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Abstract. Using the notion of a symmetric virtual diagonal for a Banach algebra, we prove that a Banach
algebra is symmetrically amenable if its second dual is symmetrically amenable. We introduce symmetric
operator amenability in the category of completely contractive Banach algebras as an operator algebra
analogue of symmetric amenability of Banach algebras. We give some equivalent formulations of symmetric
operator amenability of completely contractive Banach algebras and investigate some hereditary properties
of symmetric operator amenable algebras. We show that amenability of locally compact groups is equivalent
to symmetric operator amenability of its Fourier algebra. Finally, we discuss about Jordan derivation on
symmetrically operator amenable algebras.

1. Introduction

A Banach algebra B is called amenable if it has a bounded approximate diagonal, that is, there is a bounded
net {∆α}α in the algebraic tensor product B ⊗ B such that

∥∆α · b − b · ∆α∥ + ∥m(∆α)b − b∥ → 0 (b ∈ B)

where m : B ⊗ B → B is a natural product. Johnson initiated the theory of amenable Banach algebras and
proved that a locally compact group G is amenable if and only if L1(G) is amenable as a Banach algebra.
There are many alternative equivalent formulations of the notion of amenability, which many people have
studied. For further details, we refer [11]. If a locally compact group G with its dual Ĝ is abelian, the Fourier
algebra A(G) is isomorphic to L1(Ĝ). Since the amenability of a locally compact group is that of L1(G) as
a Banach algebra, we may naturally ask if the amenability of G is equivalent to that of A(G). Johnson [9]
gave the answer in the negative. Using this operator space structure, Ruan [12] introduced a weaker notion
of amenability for completely contractive Banach algebras, which is called operator amenability. Since A(G)
has a natural operator space structure, he showed that the amenability of G is equivalent to the operator
amenability of A(G).

Johnson [10] introduced the notion of symmetric amenability of Banach algebras for understanding of
the behavior of Jordan derivations on Banach algebras. A Banach algebra B is called symmetrically amenable
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if it has a bounded approximate diagonal consisting of symmetric tensors. Johnson [10] proved that for
every amenable locally compact group G, L1(G) is symmetrically amenable. However, in general, the
set of all symmetrically amenable Banach algebras is a proper subset of the set of all amenable Banach
algebras since unital amenable Banach algebras without tracial states are not symmetrically amenable [10].
The purpose of this paper is to introduce the notion of symmetric operator amenability in the category of
operator algebras as an operator analogue of symmetric amenability.

The contents of the paper are as follows. In section 2 we review the symmetric amenability in the category
of Banach algebras and show that symmetric amenability of Banach algebras is implied by symmetric
amenability of their second duals using a symmetric virtual diagonal. In section 3 we introduce the
notion of symmetric operator amenability in the category of completely contractive Banach algebras and
prove some equivalent formulations of symmetric operator amenability. In section 4 we investigate some
hereditary properties of symmetric operator amenable algebras. In section 5 we prove that the amenability
of locally compact groups is equivalent to the symmetric operator amenability of their Fourier algebras and
introduce a symmetric operator diagonal in a completely contractive Banach algebra. Finally, we discuss
about Jordan derivations on completely contractive Banach algebras which are symmetrically operator
amenable.

2. symmetric virtual Diagonals on Banach Algebras

In this section, B and B∗∗ denote a Banach algebra and its second dual equipped with the first Arens
product, respectively, unless specified otherwise. This product can be characterized as the extension to
B
∗∗
× B

∗∗ of the multiplication map m on Bwith the following continuity properties:

(i) for fixed y ∈ B∗∗, the map x 7→ xy is weak*-continuous on B∗∗,

(ii) for fixed y ∈ B, the map x 7→ yx is weak*-continuous on B∗∗.

We will identifyBwith its canonical image inB∗∗. For basic definitions and properties, the reader is referred
to [2].

We denote byB⊗γB the Banach space projective tensor product ofBwith itself. An element x ofB⊗γB
is called symmetric if x• = x where the flip map on B ⊗γ B is defined by (a ⊗ b)• = b ⊗ a. The opposite
algebra B• is the Banach space B with product a • b = ba. We can easily see that {∆α}α is an approximate
diagonal for B if and only if {∆•α}α is an approximate diagonal for B•, so that B is amenable if and only if
B
• is amenable. We see that any symmetric element x =

∑
ai ⊗ bi can be written as a linear combination of

symmetric elements

x =
1
4

∑[
(ai + bi) ⊗ (ai + bi) − (ai − bi) ⊗ (ai − bi)

]
. (1)

Definition 2.1. A symmetric virtual diagonal for B is an element M in (B ⊗γsym B)∗∗ such that for all a ∈ B,

a ·M =M · a and a ·m∗∗(M) = a

where B ⊗γsym B is the Banach space of all symmetric elements in B ⊗γ B.

If M is a symmetric virtual diagonal for B, then we have that

a •M =M • a, a · (m•)∗∗(M) = a and m∗∗(M) = (m•)∗∗(M). (2)

where a • (b ⊗ c) = b ⊗ ac, (b ⊗ c) • a = ba ⊗ c and m•(a ⊗ b) = ba. The following proposition is the symmetric
analogue of [8, Lemma 1.2].

Proposition 2.2. A Banach algebra is symmetrically amenable if and only if it has a symmetric virtual diagonal.
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Proof. If a Banach algebraB is symmetrically amenable, then there is a bounded approximate diagonal {xα}
in B ⊗γsym B. Since {xα} is bounded, it has a weak*-cluster point M in (B ⊗γsym B)∗∗. It is easy to see that M is
a symmetric virtual diagonal.

Conversely, suppose thatB has a symmetric virtual diagonal M. There is a bounded net {xα} inB⊗
γ
symB

such that xα converges to M in the weak*-topology. The remaining of proof is the same as that in [8, Theorem
1.3].

Lemma 2.3. ([5, Lemma 1.7]) There is a continuous linear mapΨ : B∗∗⊗γB∗∗ → (B⊗γB)∗∗ such that for a, b, c ∈ B
and x ∈ B∗∗ ⊗γ B∗∗, the following holds;

(i) Ψ(a ⊗ b) = a ⊗ b,

(ii) Ψ(x) · c = Ψ(x · c) and c ·Ψ(x) = Ψ(c · x),

(iii) m∗∗(Ψ(x)) = m(x) where m : B∗∗ ⊗γ B∗∗ → B∗∗ is a natural product.

Recall that there is an isometric isomorphism between the space of bounded bilinear functionals on
B × B and the space of continuous linear functionals on B ⊗γ B, that is, T 7→ φT where φT(a ⊗ b) = T(a, b).
Let T : B × B → C be a continuous bilinear form. If T : B∗∗ × B∗∗ → C is its continuous extension, then
T(A,B) = limα,β T(aα, bβ) for any A,B ∈ B∗∗ where {aα} and {bβ} are bounded nets in B with aα → A and
bβ → B in the weak*-sense (see [1] for the details).

Let Ψ be the continuous linear map in Lemma 2.3 and let X =
∑

Ai ⊗ Bi be a symmetric tensor in
B
∗∗
⊗
γ
B
∗∗. We claim that Ψ(X) ∈ (B ⊗γsym B)∗∗. To show this, it suffices to consider elements of form A ⊗ A

with A ∈ B∗∗. Indeed, let A be any element in B∗∗ and take a bounded net (aα) such that aα → A in the
weak*-topology. For any T ∈ (B × B)∗, we have that(

Ψ(A ⊗ A), φT

)
= T(A,A) = lim

α
φT(aα ⊗ aα), (3)

which implies thatΨ(B∗∗ ⊗γsym B
∗∗) ⊂ (B ⊗γsym B)∗∗.

Theorem 2.4. IfB is a Banach algebra whose the second dualB∗∗ is symmetrically amenable, thenB is symmetrically
amenable.

Proof. Suppose thatB∗∗ is symmetrically amenable. Then there is a bounded approximate diagonal {Xα} for
B
∗∗ consisting of symmetric tensors. By Lemma 2.3, we have that

b ·Ψ(Xα) −Ψ(Xα) · b→ 0 and m(Ψ(Xα)b)→ b

for all b ∈ B. Moreover, it follows from the equation (3) that Ψ(Xα) ∈ (B ⊗γsym B)∗∗. If M is a weak*-cluster
point of {Ψ(Xα)} in (B ⊗γsym B)∗∗, then we have that b ·M = M · b and m∗∗(M)b = b for all b ∈ B. This implies
that M is a symmetric virtual diagonal for B. By Proposition 2.2, B is symmetrically amenable.

Corollary 2.5. ([5, Corollary 1.9]) Let G be a discrete left (or right) cancellative semigroup with an identity. Then
L1(G)∗∗ is symmetrically amenable if and only if G is a finite group.

Proof. If L1(G)∗∗ is symmetrically amenable, then L1(G)∗∗ is also amenable. By [5, Corollary 1.9], G is a
finite group. Conversely, suppose that G is a finite group. It follows from [10, Theorem 4.1] that L1(G) is
symmetrically amenable, so that L1(G)∗∗ is symmetrically amenable.

3. Symmetric Operator Amenability of Operator Algebras

In this section, we introduce a notion of symmetric operator amenability in the category of completely
contractive Banach algebras, which is the operator analogue of symmetric amenability of Banach algebras.
We first recall that operator spaces are (norm closed) subspaces of B(H) together with the operator matrix
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norms obtained from B(H). An associative algebra A is a completely contractive Banach algebra if it is an
operator space and the multiplication map m : A⊗̂A → A is completely contractive where ⊗̂ means the
operator projective tensor product. An A-bimodule V is called an operator A-bimodule if V is an operator
space and theA-bimodule operationsA⊗̂V → V, a ⊗ v 7→ a · v and V⊗̂A → V, v ⊗ a 7→ v · a are completely
bounded. For an operatorA-bimodule V with the operator dual V∗, there is a natural operatorA-bimodule
structure on V∗, namely, if ϕ ∈ V∗ and a ∈ A, we define a · ϕ and ϕ · a by

(a · ϕ)(v) = ϕ(va) and (ϕ · a)(v) = ϕ(av), (v ∈ V). (4)

See [12] for more details. We callA operator amenable if for any operatorA-bimodule V, every completely
bounded derivation fromA into the dualA-bimodule V∗ is inner.

Since every completely contractive Banach algebra is a Banach algebra, we see that if a completely con-
tractive Banach algebraA is amenable as a Banach algebra, thenAmust be operator amenable. However,
in general, the converse is not true [9].

In the remaining of this paper, we denote byA andA⊗̂A a completely contractive Banach algebra and
the operator projective tensor product, respectively, unless specified otherwise. The following theorem
gives an intrinsic characterization for operator amenability in terms of approximate diagonals.

Theorem 3.1. ([12, Proposition 2.4]) LetA be a completely contractive Banach algebra. The followings are equiva-
lent:

(i) A is operator amenable.

(ii) A has a operator virtual diagonal, that is, there exists U ∈ (A⊗̂A)∗∗ such that a · U = U · a and m∗∗(U)a = a
for every a ∈ A.

(iii) A has a bounded approximate diagonal, that is, there is a net {xα}α∈I of bounded elements in A⊗̂A such that
for every a ∈ A

(a) ∥a · xα − xα · a∥ → 0,

(b) ∥m(xα) · a − a∥ → 0.

On A⊗̂A, the flip map is defined by (a ⊗ b)• = b ⊗ a. An element x ∈ A⊗̂A is called symmetric if x• = x.
Now we can define a weaker notion of symmetric amenability and operator amenability in the category of
completely contractive Banach algebras.

Definition 3.2. A completely contractive Banach algebraA is symmetrically operator amenable if it has a bounded
approximate diagonal consisting of symmetric elements inA⊗̂A.

We also see that ifA is symmetrically amenable as a Banach algebra, then it is symmetrically operator
amenable. IfA◦ is the opposite algebra ofA, we can rewrite (a) and (b) in the condition (iii) of Theorem 3.1
forA◦ as follows; there is a bounded net {xα} inA⊗̂A such that

(a′) ∥a • xα − xα • a∥ → 0,

(b′) ∥a ·m•(xα) − a∥ → 0

where a • (b ⊗ c) = b ⊗ ac, (b ⊗ c) • a = ba ⊗ c and m•(b ⊗ c) = cb. Such a net {xα} is called a bounded
approximate diagonal for A◦. Then {xα} is a bounded approximate diagonal for A if and only if {x•α} is a
bounded approximate diagonal forA◦. Indeed, we have that

∥a • x•α − x•α • a∥ = ∥a · xα − xα · a∥, ∥a •m•(x•α) − a∥ = ∥m(xα) · a − a∥

since a • x• = (a · x)• and x• • a = (x · a)• for any a ∈ A and x ∈ A⊗̂A. Hence the operator amenability ofA
is equivalent to that ofA◦.
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Example 3.3. Let Mn(C) be the (completely contractive) Banach algebra of all n × n matrices over C andU = {ei j :
i, j = 1, . . . ,n} be the canonical matrix units of Mn(C). Let xα := 1

n
∑n

i, j=1 ei j ⊗ e ji for any α. For any ekl ∈ U, we have
that

ekl · xα =
1
n

n∑
i, j=1

eklei j ⊗ e ji =
1
n

n∑
j=1

ekj ⊗ e jl =
1
n

n∑
i, j=1

ei j ⊗ e jiekl = xα · ekl

and that m(xα) = In is the identity matrix in Mn(C), so that m(xα) · a = a for all a ∈Mn(C). Since x•α = xα for any α,
Mn(C) is symmetrically operator amenable.

Proposition 3.4. A necessary and sufficient condition for A to be symmetrically operator amenable is that there
exists a bounded net {xα} inA⊗̂A which satisfies the above properties (a), (b), (a′) and (b′).

Proof. If A is symmetrically operator amenable, then there exists a net {xα} such that xα = x•α and {xα}
satisfies properties (a) and (b) in Theorem 3.1. Hence we have that

∥a • xα − xα • a∥ = ∥(a · xα − xα · a)•∥ → 0
∥a ·m•(xα) − a∥ = ∥a ·m(xα) − a∥ → 0.

Conversely, suppose that {xα} satisfies properties (a), (b), (a′) and (b′). Then we easily see that {x•α} also
satisfies (a), (b), (a′) and (b′) since we have the equations

∥a · x•α − x•α · a∥ = ∥(a • xα − xα • a)•∥, ∥m(x•α) · a − a∥ = ∥a •m•(xα) − a∥,
∥a • x•α − x•α • a∥ = ∥(a · xα − xα · a)•∥, ∥a ·m•(x•α) − a∥ = ∥a ·m(xα) − a∥.

Considering the net { 12 (xα + x•α)} of symmetric elements, the net satisfies (a) and (b) in Theorem 3.1, which
becomes a bounded approximate identity.

Corollary 3.5. IfA is commutative and operator amenable, then it is symmetrically operator amenable.

We note that two Arens products on the second dualA∗∗ coincide and the resulting algebra is completely
isometric to a σ-weakly closed operator algebra. Thus, the second dualA∗∗ is again a completely contractive
Banach algebra. A symmetric operator virtual diagonal forA is an element U in (A⊗̂symA)∗∗ such that a·U = U·a
and m∗∗(U)a = a for all a ∈ A where A⊗̂symA is the space of all symmetric elements in A⊗̂A. Since a
symmetric operator virtual diagonal has the same relation as the equation (2), we also have the same result
as Proposition 2.2.

Proposition 3.6. A necessary and sufficient condition for A to be symmetrically operator amenable is that it has a
symmetric operator virtual diagonal in (A⊗̂symA)∗∗.

Proof. The proof is the same as that of Proposition 2.2, so that we omit it.

Proposition 3.7. Suppose thatA⊗̂A has a bounded net {xα}which satisfies properties (a) and (b′). If z is a non-zero
element in the center ofA, then there exists a functional f ∈ A∗ such that f (ab) = f (ba) and f (z) = 1.

Proof. The proof is similar to that of [10, Proposition 2.4].

Remark 3.8. If a unital algebraA satisfies the hypotheses in Proposition 3.7, then there is f ∈ A∗ with f (ab) = f (ba)
and f (1) = 1, which implies that Cuntz algebra On (n ≥ 2) is not symmetrically operator amenable since On has no
normalized trace. But it is well-known that On is amenable.

Corollary 3.9. (cf. [10, Proposition 2.6]) If there is a bounded net {xα} inA⊗̂A which satisfies properties (a), (b) in
Theorem 3.1 and (b′), thenA is symmetrically operator amenable.
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Most, but not all, completely contractive Banach algebras which are operator amenable are symmetrically
operator amenable. In the following theorem, we see that symmetric operator amenability has hereditary
properties similar to operator amenability [12]. The proof is similar to that of [10, Theorem 3.1], but we
omit the proof.

Theorem 3.10. Let J be a closed two sided ideal inA.

(i) IfA/J and J are symmetrically operator amenable, thenA is symmetrically operator amenable.

(ii) IfA is symmetrically operator amenable, thenA/J is symmetrically operator amenable.

(iii) If A is symmetrically operator amenable and J has a bounded approximate identity, then J is symmetrically
operator amenable.

Proposition 3.11. Let B be completely contractive Banach algebras.

(i) IfA is symmetrically operator amenable and if ϕ : A → B is a continuous homomorphism with dense range,
then B is also symmetrically operator amenable.

(ii) If B contains an element b with b < {bb′ − b′b : b′ ∈ B} and if A⊗̂B is operator amenable, then A is operator
amenable.

(iii) If A⊗̂B is symmetrically operator amenable and if there are b0 ∈ Z(B) and f ∈ B∗ such that f (b0) = 1 and
f (bb′) = f (b′b) for all b, b′ ∈ B, thenA is symmetrically operator amenable.

As a corollary, we see that ifA andB are symmetrically operator amenable, thenA⊗̂B is also symmetri-
cally operator amenable. Indeed, let {xλ}λ∈Λ and {xµ}µ∈Υ be symmetrically bounded approximate diagonals
forA and B, respectively. Then the family {(IA ⊗ σ⊗ IB)(xλ ⊗ xµ)} is a symmetrically bounded approximate
diagonal forA⊗̂Bwhere σ is a flip map fromA⊗̂B → B⊗̂A.

4. Fourier Algebras and Symmetric Operator Diagonals

Let G be a locally compact group with a left Haar measure µ and let ∆ be the modular function of G into
R+. For any s, t ∈ G, we have

dµ(st) = dµ(t), dµ(ts) = ∆(s)dµ(t) and dµ(t−1) = ∆(t)−1dµ(t).

Let L : G → B(L2(G)) be a left regular representation defined by [L(s)ξ](t) = ξ(st) for any ξ ∈ L2(G). The
group von Neumann algebra L(G) is the weak operator closure of the set {L(s) : s ∈ G} in B(L2(G)). Then L(G)
becomes a Hopf von Neumann algebra with the coassociative comultiplication Γ : L(G)→ L(G)⊗̄L(G) given
by

Γ(L(s)) = L(s) ⊗ L(s) =W∗(L(s) ⊗ 1)W

where Wψ(s, t) = ψ(s, st) is a distinguished unitary operator on L2(G × G). Then we have that (Γ ⊗ id)Γ =
(id ⊗ Γ)Γ.

The Fourier algebra A(G) consists of all coefficient functions of the left regular representation L of G,
that is, A(G) =

{
ω(·) = ⟨L(·)ξ, η⟩ : ξ, η ∈ L2(G)

}
. The norm of ω ∈ A(G) is defined by ∥ω∥A(G) = inf{∥ξ∥∥η∥}

where the infimum is taken over all possible representations ω(·) = ⟨L(·)ξ, η⟩. It was proved by Eymard [4]
that A(G), up to isomorphism, is the predual of the group von Neumann algebra L(G), so that A(G) = L(G)∗
has a natural operator matrix norm and A(G)⊗̂A(G) ≃ A(G × G) = L(G × G)∗. The multiplication m = Γ∗ :
A(G)⊗̂A(G)→ A(G) is completely contractive, so that A(G) is a completely contractive Banach algebra which
is commutative.

Theorem 4.1. Let G be a locally compact group. Then A(G) is symmetrically operator amenable if and only if G is
amenable.
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Proof. If A(G) is symmetrically operator amenable, then A(G) is also operator amenable, so that by Ruan’s
result [12] G is amenable. Conversely, suppose that G is amenable. Then A(G) is operator amenable by
Ruan’s result [12]. It follows from Corollary 3.5 that A(G) is symmetrically operator amenable.

An element u ∈ A ⊗A is a symmetric operator diagonal forA if a • u = u • a and am•(u) = a for all a ∈ A
whereA⊗A is the algebraic tensor product.

Example 4.2. LetA =Mn be the set of all n × n matrices over C and let {ei j} be the set of canonical matrix units for
A. Then the element u = 1

n
∑

i, j ei j ⊗ e ji is a symmetric operator diagonal forA. Indeed, we have that

m•(u) =
i
n

∑
i, j

e jiei j =
i
n

∑
i, j

e j j =
∑

j

e j j = I.

For any 1 ≤ k, l ≤ n, we also have that

ekl • u =
1
n

∑
i, j

eil ⊗ eki, u • ekl =
1
n

∑
i, j

eil ⊗ eki,

so that ekl • u = u • ekl. Hence a • u = u • a for any a ∈ A.

If
∑

i ai ⊗ bi ∈ A ⊗A is a symmetric operator diagonal forA, then we see that
∑

i ai ⊗ cbi =
∑

i aic ⊗ bi for
all c ∈ A. We consider a bilinear mapping F : A⊗A→ V satisfying∑

i

F(ai, cbi) =
∑

i

F(aic, bi) for all c ∈ A

where V is a vector space. The following theorem is the symmetric version of [3, Theorem 16.1.3], whose
proof follows from Example 4.2 and [3, Theorem 16.1.3]. However, we will give a sketch of proof for
reader’s convenience.

Theorem 4.3. A has a symmetric operator diagonal if and only if there exist positive integers n1, . . . ,nr ∈ N such
thatA ≃Mn1 ⊕ · · · ⊕Mnr .

Proof. Suppose thatA ≃Mn1 ⊕ · · · ⊕Mnr . As in Example 4.2, we may choose a symmetric operator diagonal
uk ∈ Mnk ⊗Mnk for each k = 1, . . . , r. We put u := ⊕kuk ∈ ⊕kMnk ⊗Mnk ⊂ A ⊗ A. Then the element u is a
symmetric operator diagonal inA⊗A.

Conversely, assume that u =
∑

i ai ⊗ bi is a symmetric operator diagonal in A ⊗ A. Given a right A-
module V and its submodule W, let P : V → W be the linear map given by P(v) =

∑
λ∈Λ0

cλeλ. We see that
P2 = P and P maps V onto W, so that P is the linear projection of V onto W. We define a linear mapping
P̃ : V → W by P̃(v) =

∑
i P(vbi)ai. Then P̃ is a right A-module map, so that ker P̃ is a right A-submodule.

Since P̃(w) = w for any w ∈ W, P̃ is a right A-module projection of V onto W. Moreover, we have that
V =W+ker P̃ and W∩ker P̃ = {0}. Since ker P̃ is a rightA-module complement of W and V is semi-simple,
by Theorem 16.1.2 in [3], we obtain thatA ≃Mn1 ⊕ · · · ⊕Mnr .

Remark 4.4. In [10], a Banach algebra B is symmetrically contractible if there exists an element v of B⊗̂B such that
b • v = v • b and bm•(v) = b for all b ∈ B where B⊗̂B is the projective tensor product. Such an element is called a
symmetric diagonal for B, which is a weaker notion than that of Effros and Ruan’s book [3]. Johnson [10] studied the
problem which asks if there is an infinite dimensional symmetrically contractible Banach algebras.
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5. Jordan Derivations on Operator Algebras

A Jordan derivation fromA into an operatorA-bimodule is a linear map δ with

δ(a2) = a · δ(a) + δ(a) · a for all a ∈ A. (5)

By using the equality ab+ba = (a+b)2
− a2
−b2, the Jordan derivation identity (5) is equivalent to δ(ab+ba) =

δ(a) · b + a · δ(b) + δ(b) · a + b · δ(a). A Jordan derivation is proper if it is not an ordinary derivation.

Example 5.1. LetA be the algebra of 2×2 upper triangular matrices and letC be anA-bimodule with multiplication
defined by a · x = a22x and x · a = xa11 for a ∈ A and x ∈ C. Then δ(a) = a12 is a proper Jordan derivation. Indeed,
we have that

δ(a2) = a · δ(a) + δ(a) · a = a11a12 + a12a22 for a =
(
a11 a12
0 a22

)
.

However, we have that δ(ab) = a11b12 + a12b22 and δ(a) · b + a · δ(b) = a12b11 + a22b12, which implies that δ is not a
derivation.

Theorem 5.2. (cf. [10]) Let X be an operator A-bimodule. If A is symmetrically operator amenable, there is no
proper Jordan derivation fromA into X which is completely bounded.

Proof. The proof is similar to that of [10, Theorem 6.2], so that we give a sketch of proof.
Since C is symmetrically operator amenable, so is Ã = A⊕C. We can extend a Jordan derivation δ to Ã

by defining δ(1) = 0. Thus, it suffices to prove the theorem in the case where A is unital and X is a unital
A-bimodule. Replacing X by the double dual X∗∗ if necessary, we can assume that X is the dual of some
unitalA-bimodule Y.

Let {zλ}λ∈Λ be a symmetric approximate diagonal. Suppose that δ : A → X is a completely bounded
Jordan derivation. We define x ∈ X by

(x, y) = LIMλ

(∑
i

ai
λδ(bi

λ), y
)

where y ∈ Y, zλ =
∑

i ai
λ ⊗ bi

λ and LIM denotes a generalized limit onA. For any a ∈ A and y ∈ Y, we have
that

(a · x, y) = LIMλ

(∑
i

ai
λδ(bi

λa), y
)
=

(
δ(a) + xa +D(a), y

)
where (D(a), y) := LIMλ

∑
i(ai

λδ(a)bi
λ, y). Hence, we obtain that D(a) = a · x − x · a − δ(a), so that D is a Jordan

derivation and aD(b) = D(b)a. We repeat this argument with D in the place of δ and denote the resulting
element of X by x0. Then we have a · x0 = 2D(b) + x0 · a, so that δ(a) = a(x − 1

2 x0) − (x − 1
2 x0)a. This implies

that δ is not a proper Jordan derivation.
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