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Abstract. In this note, we investigate those Hewitt Stromberg measures which obey to a simple scaling
law. Consider a dimension function h and let Hh be the corresponding Hewitt Stromberg measure. We say
that Hh obeys an order α scaling law whenever taking A ⊂ Rm and c > 0, one has

Hh(cA) = cαHh(A).

1. Introduction

It is well known that Lebsgue measure satisfies a scaling law, i.e., when magnified by a scalar λ, the
length of a curve, the area of a plane region and the volume of a 3-dimensional object are multiplied
respectively by λ, λ2 and λ3. Let L be a slowly varying function in the sense of [24], i.e., L is a real-valued,
positive, measurable function on [0,∞) and

lim
r→0

L(rx)
L(r)

= 1, ∀x > 0.

It’s well known that Hausdorff measure of the form Hh, where h is a dimension function, as stated in
Definition 2.1, having the form h(r) = rαL(r), obey a scaling law :

H
h(cA) = cαHh(A), ∀A ⊂ Rm. (1)

This is a fundamental property in the theory of fractals. In [20], it is proved that, for every continuous
increasing concave function h and for every 0 ≤ α ≤ 1, Hh(cA) = cαHh(A) is satisfied for every c > 0 and
A ⊂ R, if and only if

lim
r→0

h(rc)
h(r)

= cα, ∀c > 0.

In [8] the authors prove a general theorem characterizing the height dimensional functions for which the
corresponding Hausdorff (or packing) measure scales (see [19] and [10] for further properties of packing
measure).
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Hewitt-Stromberg measures were introduced in [16, Exercise (10.51)]. Since then, they have been
investigated by several authors, highlighting their importance in the study of local properties of fractals
and products of fractals. One can cite, for example [6, 7, 13–15, 17] and recently [1, 11–13, 18, 21] (see also
[2–5] for a class of generalization of these measures). In particular, Edgar’s textbook [9, pp. 32-36] provides
an excellent and systematic introduction to these measures. Such measures appear also appears explicitly,
for example, in Pesin’s monograph [22, 5.3] and implicitly in Mattila’s text [19].

The aim of this paper is to characterize these measures obeying an orderα scaling law. First we determine

a necessary and sufficing condition so that the Hewitt-Stromberg pre-measure H
h

(see (2) for the definition)
obeys a scaling law. Then we prove that, if the dimension function h is the form h(r) = cαL(r), where c > 0
and L is slowly varying, then the h-dimensional Hewitt-Stromberg measure Hh (see (3) for the definition)
obeys a scaling law. As an application, we study the Hewitt-Stromberg dimension of sets under Lipschitz
or similarity transformation and conclude thereby, that if the Hewitt-Stromberg dimension of a set A is
strictly less then one, then A is totally disconnected.

2. Preliminary

Definition 2.1. A function h : R+ → R+ is called a dimension function if h is increasing, continuous and h(0) = 0.
We denote by F the set of dimension functions and Fm the set of h ∈ F such that h(r)/rm is a decreasing function of r.

The Hausdorffmeasure associated with a dimension function h is defined as follows. Let E ⊂ Rm, m ≥ 1,
and ε > 0, we write

H
h
ε (E) = inf

∑
i

h
(
diam(Ei)

)∣∣∣∣ E ⊆
⋃

i

Ei, diam(Ei) < ε

 .
Now, we define the h−dimensional HausdorffmeasureHh(E) of E by

H
h(E) = sup

ε>0
H

h
ε (E).

The reader can be referred to Rogers’ classical text [25] for a systematic discussion ofHh.
The packing measure with dimension h is defined, for ε > 0, as follows

P
h
ε(E) = sup

∑
i

h
(
2ri

)t ,
where the supremum is taken over all closed balls

(
B(xi, ri)

)
i

such that ri ≤ ε, xi ∈ E and d(xi, x j) >

ri + r j for i , j. The h-dimensional packing pre-measure P
h
(E) of E is now defined by

P
h
(E) = sup

ε>0
P

h
ε(E).

Now, we define the h-dimensional packing measure Ph(E) of E as

P
h(E) = inf

∑
i

P
h
(Ei)
∣∣∣∣ E ⊆

⋃
i

Ei

 .
While Hausdorff and packing measures are defined using coverings and packings by families of sets with
diameters less than a given positive number ε, the Hewitt-Stromberg measures are defined using covering
of balls with the same diameter ε. The Hewitt-Stromberg pre-measures are defined as follows,

H
h
(E) = lim inf

r→0
H

h
r (E) where H

h
r (E) = Nr(E) h(2r) (2)
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where the covering number Nr(E) of E is defined by

Nr(E) = inf
{
♯{I}

∣∣∣∣ (
B(xi, r)

)
i∈I

is a family of closed balls

with E ⊆
⋃

i

B(xi, r)
}

Now, we define the (lower) h-dimensional Hewitt-Stromberg measures, which we denote by Hh(E), as
follows

Hh(E) = inf

∑
i

H
h
(Ei)
∣∣∣∣ E ⊆

⋃
i

Ei

 . (3)

We recall the basic inequalities satisfied by the Hewitt-Stromberg, the Hausdorff and the packing measures
(see [6, Lemma 1.1])

H
h(E) ≤ Hh(E) ≤ h∗Ph(E),

for any set E ⊂ Rm and h∗ := lim supr→0
h(2r)
h(r) .

We end this section by a useful lemma which will be used in the proof of Theorem 3.1.

Lemma 2.2. Let µ be a probability measure on Rm with support K. Suppose that there exists a positive and finite
number M and, for every n ∈N, a coveringAn of K by closed balls with radius xn such that xn → 0, satisfying

h(diam(A)) ≥Mµ(A), ∀A ⊂ Rm

and
lim

n→+∞

∑
An

h(xn) =M.

Then H
h
(K) =M.

Proof. Let, for ϵ > 0, Bϵ = {B(yi, ϵ)}i be an ϵ−cover of K, then∑
B∈Bϵ

h(2ϵ) ≥
∑
B∈Bϵ

Mµ(B) ≥Mµ(K).

Therefore, Nϵ(K)h(2ϵ) ≥M and then

H
h
(K) ≥M.

On the other hand, let n ∈N then
Nxn/2(K)h(xn) ≤

∑
An

h(xn)

and hence H
h
(K) ≤M.

3. Main results

Our first result is the following.

Theorem 3.1. Let h ∈ Fm and f : R+ → R+. The following are equivalent

1. H
h
(cA) ≤ f (c)H

h
(A) ∀c > 0,A ⊂ Rm.

2. lim sup
r→0

h(cr)
h(r)

≤ f (c) ∀c > 0.
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For h ∈ Fm and 1 : R+ → R+. The following are equivalent

3. H
h
(cA) ≥ 1(c)H

h
(A) ∀c > 0,A ⊂ Rm.

4. lim inf
r→0

h(cr)
h(r)

≥ 1(c) ∀c > 0.

Remark 3.2. It’s clear that for all functions f and 1 satisfying

f (x)1(1/x) = 1, (4)

we obtain that assumption (1) and (3) are equivalent. Indeed, (1) is equivalent to

H
h
(A) ≥

1
f (c)

H
h
(cA) ∀c > 0,A ⊂ Rm,

and by replacing A by (1/c)A and c by (1/c) we obtain (3).
Similarly (2) is equivalent to (4). Since, for every f , there exists 1 such that (4) holds and for all 1 there exists f with
this property, we only have to prove (2) implies (1) and (3) implies (4).

Proof. (2) =⇒ (1). Suppose that

lim sup
r→0

h(cr)
h(r)

≤ f (c).

Then, for r small enough, we have
h(cr) ≤ ( f (c) + M̃(r))h(r),

where M̃(r)→ 0 as r→ 0. In particular we have, for ϵ small enough

h(2ϵ) ≤ ( f (c) +M(ϵ))h(2ϵ/c),

where M(ϵ) → 0 as ϵ → 0. LetA be a (ϵ/c)-cover of a set E ⊆ A by closed balls with radius ϵ/c, then cA is
an ϵ-cover of cE by closed balls with radius ϵ. Therefore,

Nϵ(cE)h(2ϵ) ≤ Nϵ/c(E)( f (c) +M(ϵ))h(2ϵ/c).

Thus, letting ϵ tend to 0, we get

H
h
(cE) ≤ H

h
(E) f (c).

Therefore, if A ⊆
⋃

i Ei, then

Hh(cA) ≤
∑

i

H
h
(cEi) ≤

∑
i

H
h
(Ei) f (c).

Since
⋃

i Ei is an arbitrarily cover of A we get

Hh(cA) ≤ Hh(A) f (c). (5)

(3) =⇒ (4). Let c > 0 and choose a strictly decreasing sequence (zn)n≥1 converging to 0 for which

lim
n→∞

h(czn)
h(zn)

= lim inf
r→0

h(cr)
h(r)
. (6)

If h ∈ Fm we can construct, (see the proof of Theorem 2 in [8]), a set K, a probability measure µwith µ(K) = 1,
a finite and positive number M and, for n ∈ N, a covering An of K by closed balls with diameter xn such
that xn ∈ {z1, z2 . . .}, xn → 0,

h
(
diam(A)

)
≥Mµ(A), ∀A ⊂ Rm
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and
lim
n→0

∑
An

h(xn)→M.

using Lemma 2.2 we obtain H
h
(K) =M > 0. Therefore, under our assumption,

H
h
(cK) ≥ 1(c)H

h
(K) = 1(c)M

and since cAn is a covering of cK, then

1(c) ≤
H

h
(cK)
M

≤ lim inf
n→+∞

∑
B∈An

h(c diam(B))∑
B∈An

h(diamB)

= lim inf
n→+∞

∑
B∈An

h(cxn)∑
B∈An

h(xn)
= lim inf

n→∞

h(cxn)
h(xn)

= lim inf
r→0

h(cr)
h(r)
,

where we have used (6).

Let h ∈ Fm and f : R+ → R+ such that lim
r→0

h(xr)
h(r)

≤ f (x). Then, a similar proof to that of Theorem 3.1
(

(2)

=⇒ (1)
)

allows us to establish the following :

Hh(S(A)) ≤ f (c)Hh(A), ∀A ⊂ Rm, (7)

where S is a lipschitz function, i.e.,

|S(x) − S(y)| ≤ c|x − y|, ∀x, y ∈ Rm,

for some c ≥ 0. In particular, for any set A such that Hh(A) = 0 then Hh(S(A)) = 0. As an immediate
consequence of Theorem 3.1 we have the following result.

Corollary 3.3. Let h ∈ Fm. Then, the following are equivalent

1. lim
r→0

h(cr)
h(r)

= cα, ∀c > 0.

2. H
h
(cA) = cαH

h
(A) ∀c > 0,A ⊂ Rm.

Clearly assumption (1) of Corollary 3.3 means that h is of the form

h(r) = rαL(r)

where L is slowly varying. These are the types of dimension functions which are so common in dynamics
and stochastic processes. It follows from Remark 3.2 and (5), we have the following result.

Corollary 3.4. Take h ∈ Fm and assume that

lim
r→0

h(cr)
h(r)

= cα, c > 0

then
Hh(cA) = cαHh(A) ∀c > 0,A ⊂ Rm.
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Proof. Take f (x) = xα in Theorem 3.3, we get

H
h
(cE) ≤ cαH

h
(E)

for any E ⊂ Rm and c > 0. Now, let A ⊂ Rm and {Ei} be any cover of A. Then, for any c > 0, w have

Hh(cA) ≤
∑

i

H
h
(cEi) ≤ cα

∑
i

H
h
(Ei).

Since
⋃

i Ei is an arbitrarily cover of A we get

Hh(cA) ≤ cαHh(A).

Now, by replacing A by (1/c)A and c by (1/c) we obtain the other inequality.

Let t ∈ (0, 1) and ht is the dimension function defined by ht(r) = rt, then Hh is the usual Ht measure. In

this case, one has lim
r→0

ht(rx)
ht(r)

= xt.

Example 3.5. Let K be the middle third Cantor set. Then,

Ht(cK) = ct, ∀c > 0,

where t =
log 2
log 3

. Indeed it’s enough, by Corollary 3.4, to prove that Ht(K) = 1. We call Ek the intervals that make up

the sets in the construction of level-k intervals. Thus, Ek consists of 2k level−k intervals each of length 3−k. Letting
δk =

1
2 3−k and taking the intervals of Ek as a δk−cover of K gives that,

H
t
δk

(K) ≤
∑
Ek

3−kt = 1.

Thus, H
t
(K) ≤ 1. On the other hand, we have ( see [23])

Ht(K) ≥ H t(K) = 1.

Example 3.6. We consider again the dimension function ht(r) = rα. Let S : [0, 1]→ R2 be a Lispschitz continuous
function with ratio c and define the graph of S by

G =
{
(x, f (x)) : x ∈ [0, 1]

}
⊂ R2.

By Corollary 3.4, we have

H1(G) ≤ cαH1([0, 1]) = cα.

On the other hand the function f : G→ [0, 1] given by f (x, y) = x is the inverse of S. From

| f (x, y) − f (x1, y1)| ≤ |x − x1| ≤ |(x, y) − (x1, y1)|,

we see that f is Lipschitz continuous with ratio 1. Therefore

1 = H1([0, 1]) ≤ H1(G).

We conclude that
1 ≤ H1(G) ≤ cα.

In particular, if c = 1, then H1(G) = 1.
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In Fractal geometry, it is very interesting to consider a geometric transformations, such as similarity
transformation S, that is,

|S(x) − S(y)| = c|x − y|, ∀x, y ∈ Rm,

with the ratio c > 0. Indeed, We can construct a self-similar fractal by transforming a geometric figure using
a combination of similarity transformations, see for example the construction of Cantor set. Hence, using a
similarity transformation S gives us a new way to create many new self-similar fractal designs. Therefore,
it is interesting to compare the size of a set A by S(A).

Corollary 3.7. Let h ∈ Fm such that lim
r→0

h(xr)
h(r)

= xα, for all x > 0. Then,

Hh(S(A)) = cαHh(A),

where S : Rm
→ Rm is a similarity of ration or scale c > 0.

In the following we give a new characterization of the dimension functions h for which the associated
Hewitt-Stromberg measure obeys a scaling law.

Theorem 3.8. Let h ∈ F1 and suppose that lim
r→0

h(rx)
h(r)

exists and is positive for all x in a set of positive Lebesgue

measure, then there exists α > 0, such that

Hh(cA) = cαHh(A), ∀A ⊂ R.

Proof. Clearly, by Corollary 3.7, it’s enough to prove that

lim
r→0

h(rx)
h(r)

= xα, ∀x > 0, (8)

for some α ∈ R. Note that, under the hypothesis of Theorem 3.8, there exists a set K such that

∀x ∈ K, lim
r→0

h(rex)
h(r)

,

exists and is positive. Thus, one can define the function ϕ : K→ R by

ϕ(x) = lim
r→0

{
ln h(rex) − ln h(r)

}
.

Since K is an additive subgroup of R, we have that K = R and

ϕ(x + y) = ϕ(x) + ϕ(y).

Finally we have, by continuity of ϕ, that

ϕ(x) = ϕ(1)x, ∀x ∈ R.

Now (8) follows.

Remark 3.9. Let us mention that if we replace, in the preview theorem, Hh by Hh, then our result gives a new
characterization for Hausdorff measure.
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4. Application

In this section we consider, for t > 0, the dimension function ht(r) = rt so that we can define the
Hewitt-Stromberg dimension by

dimMB(E) = sup
{
t ≥ 0

∣∣∣∣ Ht(E) = +∞
}
= inf

{
t ≥ 0

∣∣∣∣ Ht(E) = 0
}
.

We prove that Lipschitz transformation does not increase Hewitt-Stromberg dimension. In addition it is
preserved by any similarity or bi-Lipschitz transformation. The following result is a direct consequence of
(7), with f (x) = xα, α > 0.

Theorem 4.1. If S : Rm
→ Rm is a Lipschitz transformation, then

dimMB(S(A)) ≤ dimMB(A).

In addition, if S : Rm
→ Rm is a bi-Lipschitz transformation, i.e.

c1|x − y| ≤ |S(x) − S(y)| ≤ c2|x − y| ∀x, y ∈ Rm,

for 0 < c1 ≤ c2 < ∞, then
dimMB(S(A)) = dimMB(A).

Indeed, applying The previous Theorem to S−1 : S(A)→ A gives the other inequality. In particular, if S is a
similarity transformation, then

dimMB(S(A)) = dimMB(A).

Remark 4.2. Hewitt Stromberg dimension is invariant under bi-Lipschitz transformations. Thus, if two sets have
different dimensions, there cannot be a bi-Lipschitz mapping from one onto the other.

Corollary 4.3. Let A ⊂ Rm be such that dimMB(A) < 1. Then A is totally disconnected.

Proof. Let x and y be distinct points of A. Define a mapping S : Rm
→ [0,+∞) by

S(z) = |z − x|.

Since |S(z) − S(w)| ≤ |z − w|, then we have

dimMB(S(A)) ≤ dimMB(A) < 1.

Thus, S(A) is a subset of R of H1 measure or length zero, and so it has a dense complement. Choosing
r < S(A) with 0 < r < S(y) gives that

A =
{
z ∈ A : S(z) < r

}
∪

{
z ∈ A : S(z) > r

}
.

Therefore, A is contained in two disjoint open sets with x in one set and y in the other one, so that x and y
lie in different connected components of A.
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