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Abstract. This paper deals with the existence of solutions for the Riemann-Liouville fractional order
boundary value problem with infinite-point boundary conditions posed on half-line via the concept of a
family of measures of noncompactness in the space of functions Cℓ,α(R+) satisfying the Hölder condition
and a generalized Darbo fixed point theorem.

1. Introduction

Fractional differential equations with boundary conditions have occupied an important role in the
fractional calculus domain, since these problems appear in various applications of sciences and engineering:
electricity, mechanics, finance, control theory, biology, chemistry, chemistry, economics [12, 15, 19, 38–41]. In
recent years, there are certain papers and monographs dealing with the existence, uniqueness and stability
analysis of fractional order nonlinear boundary value problems, see ([5, 17, 23–25, 31, 33, 34, 43, 44, 46]) and
references therein.

Measures of noncompactness play an important area in fixed point theory and have many applications
in various branches of nonlinear analysis, including differential equations, integral and integro-differential
equations, optimization, etc. Roughly speaking, a measure of noncompactness is a function defined on the
family of all nonempty and bounded subsets of a certain metric space such that it is equal to zero on the
whole family of relatively compact sets. The concept of measure of noncompactness was first introduced
by Kuratowski [26]. Later, the Italian mathematician Darbo [14] used the Kuratowski measure in order
to investigate a class of operators (condensing operators) whose properties can be characterized as being
intermediate between those of contraction and compact mappings. Darbo’s fixed point theorem is useful
in establishing existence results for different classes of operator equations. For details on various measures
of noncompactness see [7].

Existence of solutions for differential and integral equations has been investigated by many authors in
various types of measure of noncompactness. Benchohra et al. [8] investigated a class of boundary value
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problems for fractional differential equations involving nonlinear integral conditions using the technique
associated with measures of weak noncompactness. Aghajani et al. [3] proved the solvability of a large class
of nonlinear fractional integro-differential equations by establishing some fractional integral inequalities
and using the nonlinear alternative of Leray-Schauder type. Li et al. [28] studied on the existence of mild
solutions for fractional semilinear differential equations with nonlocal conditions. In [30], Mohiuddine
et al. studied the existence of solutions of infinite systems of second-order differential equations in the
Banach sequence space ℓp by using technique based upon measures of noncompactness in conjunction with
a Darbo-type fixed point theorem. In [37], Sriviastava et al. obtained existence results for an infinite system
of differential equations of order n with boundary conditions in the Banach spaces c0 and ℓ1 with the help
of a technique associated with measures of noncompactness. B. Hazarika et al. [21] established existence
of solution for infinite system of nonlinear integral equations in the Banach spaces ℓp, p > 1 with help of
measure of noncompactness and generalized Meir-Keeler fixed point theorem later in [22], they studied
nonlinear functional integral equation with help of measure of noncompactness, simulation function and
generalized Darbo fixed point theorem. Wang et al. [45] applied a new variant flxed point theorem to
investigate some fractional differential equations in Banach spaces. Liang et al. [29] studied the solvability
for a coupled system of nonlinear fractional difierential equations in a Banach space using the measures
of noncompactness and the well known fixed point theorem of Monch type. Borisut et al [10] studied
fractional order boundary value problem based on Kransnoselskii’s fixed point theorem and Darbo’s fixed
point theorem together and the idea of the measure of noncompactness.

In [16], Derbazi et al. established the existence of weak solutions for the following fractional boundary
value problem

Dα0+z(t) = g(t, x(t)), 0 ≤ t ≤ T, 1 < α ≤ 2,

a1z(0) + b1z(T) = λ1I
β1z(η), β1 > 0

a2 D
β2
0+ z(ξ) + b2 D

β3
0+ z(η) = λ2, 0 < β2,β3 ≤ 1,

by using the Monch’s fixed point theorem combined with the technique of measures of weak noncompact-
ness. In [35], Prasad et al. investigated the existence of solutions for infinite systems of regular fractional
Sturm-Liouville problems

D
γ
T−

[
pj(t)D

γ

0+ (zj(t))
]
= λjgj(t, z(t)), 0 < t < T, γ ∈ (0, 1),

zj(0) = 0, Dγ0+zj(T) = 0, j ∈N,

by an application of Meir-Keeler fixed point theorem in the tempered sequence spaces. Recently, Salem et
al. [36] investigated the existence of solutions for the infinite system

ρjDλj
(
ρjDµj+ξ

)
zj(t) = gj(t, zj(t), φ(ρDνz(t))), 0 < t < 1, 0 < ρj,µj, ν < 1 < λj ≤ 2,

zj(0) = ρiDµizj(0) = 0, zj(1) = ajzj(ηi), 0 < ηj < 1, j ∈N,

by using the measure of noncompactness technique and applying the Darbo’s fixed point theorem in the
Banach spaces ℓp, p ≥ 1. Motivated by aforementioned works, in this paper we study fractional order
differential equation with infinite-point boundary conditions

Dδ0+z(t) = g
(
t, z(t)

)
, ℓ < δ < ℓ + 1, t ∈ R+ := [0,∞),

z(0) = z′′(0) = · · · = z(ℓ)(0) = 0,

lim
t→+∞

Dδ−1
0+ z(t) +

∞∑
j=1

cjz
(
φ(τj)

)
= 0,


(1)

where cj is a positive real number, g : R+ × R → R, φ : R+ → R are continuous functions and Dδ0+ is the
Riemann-Liouville fractional derivative of order δ.
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The rest of the paper is organized in the following fashion. In Section 2, we provide some definitions and
lemmas which will be useful in our main results. In Section 3, we study existence of at least one fixed point
theorems for class of operators. In Section 4, we study existence of solution for fractional order boundary
value problem (1) as an application fixed point theorem. Finally, we provide an example to check feasibility
of our results.

2. Preliminaries

In this section, we present some definitions and lemmas on fractional calculus and the concept of
measure of noncompactness. Throughout the paper we assume that X is a Banach space. For a subset E
of X, the closure and convex hull of E in X are denoted by E and conv(E), respectively. Further, we denote
the family of nonempty bounded subsets of X by MX and NX is the subfamily consisting of all relatively
compact subsets of X. Let C(I) be the space of continuous functions defined on I with the norm given by

∥z∥ = sup
t∈I
|z(t)|.

In addition, L1(I) denotes the class of the Lebesgue integrable functions on the interval I with the norm
given by

∥z∥L1 =

∫
I
z(s)ds.

Definition 2.1. [25] The Riemann-Liouville fractional integral of order β > 0 for a function f : (0,∞) → R is
defined as

I
β

0+f(t) =
1
Γ(β)

∫ t

0
(t − s)β−1f(s)ds,

provided that the right side is pointwise defined on (0,∞).

Definition 2.2. [25] The Riemann-Liouville fractional derivative of order β > 0 for a continuous function f :
(0,∞)→ R is defined as

D
β

0+f(t) =
1

Γ(m − β)

(
d

dt

)m ∫ t

0

f(s)
(t − s)γ−m−1 ds,

where m = [β] + 1, provided that the right side is pointwise defined on (0,∞).

Remark 2.3. ([25]) In this work we need the following composition relations:

(a) Dβ0+I
β

0+f(t) = f(t), β > 0, f(t) ∈ L1(0,+∞);

(b) Dγ0+I
β

0+f(t) = I
β−γ

0+ f(t), β > γ > 0, f(t) ∈ L1(0,+∞).

Remark 2.4. ([5]) For η > −1, we have

D
β

0+t
η =

Γ(η + 1)
Γ(η − β + 1)

tη−β,

giving inparticular Dβ0+t
β−m = 0, m = 1, 2, · · ·,N, where N is the smallest integer greater than or equal to β.

Lemma 2.5. [25] The general solution to Dβ0+y(t) = 0 with β ∈ (m − 1,m] and m > 1 is the function

y(t) = a1t
β−1 + a2t

β−2 + · · · + amt
β−m, ai ∈ R, i = 1, 2, · · · ,m.
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Lemma 2.6. [25] Let β > 0. Then the following equality holds for y(t) :

I
β

0+D
β

0+y(t) = y(t) + a1t
β−1 + a2t

β−2 + · · · + amt
β−m, ai ∈ R, i = 1, 2, · · · ,m

and m is the smallest integer greater than or equal to γ.

Lemma 2.7. Suppose
m∑
j=1

cjφ(τj)δ−1 converges to Γ(δ) and letϖ ∈ L1(R+). Then the fractional order boundary value

problem

Dδ0+z(t) = ϖ(t), ℓ < δ < ℓ + 1, t ∈ R+ (2)

satisfying infinite-point boundary conditions

z(0) = 0, z′(0) = z′′(0) = · · · = z(ℓ−1)(0) = 0, (3)

lim
t→+∞

Dδ−1
0+ z(t) +

∞∑
j=1

cjz
(
φ(τj)

)
= 0, (4)

has a unique solution

z(t) =
∫ t

0

(t − s)δ−1

Γ(δ)
ϖ(s)ds −

tδ−1

2Γ(δ)

∫
∞

0
ϖ(s)ds

−
tδ−1

2Γ(δ)

∞∑
j=1

cj

∫ φ(τj)

0

(φ(τj) − s)δ−1

Γ(δ)
ϖ(s)ds.


(5)

Proof. Let z(t) be a solution of (2). Then, by Lemma 2.6, we have

z(t) = a1t
δ−1 + a2t

δ−2 + · · · + aℓ+1t
δ−ℓ−1 +

∫ t

0

(t − s)δ−1

Γ(δ)
ϖ(s)ds (6)

for some am ∈ R, m = 1, 2, · · ·, ℓ + 1. Using conditions (3), we get a2 = a3 = · · · = aℓ+1 = 0. So, (6) reduces to

z(t) = a1t
δ−1 +

∫ t

0

(t − s)δ−1

Γ(δ)
ϖ(s)ds. (7)

Before applying (4), we first take

lim
t→+∞

Dδ−1
0+ z(t) = −

m∑
j=1

cjz
(
φ(τj)

)
and using Remark 2.4 to get

a1 =
−1∑m

j=1 cjφ(τj)δ−1 + Γ(δ)

∫ ∞

0
ϖ(s)ds +

m∑
j=1

cj

∫ φ(τj)

0

(φ(τj) − s)δ−1

Γ(δ)
ϖ(s)ds

 .
Plugging a2 value into (7), we obtain

z(t) =
−tδ−1∑m

j=1 cjφ(τj)δ−1 − Γ(δ)

∫ ∞

0
ϖ(s)ds +

m∑
j=1

cj

∫ φ(τj)

0

(φ(τj) − s)δ−1

Γ(δ)
ϖ(s)ds


+

∫ t

0

(t − s)δ−1

Γ(δ)
ϖ(s)ds


(8)
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Since ∣∣∣cjϖ(
φ(τj)

)∣∣∣ ≤ cj∥ϖ∥
and ∣∣∣∣∣cj ∫ φ(τj)

0

(φ(τj) − s)δ−1

Γ(δ)
ϖ(s)ds

∣∣∣∣∣ ≤ cjΓ(δ)

∣∣∣∣∣ ∫ φ(τj)

0
u(s)ϖ(s)ds

∣∣∣∣∣
≤
cj

Γ(δ)

∣∣∣∣∣ ∫ τj

0
u(s)ϖ(s)ds

∣∣∣∣∣
≤
cj

Γ(δ)
∥u∥L1∥z∥L1 ,

where u(s) = (φ(τj) − s)δ−1. Then, by comparison test, the series in (4) and

∞∑
j=1

cj

∫ φ(τj)

0

(φ(τj) − s)δ−1

Γ(δ)
ϖ(s)ds

are convergent. So, by taking the limit as m→∞ in (8), we obtain (5).
Conversely, it is clear that (3) satisfies (6). Next applying the operator Dδ−1

0+ and Dδ0+ to the two sides of
(5) respectively and using Remark 2.3 and Remark 2.4, we obtain

lim
t→+∞

Dδ−1
0+ z(t) =

1
2

∫
∞

0
ϖ(s)ds −

1
2

∞∑
j=1

cj

∫ φ(τj)

0

(φ(τj) − s)δ−1

Γ(δ)
ϖ(s)ds (9)

and
Dδ0+z(t) = ϖ(s).

Also note that

m∑
j=1

cjz
(
φ(τj)

)
=

m∑
j=1

cj

∫ φ(τj)

0

(φ(τj) − s)δ−1

Γ(δ)
ϖ(s)ds −

1
2Γ(δ)

m∑
j=1

cjφ(τj)δ−1
∫
∞

0
ϖ(s)ds

−
1

2Γ(δ)

m∑
i=1

ciφ(τi)δ−1
∞∑
j=1

cj

∫ φ(τj)

0

(φ(τj) − s)δ−1

Γ(δ)
ϖ(s)ds.

Since
∑m

i=1 ciφ(τi)δ−1 converges to Γ(δ), it follows by taking limit t→ +∞ that

∞∑
j=1

cjz
(
φ(τj)

)
= −

1
2

∫
∞

0
ϖ(s)ds +

1
2

∞∑
j=1

cj

∫ φ(τj)

0

(φ(τj) − s)δ−1

Γ(δ)
ϖ(s)ds. (10)

By adding (9) and (10), we get (4). Which shows that the solution of the integral equation (5) satisfies the
differential equation (2) under infinite-point boundary conditions (3) and (4).

Remark 2.8. The supposition
m∑
j=1

cjφ(τj)δ−1 converges to Γ(δ) in the Lemma 2.7 is valid. For example: Let δ = 9
2 ,

cj = 99225
16π11/2j4 , τj =

1
j

and φ(t) = t4/7. Then

m∑
j=1

cjφ(τj)δ−1 =

m∑
j=1

99225
16π11/2j6

→
105
16
√
π = Γ(δ) as m→ +∞.
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For ℓ ∈ N, Cℓ(R+) denotes the space of all real functions which are ℓ-times continuously differentiable on
R+ with the family of seminorms

|z|T = sup{z(i)(t) : 0 ≤ i ≤ ℓ, t ∈ [0, T]}

for all T ≥ 1. Then the space Cℓ(R+) is a Fréchet space with respect to the distance

d(u, v) = sup
{ 1

2T
min

{
1, |u − v|T

Cℓ

}
: T ∈N

}
.

For α ∈ (0, 1], the space α-Hölder continuous functionsHα(R+) is the family of all continuous functions
z = z(t) on R+ such that, for every T > 0, there exists NT > 0,

sup
{
|z(t1) − z(t2)|
|t1 − t2|

α
: t1, t2 ∈ [0, T], t1 , t2

}
< NT.

The spaceHα(R+) is equipped with the family of seminorms

|z|T
Hα
= |z(0)| + sup

{
|z(t1) − z(t2)|
|t1 − t2|

α
: t1, t2 ∈ [0, T], t1 , t2

}
.

Then,Hα(R+) is a Fréchet space with respect to the distance

d(u, v) = sup
{ 1

2T
min

{
1, |u − v|T

Hα

}
: T ∈N

}
.

For fixed α ∈ (0, 1], the spaceCℓ,α(R+) denotes the space of all functions z ∈ Cℓ(R+) whose ℓth-derivative
is Hölder continuous with exponent α. Then Cℓ,α(R+) equipped with the family of seminorms

|z|Tα = |z|
T
Ck + |z

(ℓ)
|
T
Hα

for all T ∈N. Then the space Cℓ,α(R+) is a Fréchet space with respect to the distance

d(u, v) = sup
{ 1

2T
min

{
1, |u − v|Tα

}
: T ∈N

}
.

It can be seen that Cℓ,α(R+) is a linear subspace of Cℓ(R+). Further, letMCℓ,α be the family of all nonempty
and bounded subsets ofCℓ,α(R+), and letNCℓ,α be the family of all nonempty and relatively compact subsets
of Cℓ,α(R+),

Definition 2.9. [20] A family of mapping
{
ℵ
T
α,ℓ

}
T∈N

,where α ∈ (0, 1] andℵT
α,ℓ :MCℓ,α → R+ is said to be a measure

of noncompactness in Cℓ,α(R+) if it satisfies the following conditions,

(C1) The family Ker
{
ℵ
T
α,ℓ

}
= {S ∈MCℓ,α : ℵT

α,ℓ(S) = 0 ∀ T ∈N } , ∅ and Ker
{
ℵ
T
α,ℓ

}
⊆ NCℓ,α .

(C2) S ⊆ T =⇒ ℵ
T
α,ℓ(S) ≤ ℵ

T
α,ℓ(T ) for T ∈N.

(C3) ℵT
α,ℓ(S) = ℵ

T
α,ℓ(S) for T ∈N.

(C4) ℵT
α,ℓ(conv(S)) = ℵT

α,ℓ(S) for T ∈N.

(C5) ℵT
α,ℓ(cS + (1 − c)T ) ≤ cℵT

α,ℓ(S) + (1 − c)ℵT
α,ℓ(T ) for c ∈ [0, 1] and T ∈N.

(C6) If {Sn}
∞

n=1 be a nonincreasing sequence of closed chains fromMCℓ,α such that lim
n→∞
ℵ
T
α,ℓ(Sn) = 0 for each T ∈N,

then S∞ =
∞⋂

n=1

Sn , ∅.



M. Khuddush et al. / Filomat 36:10 (2022), 3527–3543 3533

Suppose T ∈N, and S is a bounded subset of the space Cℓ,α(R+). For z ∈ S and ε > 0 we denote

µT(z, ε) = sup
{
|z(l)(t1) − z(l)(t2)| : t1, t2 ∈ [0, T], |t1 − t2| ≤ ε, l = 1, 2, · · · , k

}
,

µTα(z, ε) = sup
{
|z(ℓ)(t1) − z(ℓ)(t2)|
|t1 − t2|

α
: t1, t2 ∈ [0, T], t1 , t2, |t1 − t2| ≤ ε

}
,

µT(S, ε) = sup
z∈S

µT(z, ε),

µTα(S, ε) = sup
z∈S

µTα(z, ε),

ℵ
T
α,ℓ(S, ε) = µT(S, ε) + µTα(S, ε).

Theorem 2.10. (Darbo [20]) Let C be a nonempty, closed and convex subset of the Fréchet space Cα,ℓ(R+) and
F : C→ C be a continuous operator such that, for each T ∈N, there exists LT ∈ [0, 1) so that

ℵ
T
α,ℓ(F (S)) ≤ LTℵTα,ℓ(S)

for each S ∈ C. Then F has at least one fixed point in the set C.

3. Main Results

In this section, we present an extension of Darbo’s fixed point theorem 2.10 and consequence results.

Definition 3.1. [18] Let R denotes the class of functions π : R+ → [0, 1) such that

π(ξn)→ 1 =⇒ ξn → 0.

Theorem 3.2. [1] Let E be a Hausdorff locally convex linear topological space, C be a nonempty convex subset of E
and F : C→ E be a continuous mapping such that

F (C) ⊂ A ⊂ C,

withA compact. Then F has at least one fixed point.

Theorem 3.3. Let C be a nonempty, bounded, closed and convex subset of the Fréchet space Cα,ℓ(R+) and F : C→ C
be a continuous operator such that, for each T ∈N,

ℵ
T
α,ℓ(F (S)) ≤ π

(
ℵ
T
α,ℓ(S)

)
ℵ
T
α,ℓ(S) (11)

for any subset S ∈ C and π ∈ R. Then F has at least one fixed point in C.

Proof. By induction, we define a sequence {Cp} by taking C0 = C and Cp = conv(F Cp−1), p ≥ 1. We have
C1 = conv(F C0) ⊆ C0, so continuing this process we get

C0 ⊇ C1 ⊇ C2 ⊇ · · ·.

If ℵT
α,ℓ(CN) = 0 for some positive integer N and for all T, then CN is relatively compact. Thus, Theorem 3.2

gives that F has a fixed point. Otherwise, let T ≥ 0 be a number such that ℵT
α,ℓ(Cp) , 0 for any p ≥ 0. From

(11), we have

ℵ
T
α,ℓ(Cp+1) = ℵTα,ℓ(conv(F Cp))

= ℵTα,ℓ(F Cp) ≤ π
(
ℵ
T
α,ℓ(Cp)

)
ℵ
T
α,ℓ(Cp) ≤ ℵ

T
α,ℓ(Cp),

(12)
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which implies that ℵT
α,ℓ(Cp) is a positive decreasing sequence of real numbers, so, there exists a ζ ≥ 0 such

that ℵT
α,ℓ(Cp)→ ζ as p→∞. Now we show that ζ = 0. Suppose by contrary ζ , 0. Then, from (12), we have

ℵ
T
α,ℓ(Cp+1)

ℵT
α,ℓ(Cp)

≤ π
(
ℵ
T
α,ℓ(Cp)

)
< 1 =⇒ π

(
ℵ
T
α,ℓ(Cp)

)
→ 1 as n→∞.

Since π ∈ R, we obtain ζ = 0 and hence ℵT
α,ℓ(Cp) → 0 as p → ∞. In view of (C6), C∞ =

∞⋂
p=1

Cp is nonempty,

closed, convex and C∞ ⊂ C.Also, the set C∞ is invariant under the operatorF and C∞ ∈ Ker
{
ℵ
T
α,ℓ

}
. Therefore,

by Theorem 3.2 the operator F has a fixed point.

Corollary 3.4. Let C be a nonempty, bounded, closed and convex subset of the Fréchet space Cα,ℓ(R+) and F : C→ C
be a continuous operator such that, for each T ∈N,

ℵ
T
α,ℓ(F (S)) ≤ ϕ

(
ℵ
T
α,ℓ(S)

)
for any subset S ∈ C and ϕ : R+ → R+ is a nondecreasing and upper semicontinuous function such that ϕ(t) < t for
all t > 0. Then F has at least one fixed point.

Proof. The proof is similar to the proof of Corollary 2.2. in [2].

Corollary 3.5 (Darbo [20]). Let C be a nonempty, bounded, closed and convex subset of the Fréchet space Cα,ℓ(R+)
and F : C→ C be a continuous operator such that, for each T ∈N, there exists LT ∈ [0, 1),

ℵ
T
α,ℓ(F (S)) ≤ LTℵTα,ℓ(S)

for any subset S ∈ C. Then F has at least one fixed point in C.

Proof. Put π(t) = LT in Theorem 3.3, we get desired result.

Theorem 3.6. Suppose
{
ℵ
T
α,ℓ,1

}
T∈N

,
{
ℵ
T
α,ℓ,2

}
T∈N

, · · · ,
{
ℵ
T
α,ℓ,n

}
T∈N

, are n families of measures of noncompactness in

Fréchet spaces Cℓ,α1 (R+), Cℓ,α2 (R+), · · · , Cℓ,αn (R+) respectively. Moreover, assume that the function F : [0,∞)n
→

[0,∞) is convex and F (ϖ1, ϖ2, · · ·, ϖn) = 0 if and only if ϖi = 0 for i = 1, 2, · · · ,n. Then

ℵ
T
α,ℓ(E) = F

(
ℵ
T
α,ℓ,1(E1),ℵTα,ℓ,2(E2), · · · ,ℵTα,ℓ,n(En)

)
defines a measure of noncompactness inCℓ,α1 (R+)×Cℓ,α2 (R+)×· · ·×Cℓ,αn (R+) where Ei denotes the natural projection
of E into Cℓ,αi (R+) for i = 1, 2, · · · ,n.

Proof. The proof is similar to the proof of Theorem 3.3.1. in [7].

Definition 3.7. [13] An element (z1, z2) ∈ E × E is called a coupled fixed point of a mapping F : E × E→ E if

F (z1, z2) = z1, F (z2, z1) = z2.

Theorem 3.8. LetΛ be a nonempty, bounded, closed and convex subset of a Fréchet spaceCℓ,α(R+) andψ : R+ → R+
be a nondecreasing and upper semicontinuous function such thatψ(t) < t for all t > 0. Suppose thatF : Λ×Λ→ Λ
is a continuous operator satisfying

ℵ
T
α,ℓ (F (E1 × E2)) ≤ ψ

[1
2

(
ℵ
T
α,ℓ(E1) + ℵTα,ℓ(E2)

)]
(13)

for all E1,E2 ⊂ Λ. Then FG has at least a coupled fixed point.
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Proof. From Theorem 3.6, it can be seen that ℵ̃T
α,ℓ(E) = ℵT

α,ℓ(E1) + ℵT
α,ℓ(E2) is a measure of noncompactness

in the space Cℓ,α(R+) × Cℓ,α(R+), where E1,E2 denote the natural projections of E. Next, consider the map
F̃ : Λ ×Λ→ Λ ×Λ defined by

F̃ (ϖ1, ϖ2) = (F (ϖ1, ϖ2),F (ϖ2, ϖ1)) .

Since F is continuous onΛ×Λ, F is continuous onΛ×Λ. Let E ⊂ Λ×Λ be a nonempty subset. Then, from
C2 and (13), we get

ℵ̃
T
α,ℓ(F̃ (E)) ≤ ℵ̃Tα,ℓ (F (E1 × E2) × F (E2 × E1))

≤ ℵ̃
T
α,ℓ (F (E1 × E2)) + ℵ̃Tα,ℓ (F (E2 × E1))

≤ ψ
[1
2

(
ℵ
T
α,ℓ(E1) + ℵTα,ℓ(E2)

)]
+ ψ

[1
2

(
ℵ
T
α,ℓ(E2) + ℵTα,ℓ(E1)

)]
≤ 2ψ

[1
2

(
ℵ
T
α,ℓ(E1) + ℵTα,ℓ(E2)

)]
.

Taking ϑT
α,ℓ =

1
2 ℵ̃
T
α,ℓ, we obtain

ϑTα,ℓ(F̃ (E)) ≤ ψ(ϑTα,ℓ(E)).

Since ℵ̃T
α,ℓ is a measure of noncompactness, ϑT

α,ℓ is too. Therefore, all the conditions of Corollary 3.4 are
satisfied and hence, F has a coupled fixed point.

Definition 3.9. [9] Denote E3 := E × E × E. Then an element (z1, z2, z3) ∈ E3 is called a tripled fixed point of a
mapping F : E3

→ E if
F (z1, z2, z3) = z1, F (z2, z1, z3) = z2, F (z3, z2, z1) = z3.

Theorem 3.10. Let Λ be a nonempty, bounded, closed and convex subset of a Fréchet space Cℓ,α(R+) and ψ :
R+ → R+ be a nondecreasing and upper semicontinuous function such that ψ(t) < t for all t > 0. Suppose that
F : Λ ×Λ ×Λ→ Λ is a continuous operator satisfying

ℵ
T
α,ℓ (F (E1 × E2 × E3)) ≤ ψ

[1
3

(
ℵ
T
α,ℓ(E1) + ℵTα,ℓ(E2) + ℵTα,ℓ(E3)

)]
(14)

for all E1,E2,E3 ⊂ Λ. Then FG has a tripled fixed point.

Proof. From Theorem 3.6, it can be seen that ℵ̃T
α,ℓ(E) = ℵT

α,ℓ(E1) + ℵT
α,ℓ(E2) + ℵT

α,ℓ(E3) is a measure of non-
compactness in the space Cℓ,α(R+) ×Cℓ,α(R+) ×Cℓ,α(R+), where E1,E2,E3 denote the natural projections of
E. Next, consider the map F̃ : Λ ×Λ ×Λ→ Λ ×Λ ×Λ defined by

F̃ (ϖ1, ϖ2, ϖ3) = (F (ϖ1, ϖ2, ϖ3),F (ϖ2, ϖ1, ϖ3),F (ϖ3, ϖ2, ϖ1)) .

Since F is continuous onΛ×Λ×Λ, F is continuous onΛ×Λ×Λ. Let E ⊂ Λ×Λ×Λ be a nonempty subset.
Then, from C2 and (14), we get

ℵ̃
T
α,ℓ(F̃ (E)) ≤ ℵ̃Tα,ℓ (F (E1 × E2 × E3) × F (E2 × E1 × E3) × F (E3 × E2 × E1))

≤ ℵ̃
T
α,ℓ (F (E1 × E2 × E3)) + ℵ̃Tα,ℓ (F (E2 × E1 × E3)) + ℵ̃Tα,ℓ (F (E3 × E2 × E1))

≤ ψ
[1
3

(
ℵ
T
α,ℓ(E1) + ℵTα,ℓ(E2) + ℵTα,ℓ(E3)

)]
+ ψ

[1
3

(
ℵ
T
α,ℓ(E2) + ℵTα,ℓ(E1) + ℵTα,ℓ(E3)

)]
+ ψ

[1
3

(
ℵ
T
α,ℓ(E3) + ℵTα,ℓ(E2) + ℵTα,ℓ(E1)

)]
≤ 3ψ

[1
3

(
ℵ
T
α,ℓ(E1) + ℵTα,ℓ(E2) + ℵTα,ℓ(E3)

)]
.
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Taking ϑT
α,ℓ =

1
3 ℵ̃
T
α,ℓ, we obtain

ϑTα,ℓ(F̃ (E)) ≤ ψ(ϑTα,ℓ(E)).

Since ℵ̃T
α,ℓ is a measure of noncompactness, ϑT

α,ℓ is too. Therefore, all the conditions of Corollary 3.4 are
satisfied and hence, F has a tripled fixed point.

Definition 3.11. [32] Denote En :=
∏n
j=1 Ej. Then an element (z1, z2, · · ·, zn−1, zn) ∈ En is called an n-fixed point

of a mapping F : En
→ E if

F (z1, z2, z3, · · ·, zn−1, zn) = z1,

F (z2, z1, z3, · · ·, zn−1, zn) = z2,

F (z3, z2, z1, · · ·, zn−1, zn) = z3,

...

F (zn−1, z2, z3, · · ·, z1, zn) = zn−1

F (zn, z2, z3, · · ·, zn−1, z1) = zn

Theorem 3.12. Let Λ be a nonempty, bounded, closed and convex subset of a Fréchet space Cℓ,α(R+) and ψ : R+ →
R+ be a nondecreasing and upper semicontinuous function such thatψ(t) < t for all t > 0. Suppose thatF : Λn

→ Λ
is a continuous operator satisfying

ℵ
T
α,ℓ (F (En)) ≤ ψ

1
n

n∑
j=1

ℵ
T
α,ℓ(Ej)

 (15)

for all Ej ⊂ Λ, j = 1, 2, · · ·,n. Then FG has an n-fixed point.

Proof. From Theorem 3.6, it can be seen that ℵ̃T
α,ℓ(E) =

∑n
j=1 ℵ

T
α,ℓ(Ej) is a measure of noncompactness in

the space Cℓ,α(R+)n, where Ej (j = 1, 2, · · ·,n) denote the natural projections of E. Next, consider the map
F̃ : Λn

→ Λn defined by

F̃ (ϖ1, ϖ2, · · ·, ϖn−1, ϖn) =



F (ϖ1, ϖ2, ϖ3, · · ·, ϖn−1, ϖn)
F (ϖ2, ϖ1, ϖ3, · · ·, ϖn−1, ϖn)
F (ϖ3, ϖ2, ϖ1, · · ·, ϖn−1, ϖn)

...
F (ϖn−1, ϖ2, ϖ3, · · ·, ϖ1, ϖn)
F (ϖn, ϖ2, ϖ1, · · ·, ϖn−1, ϖ1)


Since F is continuous on Λn, F is continuous on Λn. Let E ⊂ Λn be a nonempty subset. Then, from C2, (15)
and proceeding similar to the Theorem 3.10, we arrive

ℵ̃
T
α,ℓ(F̃ (E)) ≤ nψ

1
n

n∑
j=1

ℵ
T
α,ℓ(Ej)

 .
Taking ϑT

α,ℓ =
1
n ℵ̃
T
α,ℓ, we obtain

ϑTα,ℓ(F̃ (E)) ≤ ψ(ϑTα,ℓ(E)).

Since ℵ̃T
α,ℓ is a measure of noncompactness, ϑT

α,ℓ is too. Therefore, all the conditions of Corollary 3.4 are
satisfied and hence, F has an n-fixed point.
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4. Existence of Solutions for Fractional Order Boundary Value Problem

In this section we present an existence result for the nonlinear fractional order infinite point boundary
value problem (1) in the Fréchet space Cℓ,α(R+) where α ∈ (0, 1] and δ − ℓ − α > 0. We also provide en
example to check feasibility of our results.

We assume the following conditions are true in the sequel:

(H1) g : R+×R+ → R is a continuous function and there exist increasing functions a, b : R+ → R+ satisfying
limt→0 a(t) = limt→0 b(t) = 0, a ∈ L1(R+) and there exits λ > 0 such that

(i) |g(s, z1) − g(s, z2)| ≤ a(|z1 − z2|),

(ii)
∫
∞

0
|g(s, z1) − g(s, z2)|ds ≤ λb(|z1 − z2|)

for all s ∈ R+ and z1, z2 ∈ R. Also assume that

gS = sup{|g(s, 0)| : s ∈ R+} < ∞, gI =
∫
∞

0
|g(s, 0)|ds < ∞.

(H2) for each T ∈N, the exits a positive number RT such that

[
a(RT) + gS

][
MT + NT

∞∑
j=1

cjφ(τj)δ +
2Tδ−ℓ−α

Γ(δ − ℓ + 1)

]
+

[
λb(RT) + gI

]
NT ≤ RT,

where

MT = sup
0≤p≤ℓ

{
Tδ−p

Γ(δ − p + 1)

}
, NT = sup

0≤p≤ℓ

{
Tδ−p−1

2Γ(δ − p)

}
.

Theorem 4.1. Assume that the conditions (H1)-(H2) are satisfied. The the fractional order infinite point boundary
value problem (1) has at least one solution in the Fréchet space Cℓ,α(R+).

Proof. Define the operator F : Cℓ,α(R+)→ Cℓ,α(R+) by

F (z)(t) =
∫ t

0

(t − s)δ−1

Γ(δ)
ϖ(s)ds −

tδ−1

2Γ(δ)

∫
∞

0
ϖ(s)ds

−
tδ−1

2Γ(δ)

∞∑
j=1

cj

∫ φ(τj)

0

(φ(τj) − s)δ−1

Γ(δ)
ϖ(s)ds.

Then Lemma 2.7 shows that the fixed points of the operator F coincides with the solutions of the problem
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(1). Let z ∈ Cℓ,α(R+), then by (H1)–(H2), we have

|F (z)(t)| =
∣∣∣∣ ∫ t

0

(t − s)δ−1

Γ(δ)
g(s, z(s))ds −

tδ−1

2Γ(δ)

∫
∞

0
g(s, z(s))ds

−
tδ−1

2Γ(δ)

∞∑
j=1

cj

∫ φ(τj)

0

(φ(τj) − s)δ−1

Γ(δ)
g(s, z(s))ds

∣∣∣∣
≤

∫ t

0

(t − s)δ−1

Γ(δ)

[
|g(s, z(s)) − g(s, 0)| + |g(s, 0)|

]
ds

+
tδ−1

2Γ(δ)

∫
∞

0

[
|g(s, z(s)) − g(s, 0)| + |g(s, 0)|

]
ds

+
tδ−1

2Γ(δ)

∞∑
j=1

cj

∫ φ(τj)

0

(φ(τj) − s)δ−1

Γ(δ)

[
|g(s, z(s)) − g(s, 0)| + |g(s, 0)|

]
ds

≤

[
a(|z|Tα) + gS

] ∫ t

0

(t − s)δ−1

Γ(δ)
ds +

tδ−1

2Γ(δ)

∞∑
j=1

cj

∫ φ(τj)

0

(φ(τj) − s)δ−1

Γ(δ)
ds


+

[
λb(|z|Tα) + gI

] tδ−1

2Γ(δ)
.

Thus,

|F (z)(t)| ≤
[a(|z|Tα) + gS

Γ(δ + 1)

][
Tδ +

Tδ−1

2Γ(δ)

∞∑
j=1

cjφ(τj)δ
]
+

[
λb(|z|Tα) + gI

] Tδ−1

2Γ(δ)
. (16)

The similar argument gives that

|F
′(z)(t)| ≤

[
a(|z|Tα) + gS

][Tδ−1

Γ(δ)
+

Tδ−2

2Γ(δ − 1)

∞∑
j=1

cjφ(τj)δ
]
+

[
λb(|z|Tα) + gI

] Tδ−2

2Γ(δ − 1)
. (17)

and

|F
(p)(z)(t)| =

∣∣∣∣ ∫ t

0

(t − s)δ−p−1

Γ(δ − p)
g(s, z(s))ds −

tδ−p−1

2Γ(δ − p)

∫
∞

0
g(s, z(s))ds

−
tδ−p−1

2Γ(δ − p)

∞∑
j=1

cj

∫ φ(τj)

0

(φ(τj) − s)δ−1

Γ(δ)
g(s, z(s))ds

∣∣∣∣
≤

[
a(|z|Tα) + gS

][ Tδ−p

Γ(δ − p + 1)
+
Tδ−p−1

2Γ(δ − p)

∞∑
j=1

cjφ(τj)δ
]
+

[
λb(|z|Tα) + gI

] Tδ−p−1

2Γ(δ − p)
, (18)

for any t ∈ R+ and p = 2, 3, · · ·, ℓ − 1. From (16)-(18), we get

|F
(p)(z)(t)| ≤

[
a(|z|Tα) + gS

][
sup
0≤p≤ℓ

{
Tδ−p

Γ(δ − p + 1)

}
+ sup

0≤p≤ℓ

{
Tδ−p−1

2Γ(δ − p)

} ∞∑
j=1

cjφ(τj)δ
]

+
[
λb(|z|Tα) + gI

]
sup
0≤p≤ℓ

{
Tδ−p−1

2Γ(δ − p)

}
.


(19)



M. Khuddush et al. / Filomat 36:10 (2022), 3527–3543 3539

Further, let t1, t2 ∈ [0, T] with t2 > t1. Similar to the above process, we arrive

|F
(ℓ)(z)(t2) − F (ℓ)(z)(t1)|

|t2 − t1|
α

≤
1

|t2 − t1|
α

∣∣∣∣∣ ∫ t2

0

(t2 − s)δ−ℓ−1

Γ(δ − ℓ)
g(s, z(s))ds

−

∫ t1

0

(t1 − s)δ−ℓ−1

Γ(δ − ℓ)
g(s, z(s))ds −

[tδ−ℓ−1
2 − tδ−ℓ−1

1 ]

2Γ(δ − ℓ)

∫
∞

0
g(s, z(s))ds

−
[tδ−ℓ−1

2 − tδ−ℓ−1
1 ]

2Γ(δ − ℓ)

∞∑
j=1

cj

∫ φ(τj)

0

(φ(τj) − s)δ−1

Γ(δ)
g(s, z(s))ds

∣∣∣∣∣
≤

1
|t2 − t1|

α

[
a(|z|Tα) + gS

Γ(δ − ℓ)

] [2(t2 − t1)δ−ℓ

δ − ℓ
+

( tδ−ℓ1

δ − ℓ
−
tδ−ℓ2

δ − ℓ

)
+

1
2

( tδ−ℓ−1
1

Γ(δ − ℓ)
−
tδ−ℓ−1

2

Γ(δ − ℓ)

) ∞∑
j=1

cjφ(τj)δ
]
+

1
2

[λb(|z|Tα) + gI

|t2 − t1|
α

][ tδ−ℓ−1
1

Γ(δ − ℓ)
−
tδ−ℓ−1

2

Γ(δ − ℓ)

]
.

Since t2 > t1,
tδ−ℓ1

δ − ℓ
−
tδ−ℓ2

δ − ℓ
≤ 0,

tδ−ℓ−1
1

Γ(δ − ℓ)
−
tδ−ℓ−1

2

Γ(δ − ℓ)
≤ 0 and so we get

|F
(ℓ)(z)(t2) − F (ℓ)(z)(t1)|

|t2 − t1|
α

≤

2
[
a(|z|Tα) + gS

]
|t2 − t1|

δ−ℓ

(δ − ℓ)Γ(δ − ℓ)|t2 − t1|
α

≤

2
[
a(|z|Tα) + gS

]
Γ(δ − ℓ + 1)

Tδ−ℓ−α. (20)

From (19) and the above inequality, we deduce that

|F z|Tα ≤
[
a(|z|Tα) + gS

][
MT + NT

∞∑
j=1

cjφ(τj)δ +
2Tδ−ℓ−α

Γ(δ − ℓ + 1)

]
+

[
λb(|z|Tα) + gI

]
NT.

Therefore, F (z) ∈ Cℓ,α(R+). Next, let

z =
{
z ∈ Cℓ,α(R+) : |z|Tα ≤ RT for T > 0

}
.

Then z is nonempty, bounded, closed and convex subset of Cℓ,α(R+) and from (H2) it is clear that F is self
mapping on z.Now, we show that F is continuous on z. for this, let z1, z2 ∈ z and ε be any positive number
such that |z1 − z2|

T
α ≤ ε. Let t ∈ [0, T]. Then

|(F z1)(t) − (F z2)(t)| ≤
a
(
|z1 − z2|

T
α

)
Γ(δ + 1)

tδ + tδ−1

2Γ(δ)

∞∑
j=1

cjφ(τj)δ
 + λb

(
|z1 − z2|

T
α

) tδ−1

2Γ(δ)
. (21)

Similar to the above argument, we have

|(F z1)′(t) − (F z2)′(t)| ≤ a
(
|z1 − z2|

T
α

) tδ−1

Γ(δ)
+

Tδ−2

2Γ(δ − 1)

∞∑
j=1

cjφ(τj)δ


+ λb
(
|z1 − z2|

T
α

) Tδ−2

2Γ(δ − 1)
(22)

and

|(F z1)(p)(t) − (F z2)(p)(t)| ≤ a
(
|z1 − z2|

T
α

)  tδ−p

Γ(δ − p + 1)
+
Tδ−p−1

2Γ(δ − p)

∞∑
j=1

cjφ(τj)δ


+ λb
(
|z1 − z2|

T
α

) Tδ−p−1

2Γ(δ − p)
(23)
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for p = 2, 3 · ··, ℓ. From (21)-(23), we obtain

|(F z1)(p)(t) − (F z2)(p)(t)|

≤ a
(
|z1 − z2|

T
α

)  sup
0≤p≤ℓ

{
Tδ−p

Γ(δ − p + 1)

}
+ sup

0≤p≤ℓ

{
Tδ−p−1

2Γ(δ − p)

} ∞∑
j=1

cjφ(τj)δ


+ λb
(
|z1 − z2|

T
α

)
sup
0≤p≤ℓ

{
Tδ−p−1

2Γ(δ − p)

}
. (24)

for p = 0, 1, · · ·, ℓ. Similar to the above process, for t1, t2 ∈ [0, T] with t2 > t1, we obtain∣∣∣[(F z1)(ℓ)(t2) − (F z2)(ℓ)(t2)] − [(F z1)(ℓ)(t1) − (F z2)(ℓ)(t1)]
∣∣∣

|t2 − t1|
α

≤
2Tδ−ℓ−α

Γ(δ − ℓ + 1)
a
(
|z1 − z2|

T
α

)
.

Combining above inequality and (24), we get

|F z1 − F z2|
T
α ≤ a

(
|z1 − z2|

T
α

)[
MT + NT

∞∑
j=1

cjφ(τj)δ +
2Tδ−ℓ−α

Γ(δ − ℓ + 1)

]
+ λb

(
|z1 − z2|

T
α

)
NT.

From which we conclude that F is continuous on z. Finally, we verify the condition (11). Let B be any
bounded subset of Cℓ,α(R+), ε be any positive number and T ∈N. Let us select z ∈ B and t1, t2 ∈ [0, T] with
|t1 − t2| ≤ ε, we have

|(F z)(t2) − (F z)(t1)|

≤

[
a(z(s)) + gS

Γ(δ)

] 2(t2 − t1)δ

δ
+
tδ1

δ
−
tδ2

δ
+

1
2

tδ−1
1

Γ(δ)
−
tδ−1

2

Γ(δ)

 ∞∑
j=1

cjφ(τj)δ


+
1
2

[
λb

(
|z(s)|

)
+ gI

] tδ−1
1

Γ(δ)
−
tδ−1

2

Γ(δ)

 .
Since

tδ1

δ
−
tδ2

δ
≤ 0,

tδ−1
1

Γ(δ)
−
tδ−1

2

Γ(δ)
≤ 0, |t2 − t1| ≤ ε and ε > 0 was arbitrary, we have

|(F z)(t2) − (F z)(t1)| → 0 as ε→ 0. (25)

Similar to the above arguments, it can be shown that

|(F z)′(t2) − (F z)′(t1)| → 0 as ε→ 0. (26)

|(F z)(p)(t2) − (F z)(p)(t1)| → 0 as ε→ 0. (27)

From (25)-(27), we obtain

µT(F z, ε) = sup
{
|z(p)(t2) − z(p)(t1)| : t1, t2 ∈ [0, T], |t1 − t2| ≤ ε, p = 0, 1, · · · , ℓ

}
→ 0 as ε→ 0.

µT(F B, ε) = sup
z∈B

µT(F z, ε)→ 0 as ε→ 0. (28)

In view of (20), we deduce that

µTα(F z, ε) = sup
{
|z(ℓ)(t1) − z(ℓ)(t2)|
|t1 − t2|

α
: t1, t2 ∈ [0, T], t1 , t2, |t1 − t2| ≤ ε

}

≤

2
[
a(|z|Tα) + gS

]
Γ(δ − ℓ + 1)

εδ−ℓ−α

→ 0 as ε→ 0.
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Which gives that

µTα(F B, ε) = sup
z∈B

µTα(F z, ε)→ 0 as ε→ 0. (29)

From (28)-(29), we get

ℵ
T
α,ℓ(F B) = lim

ε→0
ℵ
T
α,ℓ(F B, ε) = lim

ε→0

[
µT(F B, ε) + µTα(F B, ε)

]
.

Thus,
ℵ
T
α,ℓ(F B) ≤ π

(
ℵ
T
α,ℓ(B)

)
ℵ
T
α,ℓ(B),

where π
(
ℵ
T
α,ℓ(B)

)
= 0. Therefore, from Theorem 3.3, F has a fixed point z in the Fréchet space Cℓ,α(R+)

which belongs to the set z and hence the fractional order infinite point boundary value problem (1) has at
least one solution in Cℓ,α(R+). This completes the proof.

Example 4.2. Consider the following fractional order infinite-point boundary value problem

D
5
2
0+z(t) =

e−2t sin(z(t) + 1)
√
t + 3

, t ∈ R+,

z(0) = z′(0) = z′′(0) = 0, lim
t→+∞

D
3
2
0+z(t) =

∞∑
j=1

135
2π7/2j

z

(
1
j2

)
.


(30)

Comparing (30) with (1), we have δ =
5
2
, ℓ = 2, cj =

135
2π7/2j

, τj =
1
j
, φ(τj) = τ2

j and

g(t, z) =
e−2t sin(z(t) + 1)

√
t + 3

.

Let α =
1
3
. Then, δ − ℓ − α =

1
6
> 0. Taking a(t) = b(t) = t and λ =

1

2
√

3
. Now, we check the conditions of

Theorem 4.1. For this, let s ∈ R+ and z1, z2 ∈ R. Then

|g(s, z1) − g(s, z2)| =

∣∣∣∣∣∣ e−2s

√
s + 3

[
sin(z1(s) + 1) − sin(z2(s) + 1)

]∣∣∣∣∣∣
≤

1
√

3
|(z1 + 1) − (z2 + 1)|

≤ |z1 − z2|,∫
∞

0
|g(s, z1) − g(s, z2)|ds =

∫
∞

0

∣∣∣∣∣∣ e−2s

√
s + 3

[
sin(z1(s) + 1) − sin(z2(s) + 1)

]∣∣∣∣∣∣ ds
≤ |(z1 + 1) − (z2 + 1)|

∫
∞

0

e−2s

√
3
ds

≤
1

2
√

3
|z1 − z2| = λb

(
|z1 − z2|

)
,

gS = sup
{∣∣∣∣∣∣ e−2s

√
s + 3

sin(1)

∣∣∣∣∣∣ : s ∈ R+

}
=

1
√

3
and gI =

∫
∞

0

e−2s

√
s + 3

sin(1)ds ≤
1
√

3
.

Thus, (H1) satisfied. Also,

m∑
j=1

cjφ(τj)δ−1 =

m∑
j=1

135
2π7/2j4

→
3
4
√
π = Γ(δ) as m→ +∞,
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∞∑
j=1

cjφ(τj)δ =
m∑
j=1

135
2π7/2j6

→
1

14
π5/2 as m→ +∞,

and the relation [
a(RT) + gS

][
MT + NT

∞∑
j=1

cjφ(τj)δ +
2Tδ−ℓ−α

Γ(δ − ℓ + 1)

]
+

[
λb(RT) + gI

]
NT ≤ RT

gives [
RT +

1
√

3

] [
MT + NT

π5/2

14
+

2T1/6

√
π

]
+

[
1

2
√

3
RT + g

I

]
NT ≤ RT,

which is equivalent to

RT ≥

1
√

3

(
MT + NT

π5/2

14 +
2T1/6
√
π

)
+ gINT

1 −
(
MT + NT

π5/2

14 +
2T1/6
√
π
+ NT

1
2
√

3

) ,
and the right hand side value of the above inequality is finite, so for each T ∈N, RT > 0 exists, which is the
solution of the inequality in (H2). Hence from the Theorem 4.1, the fractional order infinite point boundary
value problem (30) has at least one solution in the Fréchet space C2, 1

3 (R+).
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