, since (Pu)′ (t) = u′ (0),
then

(
P2u

)
(t) = P (t) , t ∈ [0, ω] for all u ∈ X, we have

u = (u − Pu) + Pu,

and

u (t) = (u (t) − u′ (0) t) + u′ (0) t.

For u ∈ X, let u = (u − Pu) + Pu. Since P (u − Pu) = Pu − P2u = Pu − Pu = 0, we know, (u − Pu) ∈ KerP and
Pu ∈ ImP = KerL, thus X = KerP + KerL.
Let u ∈ KerL ∩ KerP, since u ∈ KerL = ImP, there exists µ ∈ R such that u (t) = µt and since u ∈ KerP, then
µ = u′ (0) = 0 and so u (t) = 0, t ∈ [0, ω]. Consequently, KerL ∩ KerP = {0}. Then X = KerP ⊕ KerL.

Let u ∈ KerL ∩ KerP, since u ∈ KerL = ImP, there exists µ ∈ R such that u (t) = µt and since u ∈ KerP, then
µ = u′ (0) = 0 and so u (t) = 0, t ∈ [0, ω]. Consequently, KerL ∩ KerP = {0}. Then X = KerP ⊕ KerL.

Before, to estimate the supremum norm of the generalized inverse operator KP. It remains to prove that
the operator KP is the generalized inverse of L. In fact, if y ∈ ImL, then

(LKP) y (t) =
[(

KPy
)

(t)
]′′ = y (t) ,

and for u ∈ domL ∩ KerP, we know

(KPL) u (t) = (KP) u′′ (t) =

t∫
0

(t − s) u′′ (s) ds = u (t) − u (0) − u′ (0) t,

in view of u ∈ X ∩ KerP, u (0) = 0 and Pu = 0, thus

(KPL) u (t) = u (t) .
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This shows that KP = (L |X∩KerP)−1.
Lastly, we estimate the supremum norm of the generalized inverse operator KP.
From the definition of KP, it follows that

∥∥∥KPy
∥∥∥
∞
≤

1∫
0

(1 − s)2
∣∣∣y (s)

∣∣∣ ds ≤

1∫
0

∣∣∣y (s)
∣∣∣ ds =

∥∥∥y
∥∥∥

1

from
(
KPy

)′ (t) = ∫ t

0 y (s) ds, we obtain

∥∥∥(KPy
)′∥∥∥
∞
≤

1∫
0

∣∣∣y (s)
∣∣∣ ds =

∥∥∥y
∥∥∥

1

As such we have∥∥∥KPy
∥∥∥ = max

{∥∥∥KPy
∥∥∥ , ∥∥∥(KPy

)′∥∥∥} ≤ ∥∥∥y
∥∥∥

1

then, we have∥∥∥Kpy
∥∥∥ ≤ ∥∥∥y

∥∥∥
1
, (13)

Lemma 3.6. The operator N : X→ Z given by (10) is L − completely continuous.

Proof. The proof is standard, we omit it.

Lemma 3.7. Let Ω1 =
{
x ∈ domL \ KerL : Lx = λNx, f or some λ ∈ [0, 1]

}
. Then Ω1 is buonded.

Proof. Suppose that x ∈ Ω1, and Lx = λNx. Thus λ , 0 and QNx = 0, so it yields

aω +

ω∫
0

(ω − s) f (s, x (s − τ1 (s)) , . . . , x (s − τn (s) , Θ (s − δ (s)))) ds = 0.

Thus, by condition (H2), there exist an i0 ∈ {1, 2, . . . ,n}, a point t1 ∈ [0, ω], such that
∣∣∣x (

t1 − τi0 (t1)
)∣∣∣ ≤M and

|(Θx) (t1 − δ (t1))| ≤M. In view of

x (0) = x
(
t1 − τi0 (t1)

)
−

t1∫
0

x′
(
s − τi0 (s)

)
ds.

Denote t1 − τi0 (t1) = ζ1 + kω, ζ1 ∈ [0, ω], k being an integer. So

x (ζ1) <M.

In a similar way, there exist an i1 ∈ {1, 2, . . . ,n}, a point ζ2 ∈ [0, ω] and a constants M1 = −M such that

x (ζ1) > −M =M1.

Then |x (ζ1)| <M.
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Hence

|x (0)| =

∣∣∣∣∣∣∣∣x (
t1 − τi0 (t1)

)
−

t1∫
0

x′
(
s − τi0 (s)

)
ds

∣∣∣∣∣∣∣∣ ≤M + ∥x′∥1 .

Thus, we have

|x′ (0)| ≤M +

1∫
0

∣∣∣x′′ (s − τi0 (s)
)∣∣∣ ds =M + ∥x′′∥1 =M + ∥Lx∥1 ≤M + ∥Nx∥1 (14)

Again for x ∈ Ω1, then (I − P) x ∈ domL ∩ KerP = ImKP and LPu = 0, 0 < λ < 1 and Nx = 1
λLx ∈ ImL, thus

from Lemma 3.5, we know

∥(I − P) x∥ = ∥KPL (I − P) x∥ ≤ ∥L (I − P) x∥1 = ∥Lx∥1 ≤ ∥Nx∥1 . (15)

From (14), (15) and ∥Px∥ = |x′ (0)| ,we have

∥x∥ ≤ ∥Px∥ + ∥(I − P) x∥ = |x′ (0)| + ∥(I − P) x∥ ≤M + 2 ∥Nx∥1 . (16)

From (9) and (16), we obtain

∥x∥ ≤ 2
[
C +

M
2

]
. (17)

Again, from (9), we have

∥x′′∥1 = ∥Lx∥1 ≤ ∥Nx∥1 ≤ C.

Which shows that Ω1 is bounded.

Lemma 3.8. The set Ω2 = {x ∈ KerL : Nu ∈ ImL} is bounded.

Proof. Let x ∈ Ω2, then x ∈ KerL = {x ∈ domL : x (t) = at, a ∈ R, t ∈ [0, ω]}. Also, since KerQ = ImL, then
QNu = 0, therefore

aω +

ω∫
0

(ω − s) f (s, x (s − τ1 (s)) , . . . , x (s − τn (s) , Θ (s − δ (s)))) ds = 0.

From condition (H2), ∥x∥∞ = |at| ≤M, ∀a ∈ R, so ∥x∥ ≤M, thus Ω2 is bounded.

Because we know Nx ∈ ImL = KerQ, so QNx = 0.
Before we define the set Ω3, we must state our isomorphism, J : KerL→ ImQ. Let

J (at) = at, ∀a ∈ R, t ∈ [0, ω] ,

and define

Ω3 = {u ∈ KerL : −λJu + (1 − λ) QNu = 0, λ ∈ [0, 1]} .
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Lemma 3.9. If the first part of (H3) holds, then

a
( 6

6a + ω2

) aω +
ω∫

0

(ω − s) f (s, x (s − τ1 (s)) , . . . , x (s − τn (s) , Θ (s − δ (s)))) ds

 < 0,

for all |a| >M∗ and Ω3 is bounded.

Proof. Suppose that x (t) = a0t ∈ Ω3, then we obtain

λa0 = (1 − λ)
( 6

6a + ω2

) aω +
ω∫

0

(ω − s) f (s, x (s − τ1 (s)) , . . . , x (s − τn (s) , Θ (s − δ (s)))) ds

 < 0,

where x (s − τi (s)) = a0 (s − τi (s)) , i ∈ {1, 2, . . . ,n}.
If λ = 1, then a0 = 0, which give Ω3 bounded.
Otherwise, if λ , 1, there exist M∗ > 0 such that |a0| >M∗, then in view of first part of (H3), we have

λa2
0 = (1 − λ) a0

( 6
6a + ω2

) aω +
ω∫

0

(ω − s) f (s, x (s − τ1 (s)) , . . . , x (s − τn (s) , Θ (s − δ (s)))) ds

 < 0,

which contradicts the fact that λa2
0 ≥ 0. Then |u| = |a0t| ≤ |a0| ≤ M∗, we obtain ∥u∥ ≤ M∗, hence

Ω3 ⊂ {u ∈ KerL : ∥u∥ ≤M∗
} is bounded.

If λ = 0, it yields

( 6
6a + ω2

) aω +
ω∫

0

(ω − s) f (s, x (s − τ1 (s)) , . . . , x (s − τn (s) , Θ (s − δ (s)))) ds

 = 0,

taking condition (H2) into account, we obtain ∥u∥ = a ≤M∗.

Now, define Ω3 by

Ω3 = {u ∈ KerL : λJu + (1 − λ) QNu = 0, λ ∈ [0, 1]} .

Lemma 3.10. If the second part of (H3) holds, then

a
( 6

6a + ω2

) aω +
ω∫

0

(ω − s) f (s, x (s − τ1 (s)) , . . . , x (s − τn (s) , Θ (s − δ (s)))) ds

 > 0.

for all |a| >M∗ and Ω3 is bounded.

Proof. A similar argument as above shows that Ω3 is bounded.

Proof. . Proof of Theorem 3.4. Let Ω to be an open bounded subset of X such that
3
∪
i=1
Ωi ⊂ Ω. By using the

fact that x′′ is bounded and Arzela-Ascoli theorem, we can prove that KP (I −QN) : Ω → X is compact,
thus N is L−compact on Ω.
Then by Lemmas 3.7 and 3.8, we have
(i) Lx , λNx for every (x, λ) ∈ [(domL \ KerL) ∩ ∂Ω] × (0, 1).
(ii) Nx < ImL for every x ∈ KerL ∩ ∂Ω.
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(iii) H (x, λ) = ±λJx + (1 − λ) QNx = 0, λ ∈ [0, 1].
According to Lemmas 3.9 and 3.10, we know that H (x, λ) , 0 for every x ∈ KerL ∩ ∂Ω. Thus, from the
property of invariance under a homotopy,

deg (QN |KerL,Ω ∩ KerL, 0) = deg (H (·, 0) ,Ω ∩ KerL, 0)

= deg (H (·, 1) ,Ω ∩ KerL, 0)

= deg (±J,Ω ∩ KerL, 0) , 0.

Consequently, by Theorem 3.3, Lu = Nu has at least one solution in domL ∩ Ω, so the boundary value
problem (1) − (2) has at least one Ω−periodic solution. The proof is complete.

Example 3.11. Consider the following logistic model with several delays and feedback control, see [25, 26].
d2x
dt2 = x (t)

[
r (t) −

n∑
i=1

ai (t) x (ti − τi (t)) − c (t) u (t − δ (t))
]
,

d4u
dt4 =

0,05 cos(t)
1+cos2(t) u (t) + η (t) x4 (t − σ (t)) ,

(18)

subject with the periodic boundary conditions (2), where σ, δ ∈ C (R,R) and for i = 1, 2, . . . ,n one has c, r, b, ai, τi ∈

C (R,R) are all ω−periodic functions with 0 < ω ≤ 2π. Then the system (18) has at least one positive ω−periodic
solution.
Indeed, Let x (t) be a continuous ω−periodic solution and satisfies

aω +

ω∫
0

r (t) −
n∑

i=1

ai (t) x (ti − τi (t)) − c (t) (Θex) (t − δ (t))

 = 0,

where Θex as above or in Lemma 2.3. Then

aω +

ω∫
0

r (t) dt =

ω∫
0

n∑
i=1

ai (t) x (ti − τi (t)) − c (t) (Θex) (t − δ (t)) = 0.

On the other hand∣∣∣∣∣∣∣∣aω +
ω∫

0

r (t) −
n∑

i=1

ai (t) x (ti − τi (t)) − c (t) (Θex) (t − δ (t))

∣∣∣∣∣∣∣∣
≤ |a|ω +

ω∫
0

∣∣∣∣∣∣∣r (t) −
n∑

i=1

ai (t) x (ti − τi (t)) − c (t) (Θex) (t − δ (t))

∣∣∣∣∣∣∣
≤

ω∫
0

|r (t)| dt + |a|ω +

ω∫
0

n∑
i=1

|ai (t) x (ti − τi (t)) − c (t) (Θex) (t − δ (t))|

≤
0, 05

2
ω + 2

ω∫
0

|r (t)| dt = C > 0.

Moreover,

lim
(v1,v2,...,vn+1)→+∞

r (t) −
n∑

i=1

ai (t) x (ti − τi (t)) − c (t) (Θex) (t − δ (t))

 = −∞,
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lim
(v1,v2,...,vn+1)→−∞

r (t) −
n∑

i=1

ai (t) x (ti − τi (t)) − c (t) (Θex) (t − δ (t))

 = r (t) > 0,

hold uniformly in t ∈ [0, ω]. Furthermore, a (·) is 2π−periodic and

0 < a∗ = min
{

0, 05 cos (t)
1 + cos2 (t)

, t ∈ [0, ω]
}
= −

0, 05
2
= −0, 025,

a∗ = max
{

0, 05 cos (t)
1 + cos2 (t)

, t ∈ [0, ω]
}
=

0, 05
2
= 0, 025 <

(
π

2π

)4
=

1
24 = 0, 0625,

and

η (t) x4 (t − σ (t)) > 0.

By Theorem 3.4, we see that system (18) has at least one positive ω−periodic solution.

4. Conclusion

In this work, we discussed the existence of positive periodic solutions for sytem of a class of nonlinear
delay differential equations with periodic conditions, using Mawhin coincidence degree theorem. Further-
more, one of our obtained Lemma 2.3 is applied to set up novel existence of solution of class of integral
equations. An example is also presented to illustrate the effectiveness of the main result.
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