Filomat 36:10 (2022), 3551–3559 https://doi.org/10.2298/FIL2210551A



Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

# A Note on Scaling Properties of Hewitt Stromberg Measure

Najmeddine Attia<sup>a</sup>, Omrane Guizani<sup>b</sup>

<sup>a</sup>Department of Mathematics and Statistics, College of Science, King Faisal University, PO. Box : 400 Al-Ahsa 31982, Saudi Arabia <sup>b</sup>Analysis, Probability and Fractals Laboratory LR18ES17. Department of Mathematics, Faculty of Sciences of Monastir, University of Monastir, 5000-Monastir, Tunisia

**Abstract.** In this note, we investigate those Hewitt Stromberg measures which obey to a simple scaling law. Consider a dimension function h and let  $H^h$  be the corresponding Hewitt Stromberg measure. We say that  $H^h$  obeys an order  $\alpha$  scaling law whenever taking  $A \subset \mathbb{R}^m$  and c > 0, one has

$$\mathsf{H}^h(cA) = c^\alpha \mathsf{H}^h(A).$$

### 1. Introduction

It is well known that Lebsgue measure satisfies a scaling law, i.e., when magnified by a scalar  $\lambda$ , the length of a curve, the area of a plane region and the volume of a 3-dimensional object are multiplied respectively by  $\lambda$ ,  $\lambda^2$  and  $\lambda^3$ . Let *L* be a slowly varying function in the sense of [24], i.e., *L* is a real-valued, positive, measurable function on  $[0, \infty)$  and

$$\lim_{r \to 0} \frac{L(rx)}{L(r)} = 1, \qquad \forall x > 0.$$

It's well known that Hausdorff measure of the form  $\mathcal{H}^h$ , where *h* is a dimension function, as stated in Definition 2.1, having the form  $h(r) = r^{\alpha}L(r)$ , obey a scaling law :

$$\mathcal{H}^{h}(cA) = c^{\alpha} \mathcal{H}^{h}(A), \quad \forall A \subset \mathbb{R}^{m}.$$
(1)

This is a fundamental property in the theory of fractals. In [20], it is proved that, for every continuous increasing concave function h and for every  $0 \le \alpha \le 1$ ,  $\mathcal{H}^h(cA) = c^{\alpha} \mathcal{H}^h(A)$  is satisfied for every c > 0 and  $A \subset \mathbb{R}$ , if and only if

$$\lim_{r\to 0}\frac{h(rc)}{h(r)}=c^{\alpha},\qquad \forall c>0.$$

In [8] the authors prove a general theorem characterizing the height dimensional functions for which the corresponding Hausdorff (or packing) measure scales (see [19] and [10] for further properties of packing measure).

Keywords. Multifractal measure, Hewitt-Stromberg measures, scaling property

Communicated by In Sung Hwang

<sup>2020</sup> Mathematics Subject Classification. 28A78, 28A80

Received: 27 December 2019; Revised: 24 January 2020; Accepted: 24 May 2020

Research supported by King Faisal University, GRANT 2148

Email addresses: nattia@kfu.edu.sa (Najmeddine Attia), Omran.guizani@gmail.com ( Omrane Guizani)

Hewitt-Stromberg measures were introduced in [16, Exercise (10.51)]. Since then, they have been investigated by several authors, highlighting their importance in the study of local properties of fractals and products of fractals. One can cite, for example [6, 7, 13–15, 17] and recently [1, 11–13, 18, 21] (see also [2–5] for a class of generalization of these measures). In particular, Edgar's textbook [9, pp. 32-36] provides an excellent and systematic introduction to these measures. Such measures appear also appears explicitly, for example, in Pesin's monograph [22, 5.3] and implicitly in Mattila's text [19].

The aim of this paper is to characterize these measures obeying an order a scaling law. First we determine

a necessary and sufficing condition so that the Hewitt-Stromberg pre-measure  $\overline{H}^n$  (see (2) for the definition) obeys a scaling law. Then we prove that, if the dimension function h is the form  $h(r) = c^{\alpha}L(r)$ , where c > 0 and L is slowly varying, then the h-dimensional Hewitt-Stromberg measure  $H^h$  (see (3) for the definition) obeys a scaling law. As an application, we study the Hewitt-Stromberg dimension of sets under Lipschitz or similarity transformation and conclude thereby, that if the Hewitt-Stromberg dimension of a set A is strictly less then one, then A is totally disconnected.

#### 2. Preliminary

**Definition 2.1.** A function  $h : \mathbb{R}_+ \to \mathbb{R}_+$  is called a dimension function if h is increasing, continuous and h(0) = 0. We denote by  $\mathcal{F}$  the set of dimension functions and  $\mathcal{F}_m$  the set of  $h \in \mathcal{F}$  such that  $h(r)/r^m$  is a decreasing function of r.

The Hausdorff measure associated with a dimension function *h* is defined as follows. Let  $E \subset \mathbb{R}^m$ ,  $m \ge 1$ , and  $\varepsilon > 0$ , we write

$$\mathcal{H}^{h}_{\varepsilon}(E) = \inf \left\{ \sum_{i} h(\operatorname{diam}(E_{i})) \middle| E \subseteq \bigcup_{i} E_{i}, \operatorname{diam}(E_{i}) < \varepsilon \right\}.$$

Now, we define the *h*-dimensional Hausdorff measure  $\mathcal{H}^{h}(E)$  of *E* by

$$\mathcal{H}^h(E) = \sup_{\varepsilon > 0} \mathcal{H}^h_\varepsilon(E).$$

The reader can be referred to Rogers' classical text [25] for a systematic discussion of  $\mathcal{H}^{h}$ .

The packing measure with dimension *h* is defined, for  $\varepsilon > 0$ , as follows

$$\overline{\mathcal{P}}^{h}_{\varepsilon}(E) = \sup\left\{\sum_{i} h(2r_{i})^{t}\right\}$$

where the supremum is taken over all closed balls  $(B(x_i, r_i))_i$  such that  $r_i \leq \varepsilon$ ,  $x_i \in E$  and  $d(x_i, x_j) > r_i + r_i$  for  $i \neq j$ . The *h*-dimensional packing pre-measure  $\overline{\mathcal{P}}^h(E)$  of *E* is now defined by

$$\overline{\mathcal{P}}^h(E) = \sup_{\varepsilon > 0} \overline{\mathcal{P}}^h_{\varepsilon}(E).$$

Now, we define the *h*-dimensional packing measure  $\mathcal{P}^{h}(E)$  of *E* as

$$\mathcal{P}^{h}(E) = \inf \left\{ \sum_{i} \overline{\mathcal{P}}^{h}(E_{i}) \mid E \subseteq \bigcup_{i} E_{i} \right\}.$$

While Hausdorff and packing measures are defined using coverings and packings by families of sets with diameters less than a given positive number  $\varepsilon$ , the Hewitt-Stromberg measures are defined using covering of balls with the same diameter  $\varepsilon$ . The Hewitt-Stromberg pre-measures are defined as follows,

$$\overline{\mathsf{H}}^{h}(E) = \liminf_{r \to 0} \overline{\mathsf{H}}^{h}_{r}(E) \quad \text{where} \quad \overline{\mathsf{H}}^{h}_{r}(E) = N_{r}(E) \ h(2r) \tag{2}$$

where the covering number  $N_r(E)$  of *E* is defined by

 $N_r(E) = \inf \left\{ \sharp \{I\} \right\}$  $(B(x_i, r))_{i \in I}$  is a family of closed balls with  $E \subseteq \bigcup_{r} B(x_i, r)$ 

Now, we define the (lower) h-dimensional Hewitt-Stromberg measures, which we denote by  $H^{h}(E)$ , as follows

$$\mathsf{H}^{h}(E) = \inf\left\{\sum_{i} \overline{\mathsf{H}}^{h}(E_{i}) \mid E \subseteq \bigcup_{i} E_{i}\right\}.$$
(3)

We recall the basic inequalities satisfied by the Hewitt-Stromberg, the Hausdorff and the packing measures (see [6, Lemma 1.1])

$$\mathcal{H}^h(E) \le \mathsf{H}^h(E) \le h^* \mathcal{P}^h(E)$$

for any set  $E \subset \mathbb{R}^m$  and  $h^* := \limsup_{r \to 0} \frac{h(2r)}{h(r)}$ . We end this section by a useful lemma which will be used in the proof of Theorem 3.1.

**Lemma 2.2.** Let  $\mu$  be a probability measure on  $\mathbb{R}^m$  with support K. Suppose that there exists a positive and finite number M and, for every  $n \in \mathbb{N}$ , a covering  $\mathcal{A}_n$  of K by closed balls with radius  $x_n$  such that  $x_n \to 0$ , satisfying

$$h(diam(A)) \ge M\mu(A), \quad \forall A \subset \mathbb{R}^n$$

and

$$\lim_{n\to+\infty}\sum_{\mathcal{A}_n}h(x_n)=M$$

Then  $\overline{\mathsf{H}}^h(K) = M$ .

*Proof.* Let, for  $\epsilon > 0$ ,  $\mathcal{B}_{\epsilon} = \{B(y_i, \epsilon)\}_i$  be an  $\epsilon$ -cover of K, then

$$\sum_{B \in \mathcal{B}_{\epsilon}} h(2\epsilon) \ge \sum_{B \in \mathcal{B}_{\epsilon}} M\mu(B) \ge M\mu(K).$$

Therefore,  $N_{\epsilon}(K)h(2\epsilon) \ge M$  and then

$$\overline{\mathsf{H}}^{h}(K) \geq M.$$

On the other hand, let  $n \in \mathbb{N}$  then

$$N_{x_n/2}(K)h(x_n) \leq \sum_{\mathcal{A}_n} h(x_n)$$

and hence  $\overline{\mathsf{H}}^{h}(K) \leq M$ .  $\Box$ 

## 3. Main results

Our first result is the following.

**Theorem 3.1.** Let  $h \in \mathcal{F}_m$  and  $f : \mathbb{R}_+ \to \mathbb{R}_+$ . The following are equivalent

1. 
$$\overline{H}^{h}(cA) \leq f(c)\overline{H}^{h}(A) \quad \forall c > 0, A \subset \mathbb{R}^{m}.$$
  
2.  $\limsup_{r \to 0} \frac{h(cr)}{h(r)} \leq f(c) \quad \forall c > 0.$ 

*For*  $h \in \mathcal{F}_m$  *and*  $g : \mathbb{R}_+ \to \mathbb{R}_+$ *. The following are equivalent* 

3.  $\overline{\mathsf{H}}^{h}(cA) \ge g(c)\overline{\mathsf{H}}^{h}(A) \quad \forall c > 0, A \subset \mathbb{R}^{m}.$ 4.  $\liminf_{r \to 0} \frac{h(cr)}{h(r)} \ge g(c) \quad \forall c > 0.$ 

**Remark 3.2.** It's clear that for all functions f and q satisfying

$$f(x)g(1/x) = 1,$$

we obtain that assumption (1) and (3) are equivalent. Indeed, (1) is equivalent to

$$\overline{\mathsf{H}}^{h}(A) \geq \frac{1}{f(c)} \overline{\mathsf{H}}^{h}(cA) \quad \forall c > 0, A \subset \mathbb{R}^{m},$$

and by replacing A by (1/c)A and c by (1/c) we obtain (3). Similarly (2) is equivalent to (4). Since, for every f, there exists g such that (4) holds and for all g there exists f with this property, we only have to prove (2) implies (1) and (3) implies (4).

*Proof.* (2)  $\implies$  (1). Suppose that

$$\limsup_{r \to 0} \frac{h(cr)}{h(r)} \le f(c)$$

Then, for *r* small enough, we have

$$h(cr) \le (f(c) + M(r))h(r),$$

where  $\widetilde{M}(r) \to 0$  as  $r \to 0$ . In particular we have, for  $\epsilon$  small enough

$$h(2\epsilon) \le (f(c) + M(\epsilon))h(2\epsilon/c),$$

where  $M(\epsilon) \to 0$  as  $\epsilon \to 0$ . Let  $\mathcal{A}$  be a  $(\epsilon/c)$ -cover of a set  $E \subseteq A$  by closed balls with radius  $\epsilon/c$ , then  $c\mathcal{A}$  is an  $\epsilon$ -cover of cE by closed balls with radius  $\epsilon$ . Therefore,

$$N_{\epsilon}(cE)h(2\epsilon) \leq N_{\epsilon/c}(E)(f(c) + M(\epsilon))h(2\epsilon/c).$$

Thus, letting  $\epsilon$  tend to 0, we get

$$\overline{\mathsf{H}}^{h}(cE) \le \overline{\mathsf{H}}^{h}(E)f(c)$$

Therefore, if  $A \subseteq \bigcup_i E_i$ , then

$$\mathsf{H}^{h}(cA) \leq \sum_{i} \overline{\mathsf{H}}^{h}(cE_{i}) \leq \sum_{i} \overline{\mathsf{H}}^{h}(E_{i})f(c)$$

Since  $\bigcup_i E_i$  is an arbitrarily cover of *A* we get

$$\mathsf{H}^{h}(cA) \le \mathsf{H}^{h}(A)f(c). \tag{5}$$

(3)  $\implies$  (4). Let c > 0 and choose a strictly decreasing sequence  $(z_n)_{n \ge 1}$  converging to 0 for which

$$\lim_{n \to \infty} \frac{h(cz_n)}{h(z_n)} = \liminf_{r \to 0} \frac{h(cr)}{h(r)}.$$
(6)

If  $h \in \mathcal{F}_m$  we can construct, (see the proof of Theorem 2 in [8]), a set *K*, a probability measure  $\mu$  with  $\mu(K) = 1$ , a finite and positive number *M* and, for  $n \in \mathbb{N}$ , a covering  $\mathcal{A}_n$  of *K* by closed balls with diameter  $x_n$  such that  $x_n \in \{z_1, z_2 ...\}, x_n \to 0$ ,

$$h(diam(A)) \ge M\mu(A), \quad \forall A \subset \mathbb{R}^m$$

3554

(4)

and

$$\lim_{n\to 0}\sum_{\mathcal{A}_n}h(x_n)\to M$$

using Lemma 2.2 we obtain  $\overline{H}^{h}(K) = M > 0$ . Therefore, under our assumption,

$$\overline{\mathsf{H}}^{h}(cK) \ge g(c)\overline{\mathsf{H}}^{h}(K) = g(c)M$$

and since  $c\mathcal{A}_n$  is a covering of cK, then

$$g(c) \leq \frac{\overline{H}^{n}(cK)}{M} \leq \liminf_{n \to +\infty} \frac{\sum_{B \in \mathcal{A}_{n}} h(c \, diam(B))}{\sum_{B \in \mathcal{A}_{n}} h(diamB)}$$
$$= \liminf_{n \to +\infty} \frac{\sum_{B \in \mathcal{A}_{n}} h(cx_{n})}{\sum_{B \in \mathcal{A}_{n}} h(x_{n})} = \liminf_{n \to \infty} \frac{h(cx_{n})}{h(x_{n})}$$
$$= \liminf_{r \to 0} \frac{h(cr)}{h(r)},$$

where we have used (6).  $\Box$ 

Let  $h \in \mathcal{F}_m$  and  $f : \mathbb{R}_+ \to \mathbb{R}_+$  such that  $\lim_{r \to 0} \frac{h(xr)}{h(r)} \leq f(x)$ . Then, a similar proof to that of Theorem 3.1 ((2)  $\implies$  (1)) allows us to establish the following :

$$\mathsf{H}^{h}(S(A)) \le f(c)\mathsf{H}^{h}(A), \quad \forall A \subset \mathbb{R}^{m}, \tag{7}$$

where *S* is a lipschitz function, i.e.,

$$|S(x) - S(y)| \le c|x - y|, \qquad \forall x, y \in \mathbb{R}^m,$$

for some  $c \ge 0$ . In particular, for any set *A* such that  $H^h(A) = 0$  then  $H^h(S(A)) = 0$ . As an immediate consequence of Theorem 3.1 we have the following result.

**Corollary 3.3.** Let  $h \in \mathcal{F}_m$ . Then, the following are equivalent

1.  $\lim_{r \to 0} \frac{h(cr)}{h(r)} = c^{\alpha}, \quad \forall c > 0.$ 2.  $\overline{H}^{h}(cA) = c^{\alpha} \overline{H}^{h}(A) \quad \forall c > 0, A \subset \mathbb{R}^{m}.$ 

Clearly assumption (1) of Corollary 3.3 means that h is of the form

$$h(r) = r^{\alpha}L(r)$$

where *L* is slowly varying. These are the types of dimension functions which are so common in dynamics and stochastic processes. It follows from Remark 3.2 and (5), we have the following result.

**Corollary 3.4.** *Take*  $h \in \mathcal{F}_m$  *and assume that* 

$$\lim_{r\to 0}\frac{h(cr)}{h(r)}=c^{\alpha},\quad c>0$$

then

$$\mathsf{H}^{h}(cA) = c^{\alpha} \mathsf{H}^{h}(A) \quad \forall c > 0, A \subset \mathbb{R}^{m}.$$

3555

*Proof.* Take  $f(x) = x^{\alpha}$  in Theorem 3.3, we get

$$\overline{\mathsf{H}}^{h}(cE) \le c^{\alpha} \overline{\mathsf{H}}^{h}(E)$$

for any  $E \subset \mathbb{R}^m$  and c > 0. Now, let  $A \subset \mathbb{R}^m$  and  $\{E_i\}$  be any cover of A. Then, for any c > 0, w have

$$\mathsf{H}^{h}(cA) \leq \sum_{i} \overline{\mathsf{H}}^{h}(cE_{i}) \leq c^{\alpha} \sum_{i} \overline{\mathsf{H}}^{h}(E_{i}).$$

Since  $\bigcup_i E_i$  is an arbitrarily cover of *A* we get

$$\mathsf{H}^{h}(cA) \leq c^{\alpha}\mathsf{H}^{h}(A).$$

Now, by replacing *A* by (1/c)A and *c* by (1/c) we obtain the other inequality.  $\Box$ 

Let  $t \in (0, 1)$  and  $h_t$  is the dimension function defined by  $h_t(r) = r^t$ , then  $H^h$  is the usual  $H^t$  measure. In this case, one has  $\lim_{r\to 0} \frac{h_t(rx)}{h_t(r)} = x^t$ .

Example 3.5. Let K be the middle third Cantor set. Then,

$$\mathsf{H}^t(cK) = c^t, \qquad \forall c > 0,$$

where  $t = \frac{\log 2}{\log 3}$ . Indeed it's enough, by Corollary 3.4, to prove that  $H^t(K) = 1$ . We call  $E_k$  the intervals that make up the sets in the construction of level-k intervals. Thus,  $E_k$  consists of  $2^k$  level-k intervals each of length  $3^{-k}$ . Letting  $\delta_k = \frac{1}{2}3^{-k}$  and taking the intervals of  $E_k$  as a  $\delta_k$ -cover of K gives that,

$$\overline{\mathsf{H}}_{\delta_k}^t(K) \leq \sum_{E_k} 3^{-kt} = 1.$$

*Thus,*  $\overline{H}^{t}(K) \leq 1$ . *On the other hand, we have* (see [23])

$$\mathsf{H}^{t}(K) \geq \mathcal{H}^{t}(K) = 1.$$

**Example 3.6.** We consider again the dimension function  $h_t(r) = r^{\alpha}$ . Let  $S : [0, 1] \to \mathbb{R}^2$  be a Lispschitz continuous function with ratio *c* and define the graph of *S* by

$$G = \left\{ (x, f(x)) : x \in [0, 1] \right\} \subset \mathbb{R}^2.$$

By Corollary 3.4, we have

$$\mathsf{H}^{1}(G) \le c^{\alpha} \mathsf{H}^{1}([0,1]) = c^{\alpha}.$$

On the other hand the function  $f: G \rightarrow [0, 1]$  given by f(x, y) = x is the inverse of S. From

$$|f(x, y) - f(x_1, y_1)| \le |x - x_1| \le |(x, y) - (x_1, y_1)|,$$

we see that f is Lipschitz continuous with ratio 1. Therefore

 $1 = \mathsf{H}^1([0,1]) \le \mathsf{H}^1(G).$ 

We conclude that

$$1 \leq \mathsf{H}^1(G) \leq c^{\alpha}$$
.

In particular, if c = 1, then  $H^1(G) = 1$ .

3556

In Fractal geometry, it is very interesting to consider a geometric transformations, such as similarity transformation *S*, that is,

$$|S(x) - S(y)| = c|x - y|, \qquad \forall x, y \in \mathbb{R}^m,$$

with the ratio c > 0. Indeed, We can construct a self-similar fractal by transforming a geometric figure using a combination of similarity transformations, see for example the construction of Cantor set. Hence, using a similarity transformation *S* gives us a new way to create many new self-similar fractal designs. Therefore, it is interesting to compare the size of a set *A* by *S*(*A*).

**Corollary 3.7.** Let  $h \in \mathcal{F}_m$  such that  $\lim_{r \to 0} \frac{h(xr)}{h(r)} = x^{\alpha}$ , for all x > 0. Then,

$$\mathsf{H}^{h}(S(A)) = c^{\alpha} \mathsf{H}^{h}(A),$$

where  $S : \mathbb{R}^m \to \mathbb{R}^m$  is a similarity of ration or scale c > 0.

In the following we give a new characterization of the dimension functions h for which the associated Hewitt-Stromberg measure obeys a scaling law.

**Theorem 3.8.** Let  $h \in \mathcal{F}_1$  and suppose that  $\lim_{r \to 0} \frac{h(rx)}{h(r)}$  exists and is positive for all x in a set of positive Lebesgue measure, then there exists  $\alpha > 0$ , such that

$$\mathsf{H}^{h}(cA) = c^{\alpha} \mathsf{H}^{h}(A), \qquad \forall A \subset \mathbb{R}.$$

Proof. Clearly, by Corollary 3.7, it's enough to prove that

$$\lim_{r \to 0} \frac{h(rx)}{h(r)} = x^{\alpha}, \qquad \forall x > 0,$$
(8)

for some  $\alpha \in \mathbb{R}$ . Note that, under the hypothesis of Theorem 3.8, there exists a set *K* such that

$$\forall x \in K, \qquad \lim_{r \to 0} \frac{h(re^x)}{h(r)},$$

exists and is positive. Thus, one can define the function  $\phi : K \to \mathbb{R}$  by

$$\phi(x) = \lim_{r \to 0} \left\{ \ln h(re^x) - \ln h(r) \right\}.$$

Since *K* is an additive subgroup of  $\mathbb{R}$ , we have that  $K = \mathbb{R}$  and

$$\phi(x+y) = \phi(x) + \phi(y)$$

Finally we have, by continuity of  $\phi$ , that

$$\phi(x) = \phi(1)x, \qquad \forall x \in \mathbb{R}.$$

Now (8) follows.  $\Box$ 

**Remark 3.9.** Let us mention that if we replace, in the preview theorem,  $H^h$  by  $\mathcal{H}^h$ , then our result gives a new characterization for Hausdorff measure.

## 4. Application

In this section we consider, for t > 0, the dimension function  $h_t(r) = r^t$  so that we can define the Hewitt-Stromberg dimension by

$$\dim_{MB}(E) = \sup\left\{t \ge 0 \mid \mathsf{H}^t(E) = +\infty\right\} = \inf\left\{t \ge 0 \mid \mathsf{H}^t(E) = 0\right\}.$$

We prove that Lipschitz transformation does not increase Hewitt-Stromberg dimension. In addition it is preserved by any similarity or bi-Lipschitz transformation. The following result is a direct consequence of (7), with  $f(x) = x^{\alpha}$ ,  $\alpha > 0$ .

**Theorem 4.1.** If  $S : \mathbb{R}^m \to \mathbb{R}^m$  is a Lipschitz transformation, then

$$\dim_{MB}(S(A)) \le \dim_{MB}(A).$$

In addition, if  $S : \mathbb{R}^m \to \mathbb{R}^m$  is a bi-Lipschitz transformation, i.e.

 $c_1|x-y| \le |S(x) - S(y)| \le c_2|x-y| \quad \forall x, y \in \mathbb{R}^m,$ 

for  $0 < c_1 \le c_2 < \infty$ , then

$$\dim_{MB}(S(A)) = \dim_{MB}(A).$$

Indeed, applying The previous Theorem to  $S^{-1} : S(A) \to A$  gives the other inequality. In particular, if *S* is a similarity transformation, then

$$\dim_{MB}(S(A)) = \dim_{MB}(A).$$

**Remark 4.2.** *Hewitt Stromberg dimension is invariant under bi-Lipschitz transformations. Thus, if two sets have different dimensions, there cannot be a bi-Lipschitz mapping from one onto the other.* 

**Corollary 4.3.** Let  $A \subset \mathbb{R}^m$  be such that  $\dim_{MB}(A) < 1$ . Then A is totally disconnected.

*Proof.* Let *x* and *y* be distinct points of *A*. Define a mapping  $S : \mathbb{R}^m \to [0, +\infty)$  by

$$S(z) = |z - x|.$$

Since  $|S(z) - S(w)| \le |z - w|$ , then we have

$$\dim_{MB}(S(A)) \le \dim_{MB}(A) < 1.$$

Thus, *S*(*A*) is a subset of  $\mathbb{R}$  of H<sup>1</sup> measure or length zero, and so it has a dense complement. Choosing  $r \notin S(A)$  with 0 < r < S(y) gives that

$$A = \{ z \in A : S(z) < r \} \cup \{ z \in A : S(z) > r \}.$$

Therefore, *A* is contained in two disjoint open sets with *x* in one set and *y* in the other one, so that *x* and *y* lie in different connected components of *A*.  $\Box$ 

**Acknowledge :** The authors acknowledge the Deanship of Scientific Research, Vice Presidency for Graduate Studies and Scientific Research at King Faisal University, Saudi Arabia, for financial support under the annual funding track [GRANT 2148].

#### References

- N. Attia, H. Jebali, M.H. Khalifa A NOTE ON FRACTAL MEASURES OF CARTESIAN PRODUCT SETS, Bulletin of the Malaysian Mathematical Sciences Society 44(6) (2021), 4383-4404.
- [2] N. Attia, R. Guedri, O. Guizani Note on the multifractal measures of Cartesian product sets Commun. Korean Math. Soc. (2022), to appear.
- [3] N. Attia, Relative multifractal spectrum, Commun. Korean Math. Soc. 33 (2) (2018) 459-471.
- [4] N. Attia, B. Selmi, Regularities of multifractal Hewitt-Stromberg measures, Commun. Korean Math. Soc., 34 (2019) 213–230.
- [5] N. Attia, B. Selmi. A multifractal formalism for Hewitt- Stromberg measures, Journal of Geometric Analysis, 31 (2019) 825-862.
- [6] H.K.. Baek, H.H. Lee. Regularity of d-measure, Acta Math. Hungar, 99 (2003) 25-32.
- [7] H.K. Baek, Regularities of multifractal measures, Proc. Indian Acad. Sci. 118 (2008) 273–279.
- [8] M. Csornyei, R.D. Mauldin. Scaling properties of Hausdorff and packing measures. Mathematische Annalen 319(4)(2001) 817–836
- [9] G. A. Edgar, Integral, probability, and fractal measures, Springer-Verlag, New York, 1998.
- [10] K.J. Falconer. Techniques in fractal geometry. Wiley. New York., 1997.
- [11] O. Guizani, A. mahjoub, N. Attia, Some relations between Hewitt-Stromberg premeasure and Hewitt-Stromberg measure, Filomat, to appear.
- [12] O. Guizani, A. mahjoub, N. Attia, ON THE HEWITT STROMBERG MEASURE OF PRODUCT SETS, Annali di Matematica Pura ed Applicata, 200(2) (2020) 867–879.
- [13] S. Jurina, N. MacGregor, A. Mitchell, L. Olsen and A. Stylianou. On the Hausdorff and packing measures of typical compact metric spaces Aequat. Mat. 92 (2018), 709–735.
- [14] H. Haase, A contribution to measure and dimension of metric spaces, Math. Nachr. 124 (1985) 45–55.
- [15] H. Haase, Open-invariant measures and the covering number of sets, Math. Nachr. 134 (1987) 295–307.
- [16] E. Hewitt, K. Stromberg. Real and abstract analysis. A modern treatment of the theory of functions of a real variable. Springer-Verlag, New York, 1965.
- [17] S. Jurina, N. MacGregor, A. Mitchell, L. Olsen, A. Stylianou, On the Hausdorff and packing measures of typical compact metric spaces, Aequationes Mathematicae. 92 (2018) 709–735.
- [18] A. Mahjoub and N. Attia A relative vectorial multifractal formalism, Chaos, Solitons & Fractals, 160 (2022), 112221.
- [19] P. Mattila. Geometry of sets and Measures in Euclidian Spaces: Fractals and Rectifiability, Cambridge University Press, (1995).
- [20] R.D. Mauldin, S.C. Williams. Scaling Hausdorff measure Mathematika, 36 (1989) 325–333.
- [21] L. Olsen. On average Hewitt-Stromberg measures of typical compact metric spaces. Mathematische Zeitschrift, 293 (2019) 1201–1225.
- [22] Y. Pesin, Dimension theory in dynamical systems, Contemporary views and applications, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1997.
- [23] C.Q. Qu, H. Rao, W.Y. Su. Hausdorff measure of homegeneous Cantor set, Acta Math. Sin., English Series 17 (1) (2001) 15–20.
- [24] E. Seneta. Regularly varying functions, lecture notes in Math., 508, 1971.
- [25] C.A. Rogers. Hausdorff Measures, Cambridge University Press, London 1970.