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Abstract. In this paper, the equivalence of the multifractal centered Hausdorffmeasure and the multifractal
packing measure is investigated. Furthermore, for the Moran sets satisfying the strong separation condition,
the equivalence of the mutual multifractal Hausdorff and packing measures is discussed. A concrete
example of fractal sets satisfying the above property is developed.

1. Introduction and statement of the main result

Multifractal (Relative multifractal, Mutual multifractal) analysis of measures is one important research
direction in fractal geometry. It has been widely applied in many fields such as dynamical systems, turbu-
lence analysis, rainfall modeling, earthquake analysis, and financial time series modeling. For these reasons
multifractal analysis still fascinates researchers and developing the mathematical theory and methods of
multifractal measures is of utmost importance.

One of the main problems in the multifractal analysis of measures is to understand the multifractal
spectrum and the Rényi dimensions, and their relationship with each other. During the past 30 years, there
has been an enormous interest in computing the multifractal spectra of measures. Rigorous computations
have been done for various classes of measures in Euclidean space Rn exhibiting some degree of self-
similarity (see for example the papers [28, 34, 38, 43] and the references therein). In an attempt to develop a
general theoretical framework for studying the multifractal structure of arbitrary measures, Olsen [34] and
Pesin [37] suggested various ways of defining an auxiliary measure in some general settings.

Based on some ideas of multifractal formalism given by Olsen [34], Svetova introduced in [47–51] a new
formalism for multifractal analysis of one measure with respect to another, known as mutual multifractal
formalism. The set of points with a given local dimension has been investigated with respect to an arbitrary
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probability measure. More specifically, given two compactly supported Borel probability measures µ and
ν on Rn and α, β ≥ 0, the size of the iso-Hölder set

Eµ,ν(α, β) =
{
x ∈ suppµ ∩ supp ν; αµ(x) = α and αν(x) = β

}
,

has been estimated, where αµ(x) = lim
r→0

logµ(Bx(r))
log r

and Bx(r) is the closed ball of center x and radius r. Later,

in [22, 23, 42], Selmi et al. justified the mutual multifractal formalism under less restrictive hypotheses.
Recently, the authors in [32, 46] have developed a mixed case of multifractal analysis and proved a mixed
variant of multifractal analysis based on a generalization of the well known large deviation formalism to
a mixed case. More details and backgrounds on multifractal analysis as well as the mixed generalizations
and their applications may be found in [1, 4–12, 16–21, 26, 30–33, 36, 43–46].

In the remaining part of the present section, we aim to introduce the general tools that will be applied
next. We will give in brief the notion of mutual multifractal generalizations of Hausdorff and packing
measures already introduced by Svetova in [47–51] and also Menceur and Ben Mabrouk [32, 33].

Let n ≥ 1 be a fixed integer and denote by P(Rn) the family of Borel probability measures on Rn.
Consider two measures µ and ν be in P(Rn). Let q, t, s ∈ R, E ⊆ Rn and δ > 0. For q = (q, t) and µ = (µ, ν),
we define

P
q,s
µ,δ(E) = sup

∑
i

µ(Bxi (ri))qν(Bxi (ri))t(2ri)s

 ,
where the supremum is taken over all the centered δ-packings of E. The mutual packing pre-measure is
given by

P
q,s
µ (E) = inf

δ>0
P

q,s
µ,δ(E).

In a similar way, we define

H
q,s
µ,δ(E) = inf

∑
i

µ(Bxi (ri))qν(Bxi (ri))t(2ri)s

 ,
where the infinimum is taken over all centered δ-coverings of E. The mutual Hausdorff pre-measure is
defined by

H
q,s
µ (E) = sup

δ>0
H

q,s
µ,δ(E).

Especially, we use the conventions 0q = ∞ for q ≤ 0 and 0q = 0 for q > 0.
The modified mutual Hausdorff and packing measures H

q,s
µ and P

q,s
µ are next defined by

H
q,s
µ (E) = sup

F⊆E
H

q,s
µ (F) and P

q,s
µ (E) = inf

E⊆
⋃

i Ei

∑
i

P
q,s
µ (Ei).

The functions H
q,s
µ and P

q,s
µ are metric outer measures and thus measures on the family of Borel subsets

of Rn. An important feature of the Hausdorff and packing measures is that

H
q,s
µ ≤ ξPq,s

µ ≤ ξP
q,s
µ , (1.1)

for some constant ξ independent of q, s and µ.
It holds as for the case of the multifractal analysis of a single measure that each of the measures H

q,s
µ and

P
q,s
µ and the pre-measure P

q,s
µ assign a multifractal dimension to each subset E ofRn. They are respectively

denoted by dimq
µ(E), Dimq

µ(E) and ∆q
µ(E) (see [48, 51]),

dimq
µ(E) = inf

{
s ∈ R; H

q,s
µ (E) = 0

}
,

Dimq
µ(E) = inf

{
s ∈ R; P

q,s
µ (E) = 0

}
,

∆
q
µ(E) = inf

{
s ∈ R; P

q,s
µ (E) = 0

}
.
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It follows from (1.1) that
dimq

µ(E) ≤ Dimq
µ(E) ≤ ∆q

µ(E).

We now introduce the mutual multifractal extensions of dimension of measures. Let θ be a probability
measure on Rn, we define

dimq
µ(θ) = inf

E

{
dimq

µ(E); θ(E) = 1
}

and
Dimq

µ(θ) = inf
E

{
Dimq

µ(E); θ(E) = 1
}
.

Definition 1.1. We say that two Borel measures µ and ν are equivalent and we write µ ∼ ν if for any Borel set A, we
have µ(A) = 0 if and only if ν(A) = 0.

In this paper, we focus on the mutual multifractal Hausdorff measure and the mutual multifractal
packing measure. We precisely prove the existence of equivalence cases of these measures. Moreover, we
show that for suitable measures µ, ν and θ, the multifractal dimensions introduced above are equivalent
for some general Moran type sets are different. Our main result is the following.

Theorem 1.2. Let 0 < s < s′ < 2 and q = (q, t) < 1 = (1, 1). There exist a set E ⊂ R2, two Borel probability
measures µ, ν on R2 and θ a finite Borel measure on E such that,

dimq
µ(E) = s = dimq

µ(θ) and Dimq
µ(E) = s′ = Dimq

µ(θ)

and, in addition,
H

q,s
µ ⌞E

∼P
q,s′
µ ⌞E

.

Remark 1.3. Let q ≥ 1. Then, for all s > 0, we have

H
q,s
µ =P

q,s
µ =P

q,s
µ = 0.

In particular, this implies that
dimq

µ = Dimq
µ = ∆

q
µ = 0.

Indeed, for each centred δ-packing
(
Bxi (ri)

)
i
of Rn, we have∑

i

µ(Bxi (ri))qν(Bxi (ri))t(2ri)s
≤ (2δ)s

∑
i

µ(Bxi (ri))qν(Bxi (ri))t

≤ (2δ)s
∑

i

µ(Bxi (ri))q
∑

i

ν(Bxi (ri))t

≤ (2δ)s

∑
i

µ(Bxi (ri))


q ∑

i

ν(Bxi (ri))


t

= (2δ)sµ

⋃
i

Bxi (ri)


q

ν

⋃
i

Bxi (ri)


t

≤ (2δ)s.

This implies that P
q,s
µ,δ(Rn) ≤ (2δ)s. Letting δ→ 0 gives P

q,s
µ (Rn) = 0. Finally we get

0 ≤H
q,s
µ (Rn) ≤P

q,s
µ (Rn) ≤P

q,s
µ (Rn) = 0.
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2. Proof of the main result

The proof of the main result is based on some generalized multifractal density concepts in the mixed
case. General and similar density results have been investigated also in [2, 3, 10–12, 24, 39–41]. To prove
Theorem 1.2, we need some preliminary results.

2.1. Density result

Consider a finite Borel measure θ on Rn and s ∈ R. For x ∈ suppµ ∩ supp ν, we introduce the upper
and lower (q, s)-densities of θwith respect to µ as

d
q,s
µ (x, θ) = lim sup

r→0

θ
(
Bx(r)

)
µ
(
Bx(r)

)q
ν
(
Bx(r)

)t
(2r)s

and

dq,s
µ (x, θ) = lim inf

r→0

θ
(
Bx(r)

)
µ
(
Bx(r)

)q
ν
(
Bx(r)

)t
(2r)s
.

Some analogous cases of the densities d
q,s
µ (x, θ) and dq,s

µ (x, θ) may be found [3, 10, 11, 13, 24, 34, 35].
For µ ∈P(Rn) and a > 1, we write

Pa(µ) = lim sup
r↘0

 sup
x∈suppµ

µ
(
Bx(ar)

)
µ
(
Bx(r)

)  .
We will now say that the measure µ satisfies the doubling condition if there exists a > 1 such that Pa(µ) < ∞.
It is easily seen that the exact value of the parameter a is unimportant: Pa(µ) < ∞, for some a > 1 if and only
if Pa(µ) < ∞, for all a > 1. Also, we will write PD(Rn) for the set of Borel probability measures onRn which
satisfy the doubling condition (see [34]).

The following result deals with lower and upper bounds for the mutual multifractal density introduced
above by means of the mutual multifractal generalizations of Hausdorff and packing measures. We will
see that such bounds permit to obtaining the multifractal formalism already introduced in [34] and re-
considered next in [3, 10, 11, 13, 25, 35].

Proposition 2.1. Let µ = (µ, ν) ∈
(
PD(Rn)

)2
, E be a Borel subset of suppµ∩supp ν and θ be a finite Borel measure

on Rn. Then, there exists a constant C > 0 for which the following inequalities are true

H
q,s
µ (E) inf

x∈E
d

q,s
µ (x, θ) ≤ θ(E) ≤H

q,s
µ (E) sup

x∈E
d

q,s
µ (x, θ) (2.1)

and

P
q,s
µ (E) inf

x∈E
dq,s
µ (x, θ) ≤ θ(E) ≤ C P

q,s
µ (E) sup

x∈E
dq,s
µ (x, θ). (2.2)

Proof. All of the elements needed to prove this lemma can be found in [11, 13, 14, 27, 41].

2.2. On the equivalence of the mutual multifractal measures

We will start by defining the Moran sets (for more details, we may see for example [3, 14, 15]). Let {nk}k
and {Φk}k≥1 be respectively two sequences of positive integers, and positive vectors such that

Φk =
(
ck1 , ck2 , . . . , cknk

)
, nk ≥ 2, 0 < ck < 1, nkck ≤ 1 for k ≥ 1.
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For any m, k ∈N, such that m ≤ k, let

Dm,k =
{
(im, im+1, . . . , ik) : 1 ≤ i j ≤ n j,m ≤ j ≤ k

}
and

Dk = D1,k =
{
(i1, i2, . . . , ik) : 1 ≤ i j ≤ n j, 1 ≤ j ≤ k

}
.

We also set
D0 = ∅ and D = ∪

k≥0
Dk,

Considering σ = (σ1, σ2, . . . , σk) ∈ Dk, τ = (τ1, τ2, . . . , τm) ∈ Dk+1,m, we set

σ ∗ τ = (σ1, σ2, . . . , σk, τ1, τ2, . . . , τm).

Definition 2.2. Let I be a compact subset with non-empty interior in a complete metric space X (For convenience,
we assume that the diameter of I is 1). The collection F = {Iσ, σ ∈ D} of closed subsets of I is said to have a Moran
structure if

1. for any (i1, i2, . . . , ik) ∈ Dk, Ii1i2...ik is similar to I. That is, there exists a similarity transformation

Si1i2...ik : X → X
I 7→ Ii1i2...ik ,

with the convention I∅ = I.
2. For all k ≥ 1, (i1, i2, . . . , ik−1) ∈ Dk−1, Ii1i2...ik are subsets of Ii1i2...ik−1 for all ik ∈ {1, 2, . . . ,nk}, and

◦

Ii1i2...ik−1,ik ∩
◦

Ii1i2...ik−1,i′k = ∅, ∀ 1 ≤ ik < i′k ≤ nk,

where
◦

I denotes the interior of I.
3. For all k ≥ 1 and 1 ≤ j ≤ nk, taking (i1, i2, . . . , ik−1, j) ∈ Dk, we have

0 < ckj = ci1i2...ik−1 j =
|Ii1i2...ik−1 j|

|Ii1i2...ik−1 |
< 1, k ≥ 2,

where |I| denotes the diameter of I.

Suppose that F is a collection of subsets of I having Moran structure. We call E =
⋂
k≥1

⋃
σ∈Dk

Iσ, a Moran set

determined by F , and call Fk =
{
Iσ, σ ∈ Dk

}
the k-order fundamental sets of E. I is called the original set of

E. We assume finally that lim
k→∞

max
σ∈Dk

|Iσ| = 0. Then, for all i ∈ D, the set
(⋂

n≥1

Ii1i2...in

)
is a single point. We shall

denote it by φ(i). We use the abbreviation w|k for the first k elements of the sequence

w = (i1, i2, . . . , ik, . . .) ∈ D, Ik(w) = Iw|k = Ii1i2...ik .

Now, we consider a class of Moran sets E which satisfy a special property called the strong separation
condition (SSC), i.e., take any Iσ ∈ F . Let Iσ∗1, Iσ∗2, . . . , Iσ∗nk+1 be the (k + 1)-order fundamental subsets. We
say that Iσ satisfies the (SSC) if

dist(Iσ∗i, Iσ∗ j) ≥ δk|Iσ|, for all i , j,

where (δk)k is a sequence of positive real numbers, such that

0 < δ = inf
k
δk < 1.
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Lemma 2.3. Let E ⊂ I be a Moran set satisfying (SSC), and θ be a finite Borel measure such that suppθ ⊂ E. Then,
there exist positive constants Ai,Bi, 1 ≤ i ≤ 2 depending on δ, q, t and s for whihc the following inequalities hold for
any φ(i) ∈ E,

A1 lim inf
n→+∞

µ(In(i))qν(In(i))t
|In(i)|s

θ(In(i))
≤ lim inf

r→0

µ
(
Bφ(i)(r)

)q
ν
(
Bφ(i)(r)

)t
rs

θ
(
Bφ(i)(r)

) ≤ B1 lim inf
n→+∞

µ
(
In(i)

)q
ν
(
In(i)

)t
|In(i)|s

θ
(
In(i)

) ,

and

A2 lim sup
n→+∞

µ
(
In(i)

)q
ν
(
In(i)

)t
|In(i)|s

θ
(
In(i)

) ≤ lim sup
r→0

µ
(
Bφ(i)(r)

)q
ν
(
Bφ(i)(r)

)t
rs

θ
(
Bφ(i)(r)

) ≤ B2 lim sup
n→+∞

µ(In(i))qν(In(i))t
|In(i)|s

θ(In(i))
.

Proof. The proof may be easily inspired from that of [3, Lemma 6], and is therefore omitted.

Proposition 2.4. Let E ⊂ I be a Moran set satisfying (SSC). Let µ = (µ, ν), where µ, ν ∈PD(X), and θ be a finite
Borel measure such that suppθ ⊂ E.

1. Assume that for some α ∈ R, we have

lim inf
n→+∞

θ
(
In(i)

)
µ
(
In(i)

)q
ν
(
In(i)

)t
|In(i)|s

=


0 i f s < α,

+∞ i f s > α,
for all i ∈ D,

then Dimq
µ(E) = α = Dimq

µ(θ).
2. Assume that θ satisfies

0 < lim inf
n→+∞

θ
(
In(i)

)
µ
(
In(i)

)q
ν
(
In(i)

)t
|In(i)|α

< +∞, for all i ∈ D, (2.3)

then θ⌞E ∼P
q,α
µ ⌞E

.

Proof. This follows immediately from Lemma 2.3, equation (2.2) and Proposition 2.1.

Proposition 2.5. Assume that the hypotheses of Proposition 2.4 hold.

1. Assume further that there exists β ∈ R with

lim sup
n→+∞

θ
(
In(i)

)
µ
(
In(i)

)q
ν
(
In(i)

)t
|In(i)|s

=


0 i f s < β,

+∞ i f s > β,
for all i ∈ D,

then dimq
µ(E) = β = dimq

µ(θ).
2. Assume that θ satisfies

0 < lim sup
n→+∞

θ
(
In(i)

)
µ
(
In(i)

)q
ν
(
In(i)

)t
|In(i)|β

< +∞, for all i ∈ D, (2.4)

then θ⌞E ∼H
q,β
µ ⌞E

.

Proof. It follows from (2.1) and similar techniques as in the proof of Proposition 2.4.
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Corollary 2.6. Let E ⊂ I be a Moran set satisfying (SSC). Let also µ = (µ, ν), where µ, ν ∈PD(X), θ a finite Borel
measure such that suppθ ⊂ E, and β ≤ α satisfying (2.3) and (2.4). It holds that

Dimq
µ(E) = α = Dimq

µ(θ), dimq
µ(E) = β = dimq

µ(θ),

and
θ⌞E ∼H

q,β
µ ⌞E

∼P
q,α
µ ⌞E
.

Proof. It is a direct consequence of Propositions 2.4 and 2.5.

Remark 2.7. In the special case ”t = 0 or q = 0” and ”q = t = 0”, the previous results are treated by M. Dai in
[14, 15]. By using similar techniques of [29] then the above results hold if we replace the Moran set with perturbed
Cantor sets.

2.3. Proof of Theorem 1.2
As q, t < 1 and 0 < s < s′ < 2, we can choose m1 > 0, m2 > 0 such that

0 < m1 <
1

4
1−q

s 2
1−t

s

<
1

4
1−q
s′ 2

1−t
s′

< m2 < 1. (2.5)

Let u1 be such that

m1 <
1

4
1−q

s 2
1−t

s

< u1 <
1

4
1−q
s′ 2

1−t
s′

< m2.

Since
1

4
1−q

s 2
1−t

s u1

< 1, and
1

4
1−q

s 2
1−t

s m1

> 1,

the equation (2.5) yields the existence of a unique n1 ∈N for which(
1

4
1−q

s 2
1−t

s

)n1

u1mn1−1
1

=
1

4
1−q

s 2
1−t

s u1

×

 1

4
1−q

s 2
1−t

s m1

n1−1

< 1 ≤
1

4
1−q

s 2
1−t

s u1

×

 1

4
1−q

s 2
1−t

s m1

n1

=

(
1

4
1−q

s 2
1−t

s

)n1+1

u1mn1
1

. (2.6)

We thus define the sequence {un}
n1+1
n=2 by

un =


m1, if n = 2, . . . ,n1 n1∏

j=1

u j


−1 (

1

4
1−q

s 2
1−t

s

)n1+1
, if n = n1 + 1.

It follows from (2.6) that

un1+1

m1
=

1
m1
×

 n1∏
j=1

u j


−1 (

1

4
1−q

s 2
1−t

s

)n1+1

,

and

4
1−q

s 2
1−t

s un1+1 =

(
1

4
1−q

s 2
1−t

s

)n1

u1mn1−1
1

< 1.
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Therefore,

un1+1 ≥ m1 and un1+1 <
(
4

1−q
s 2

1−t
s

)−1
< m2.

Thus, m1 ≤ un < m2, n = 2, . . . ,n1 + 1. Note that the sequence
 n∏

j=1

u j


−1 (

1

4
1−q

s 2
1−t

s

)n

; n = 1, 2, . . . ,n1 + 1


is clearly increasing according to (2.5) and (2.6). That is to say 1∏

j=1

u j


−1 (

1

4
1−q

s 2
1−t

s

)
<

 2∏
j=1

u j


−1 (

1

4
1−q

s 2
1−t

s

)2

...

<

 n1∏
j=1

u j


−1 (

1

4
1−q

s 2
1−t

s

)n1

=

(
1

4
1−q

s 2
1−t

s

)n1 (
u1mn1−1

1

)−1

< 1 =

n1+1∏
j=1

u j


−1 (

1

4
1−q

s 2
1−t

s

)n1+1

.

Also, since s < s′, we deduce that

1 =

n1+1∏
j=1

u j


−1 (

1

4
1−q

s 2
1−t

s

)n1+1

<

n1+1∏
j=1

u j


−1 (

1

4
1−q
s′ 2

1−t
s′

)n1+1

. (2.7)

Observing now that
1

4
1−q
s′ 2

1−t
s′ m2

< 1, it follows from (2.7) that there exists a unique n2 ∈N such that

m−n2
2

n1+1∏
j=1

u j


−1 (

1

4
1−q
s′ 2

1−t
s′

)n1+n2+1

≤ 1 < m1−n2
2

n1+1∏
j=1

u j


−1 (

1

4
1−q

s 2
1−t

s

)n1+n2

, (2.8)

which gives that

n1+1∏
j=1

u j


−1  1

4
1−q
s′ 2

1−t
s′ m2

n2 (
1

4
1−q
s′ 2

1−t
s′

)n1+1

≤ 1 <

n1+1∏
j=1

u j


−1  1

4
1−q
s′ 2

1−t
s′ m2

n2−1 (
1

4
1−q
s′ 2

1−t
s′

)n1+1

.

We therefore define the sequence {un}
n1+n2+1
n=n1+2 by

un =


m2, if n = n1 + 2, . . . ,n1 + n2n1+n2∏

j=1

u j


−1 (

1

4
1−q
s′ 2

1−t
s′

)n1+n2+1

, if n = n1 + n2 + 1.
(2.9)



A. Ben Mabrouk, B. Selmi / Filomat 36:10 (2022), 3479–3490 3487

Next, note that m1 <
1

4
1−q
s′ 2

1−t
s′

, and that

4
1−q
s′ 2

1−t
s′ un1+n2+1 =

n1+n2∏
j=1

u j


−1 (

1

4
1−q
s′ 2

1−t
s′

)n1+n2

=

n1+1∏
j=1

u j


−1 (

1

4
1−q
s′ 2

1−t
s′

)n1+n2

m1−n2
2

> 1

≥

n1+1∏
j=1

u j


−1 (

1

4
1−q
s′ 2

1−t
s′

)n1+n2+1

m2 m1−n2
2

= m−1
2 un1+n2+1.

This implies that

m1 <
1

4
1−q
s′ 2

1−t
s′

< un1+n2+1 ≤ m2.

Consequently, we get

m1 < un ≤ m2, ∀ n = n1 + 2, . . . ,n1 + n2 + 1.

It is clear from
1

4
1−q
s′ 2

1−t
s′ m2

< 1, (2.8) and (2.9) that the sequence


 n∏

j=1

u j


−1 (

1

4
1−q

s 2
1−t
s′

)n

; n = n1 + 1, . . . ,n1 + n2 + 1


is monotone decreasing. This gives thatn1+1∏

j=1

u j


−1 (

1

4
1−q

s 2
1−t

s

)n1+1

>

n1+2∏
j=1

u j


−1 (

1

4
1−q

s 2
1−t

s

)n1+2

...

>

n1+n2∏
j=1

u j


−1 (

1

4
1−q

s 2
1−t

s

)n1+n2

=

n1+1∏
j=1

u j


−1 (

1

4
1−q
s′ 2

1−t
s′

)n1+n2

m1−n2
2

> 1

=

n1+n2∏
j=1

u j


−1 (

1

4
1−q
s′ 2

1−t
s′

)n1+n2+1

u−1
n1+n2+1

=

n1+n2+1∏
j=1

u j


−1 (

1

4
1−q
s′ 2

1−t
s′

)n1+n2+1

.
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Accordingly, we can choose n3 and {un}
n1+n2+n3+1
n=n1+n2+2 in the same way, and by repeating the same choice, we

finally get a sequence
(
un

)
n∈N

satisfying

lim sup
n→+∞

(
1
8

)n n∏
j=1

u j


s (

1
4

)nq(
1
2

)nt

= 1 = lim inf
n→+∞

(
1
8

)n n∏
j=1

u j


s′ (

1
4

)nq(
1
2

)nt

, (2.10)

0 = lim sup
n→+∞

(m1)n
≤ lim sup

n→+∞

 n∏
j=1

u j

 ≤ lim sup
n→+∞

(m2)n = 0,

and the bounds’ inequalities

0 < m1 ≤ un ≤ m2 < 1, ∀n ∈N. (2.11)

Now, using the sequence
(
un

)
n

above, we introduce four families
(
hi,n

)
i=1,2,3,4

, n ∈N on the unit square S in

R2 as follows,

h1,n

(
x1
x2

)
=

(
unx1
unx2

)
, h2,n

(
x1
x2

)
=

(
1 − unx1

unx2

)
,

h3,n

(
x1
x2

)
=

(
unx1

1 − unx2

)
, h4,n

(
x1
x2

)
=

(
1 − unx1
1 − unx2

)
.

The set E will be defined by

E =
+∞⋂
n=1

⋃
(i1,i2,...,in)∈{1,2,3,4}n

hi1,1 ◦ hi2,2 ◦ · · · ◦ hin,n(S),

which consists of uncountable elements. Using (2.11), we deduce that E ⊂ D is a homogeneous Moran set.
Let next, for any Ik ∈ F , δk = 1 − 2uk+1. It follows from (2.11) that

δ = inf
k
δk ≥ 1 − 2m2 > 0.

So, there exists a sequence of positive real numbers δk that satisfies

dist
(
Iσ∗i, Iσ∗ j

)
≥ 1 − 2uk+1|Iσ| = δk|Iσ|, for all i , j.

This guarantees that the set E satisfies (SSC). For i ∈ D =
{
(i1, i2, . . .), i j = 1, 2, 3, 4

}
, put

In(i) = hi1,1 ◦ hi2,2 ◦ · · · ◦ hin,n(S).

It is clear that |In(i)| =
n∏

j=1

u j. Let µ, ν be tow Borel probability measures on S and θ be a finite Borel measure

on S such that
µ(In(i)) = 4−n, ν(In(i)) = 2−n, and θ(In(i)) = 8−n, ∀ n ∈N.

Following [14, Proposition 4.1] we prove that µ, ν ∈PD(X). It follows from (2.10) that

lim sup
n→+∞

θ
(
In(i)

)
µ
(
In(i)

)q
ν
(
In(i)

)t
|In(i)|s

= 1 = lim inf
n→+∞

θ
(
In(i)

)
µ
(
In(i)

)q
ν
(
In(i)

)t
|In(i)|s

′

.

Finally, Theorem 1.2 is a direct consequence of Propositions 2.4 and 2.5, and Corollary 2.6. This yields the
desired result.
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