Non-Linear Bi-Skew Jordan Derivations on *-Algebra

Vahid Darvish ${ }^{\text {a }}$, Mojtaba Nouri ${ }^{\text {b }}$, Mehran Razeghi ${ }^{\text {c }}$
${ }^{a}$ School of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing, China Reading Academy, Nanjing University of Information Science and Technology, Nanjing, China
${ }^{b}$ Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran
${ }^{c}$ Department of Mathematics, Farhangian University, Tehran, Iran

Abstract

Let \mathcal{A} be a prime $*$-algebra. In this paper, we suppose that $\Phi: \mathcal{A} \rightarrow \mathcal{A}$ satisfies

$$
\Phi(A \diamond B)=\Phi(A) \diamond B+A \diamond \Phi(B)
$$

where $A \diamond B=A^{*} B+B^{*} A$ for all $A, B \in \mathcal{A}$. Then, Φ is an additive $*$-derivation.

1. Introduction

Let \mathcal{R} be a $*$-algebra. For $A, B \in \mathcal{R}$, denoted by $A \bullet B=A B+B A^{*}$ and $[A, B]_{*}=A B-B A^{*}$, which are $*$-Jordan product and $*$-Lie product, respectively. These products are found playing a more and more important role in some research topics, and its study has recently attracted many author's attention (for example, see [3, 8, 10, 14]).

Recall that a map $\Phi: \mathcal{R} \rightarrow \mathcal{R}$ is said to be an additive derivation if $\Phi(A+B)=\Phi(A)+\Phi(B)$ and $\Phi(A B)=\Phi(A) B+A \Phi(B)$ for all $A, B \in \mathcal{R}$. A map Φ is an additive $*$-derivation if it is an additive derivation and $\Phi\left(A^{*}\right)=\Phi(A)^{*}$. Derivations are very important maps both in theory and applications, and have been studied intensively ([2, 11-13, 17]).

Let us define λ-Jordan *-product by $A \bullet{ }_{\lambda} B=A B+\lambda B A^{*}$. We say that the map Φ with the property of $\Phi\left(A \bullet{ }_{\lambda} B\right)=\Phi(A) \bullet{ }_{\lambda} B+A \bullet \lambda(B)$ is a λ-Jordan $*$-derivation map. It is clear that for $\lambda=-1$ and $\lambda=1$, the λ-Jordan $*$-derivation map is a $*$-Lie derivation and $*$-Jordan derivation, respectively [1, 15].

A von Neumann algebra \mathcal{A} is a self-adjoint subalgebra of some $B(H)$, the algebra of bounded linear operators acting on a complex Hilbert space, which satisfies the double commutant property: $\mathcal{A}^{\prime \prime}=\mathcal{A}$ where $\mathcal{A}^{\prime}=\{T \in B(H), T A=A T, \forall A \in \mathcal{A}\}$ and $\mathcal{A}^{\prime \prime}=\left\{\mathcal{A}^{\prime}\right\}^{\prime}$. Denote by $\mathcal{Z}(\mathcal{A})=\mathcal{A}^{\prime} \cap \mathcal{A}$ the center of \mathcal{A}. A von Neumann algebra \mathcal{A} is called a factor if its center is trivial, that is, $\mathcal{Z}(\mathcal{A})=\mathbb{C}$. For $A \in \mathcal{A}$, recall that the central carrier of A, denoted by \bar{A}, is the smallest central projection P such that $P A=A$. It is not difficult to see that \bar{A} is the projection onto the closed subspace spanned by $\{B A x: B \in \mathcal{A}, x \in H\}$. If A is self-adjoint,

[^0]then the core of A, denoted by \underline{A}, is $\sup \left\{S \in \mathcal{Z}(\mathcal{A}): S=S^{*}, S \leq A\right\}$. If $A=P$ is a projection, it is clear that \underline{P} is the largest central projection \bar{Q} satisfying $Q \leq P$. A projection P is said to be core-free if $\underline{P}=0$ (see [9]). It is easy to see that $\underline{P}=0$ if and only if $\overline{I-P}=I,[5,6]$.

Recently, Yu and Zhang in [18] proved that every non-linear *-Lie derivation from a factor von Neumann algebra into itself is an additive *-derivation. Also, Li, Lu and Fang in [7] have investigated a non-linear λ-Jordan $*$-derivation. They showed that if $\mathcal{A} \subseteq \mathcal{B}(\mathcal{H})$ is a von Neumann algebra without central abelian projections and λ is a non-zero scalar, then $\Phi: \mathcal{A} \longrightarrow \mathcal{B}(\mathcal{H})$ is a non-linear λ-Jordan $*$-derivation if and only if Φ is an additive *-derivation.

On the other hand, many mathematician devoted themselves to study the $*$-Jordan product $A \bullet B=$ $A B+B A^{*}$. In [19], F. Zhang proved that every non-linear *-Jordan derivation map $\Phi: \mathcal{A} \rightarrow \mathcal{A}$ on a factor von neumann algebra with $I_{\mathcal{A}}$ the identity of it is an additive $*$-derivation.

In [16], we showed that *-Jordan derivation map on every factor von Neumann algebra $\mathcal{A} \subseteq \mathcal{B}(\mathcal{H})$ is an additive $*$-derivation.

Very recently the authors of [4] discussed some bijective maps preserving the new product $A^{*} B+B^{*} A$ between von Neumann algebras with no central abelian projections. In other words, Φ holds in the following condition

$$
\Phi\left(A^{*} B+B^{*} A\right)=\Phi(A)^{*} \Phi(B)+\Phi(B)^{*} \Phi(A)
$$

They showed that such a map is sum of a linear *-isomorphism and a conjugate linear *-isomorphism.
Motivated by the above results, in this paper, we prove that if \mathcal{A} is a prime $*$-algebra then $\Phi: \mathcal{A} \rightarrow \mathcal{A}$ which holds in the following condition

$$
\Phi(A \diamond B)=\Phi(A) \diamond B+A \diamond \Phi(B)
$$

where $A \diamond B=A^{*} B+B^{*} A$ for all $A, B \in \mathcal{A}$, is an additive $*$-derivation.
We say that \mathcal{A} is prime, that is, for $A, B \in \mathcal{A}$ if $A \mathcal{A} B=\{0\}$, then $A=0$ or $B=0$.

2. Main Results

In this section, we show that Φ which satisfies in the following assumption is an $*$-additive derivation.
Assumption 1. Let \mathcal{A} be a prime *-algebra and

$$
\begin{equation*}
\Phi(A \diamond B)=\Phi(A) \diamond B+A \diamond \Phi(B) \tag{1}
\end{equation*}
$$

for $\Phi: \mathcal{A} \rightarrow \mathcal{A}$ where $A \diamond B=A^{*} B+B^{*} A$ for all $A, B \in \mathcal{A}$.
It is easy to prove $\Phi(0)=0$. We need the following lemmas:
Lemma 2.1. Let Φ satisfy in Assumption 1, then we show that $\Phi\left(\frac{I}{2}\right)=0, \Phi\left(-\frac{I}{2}\right)=0$ and $\Phi\left(i \frac{I}{2}\right)=0$.
Proof. For showing that $\Phi\left(\frac{I}{2}\right)=0$, we write

$$
\Phi\left(\frac{I}{2} \diamond \frac{I}{2}\right)=\Phi\left(\frac{I}{2}\right) \diamond \frac{I}{2}+\frac{I}{2} \diamond \Phi\left(\frac{I}{2}\right)
$$

So,

$$
\begin{equation*}
\Phi\left(\frac{I}{2}\right)=\Phi\left(\frac{I}{2}\right)+\Phi\left(\frac{I}{2}\right)^{*} \tag{2}
\end{equation*}
$$

So $\Phi\left(\frac{I}{2}\right)^{*}=0$ then $\Phi\left(\frac{I}{2}\right)=0$
For proving $\Phi\left(-\frac{I}{2}\right)=0$, we can write

$$
\Phi\left(\frac{I}{2} \diamond-\frac{I}{2}\right)=\frac{I}{2} \diamond \Phi\left(-\frac{I}{2}\right)
$$

It follows that

$$
\begin{equation*}
\Phi\left(-\frac{I}{2}\right)=\frac{\Phi\left(-\frac{I}{2}\right)+\Phi\left(-\frac{I}{2}\right)^{*}}{2} . \tag{3}
\end{equation*}
$$

It follows from the above equation that $\Phi\left(-\frac{I}{2}\right)$ is self-adjoint.
On the other hand, we have

$$
\Phi\left(-\frac{I}{2} \diamond-\frac{I}{2}\right)=-\frac{I}{2} \diamond \Phi\left(-\frac{I}{2}\right)+\Phi\left(-\frac{I}{2}\right) \diamond-\frac{I}{2} .
$$

Then

$$
\begin{equation*}
\Phi\left(\frac{I}{2}\right)=-\left(\Phi\left(-\frac{I}{2}\right)+\Phi\left(-\frac{I}{2}\right)^{*}\right) \tag{4}
\end{equation*}
$$

Since $\Phi\left(-\frac{I}{2}\right)$ is self-adjoint, from (4) we have the result.
For showing $\Phi\left(i \frac{I}{2}\right)=0$, we have the following

$$
\Phi\left(i \frac{I}{2} \diamond i \frac{I}{2}\right)=\Phi\left(i \frac{I}{2}\right) \diamond i \frac{I}{2}+i \frac{I}{2} \Phi\left(i \frac{I}{2}\right) .
$$

Hence,

$$
\Phi\left(\frac{I}{2}\right)=-i \Phi\left(i \frac{I}{2}\right)+i \Phi\left(i \frac{I}{2}\right)^{*} .
$$

So,

$$
\begin{equation*}
\Phi\left(i \frac{I}{2}\right)^{*}-\Phi\left(i \frac{I}{2}\right)=0 \tag{5}
\end{equation*}
$$

Also, we have

$$
\Phi\left(\frac{I}{2} \diamond i \frac{I}{2}\right)=\frac{I}{2} \diamond \Phi\left(i \frac{I}{2}\right) .
$$

So,

$$
\Phi(0)=\frac{\Phi\left(i \frac{I}{2}\right)^{*}+\Phi\left(i \frac{I}{2}\right)}{2}
$$

Then, we have

$$
\begin{equation*}
\Phi\left(i \frac{I}{2}\right)^{*}+\Phi\left(i \frac{I}{2}\right)=0 \tag{6}
\end{equation*}
$$

From (5) and (6), we have $\Phi\left(i \frac{I}{2}\right)=0$.
Lemma 2.2. Let Φ satisfy in Assumption 1 then we show that

1. $\Phi(-i A)=-i \Phi(A)$.
2. $\Phi(i A)=i \Phi(A)$.

Proof. By Lemma 2.1, we can check that

$$
\Phi\left(-i A \diamond \frac{I}{2}\right)=\Phi\left(A \diamond i \frac{I}{2}\right)
$$

So,

$$
\Phi(-i A) \diamond \frac{I}{2}=\Phi(A) \diamond i \frac{I}{2}
$$

It follows that

$$
\begin{equation*}
\Phi(-i A)^{*}+\Phi(-i A)=i \Phi(A)^{*}-i \Phi(A) . \tag{7}
\end{equation*}
$$

On the other hand, one can check that

$$
\Phi\left(-i A \diamond i \frac{I}{2}\right)=\Phi\left(-\frac{I}{2} \diamond A\right)
$$

So,

$$
\Phi(-i A) \diamond i \frac{I}{2}=-\frac{I}{2} \diamond \Phi(A)
$$

It follows that

$$
\begin{equation*}
i \Phi(-i A)^{*}-i \Phi(-i A)=-\Phi(A)-\Phi(A)^{*} \tag{8}
\end{equation*}
$$

Equivalently, we obtain

$$
\begin{equation*}
-\Phi(-i A)^{*}+\Phi(-i A)=-i \Phi(A)-i \Phi(A)^{*} \tag{9}
\end{equation*}
$$

By adding equations (7) and (9) we have

$$
\Phi(-i A)=-i \Phi(A)
$$

Similarly, we can show that $\Phi(i A)=i \Phi(A)$.
Our main theorem is as follows:
Theorem 2.3. Let \mathcal{A} be a prime *-algebra. Let $\Phi: \mathcal{A} \rightarrow \mathcal{A}$ satisfies in

$$
\begin{equation*}
\Phi(A \diamond B)=\Phi(A) \diamond B+A \diamond \Phi(B) \tag{10}
\end{equation*}
$$

where $A \diamond B=A^{*} B+B^{*} A$ for all $A, B \in \mathcal{A}$, then Φ is an *-additive derivation.
Let P_{1} be a nontrivial projection in \mathcal{A} and $P_{2}=I_{\mathcal{A}}-P_{1}$. Denote $\mathcal{A}_{i j}=P_{i} \mathcal{A} P_{j}, i, j=1,2$, then $\mathcal{A}=\sum_{i, j=1}^{2} \mathcal{A}_{i j}$. For every $A \in \mathcal{A}$ we may write $A=A_{11}+A_{12}+A_{21}+A_{22}$. In all that follow, when we write $A_{i j}$, it indicates that $A_{i j} \in \mathcal{A}_{i j}$. For showing additivity of Φ on \mathcal{A}, we use above partition of \mathcal{A}.

Proof of Theorem 2.3. We give some claims that prove Φ is additive on each $\mathcal{A}_{i j}, i, j=1,2$.

Claim 1. For each $A_{11} \in \mathcal{A}_{11}, A_{12} \in \mathcal{A}_{12}$ we have

$$
\Phi\left(A_{11}+A_{12}\right)=\Phi\left(A_{11}\right)+\Phi\left(A_{12}\right)
$$

Let $T=\Phi\left(A_{11}+A_{12}\right)-\Phi\left(A_{11}\right)-\Phi\left(A_{12}\right)$, we should prove that $T=0$.
For $X_{21} \in \mathcal{A}_{21}$ we can write that

$$
\begin{aligned}
& \Phi\left(A_{11}+A_{12}\right) \diamond X_{21}+\left(A_{11}+A_{12}\right) \diamond \Phi\left(X_{21}\right)=\Phi\left(\left(A_{11}+A_{12}\right) \diamond X_{21}\right) \\
& =\Phi\left(A_{11} \diamond X_{21}\right)+\Phi\left(A_{12} \diamond X_{21}\right)=\Phi\left(A_{11}\right) \diamond X_{21}+A_{11} \diamond \Phi\left(X_{21}\right) \\
& +\Phi\left(A_{12}\right) \diamond X_{21}+A_{12} \diamond \Phi\left(X_{21}\right) \\
& =\left(\Phi\left(A_{11}\right)+\Phi\left(A_{12}\right)\right) \diamond X_{21}+\left(A_{11}+A_{12}\right) \diamond \Phi\left(X_{21}\right) .
\end{aligned}
$$

So, we obtain

$$
T \diamond X_{21}=0
$$

Since $T=T_{11}+T_{12}+T_{21}+T_{22}$ we have

$$
T_{21}^{*} X_{21}+T_{22}^{*} X_{21}+X_{21}^{*} T_{21}+X_{21}^{*} T_{22}=0
$$

From the above equation and primeness of \mathcal{A} we have $T_{22}=0$ and

$$
\begin{equation*}
T_{21}^{*} X_{21}+X_{21}^{*} T_{21}=0 \tag{11}
\end{equation*}
$$

On the other hand, similarly by applying $i X_{21}$ instead of X_{21} in above, we obtain

$$
i T_{21}^{*} X_{21}+i T_{22}^{*} X_{21}-i X_{21}^{*} T_{21}-i X_{21}^{*} T_{22}=0
$$

Since $T_{22}=0$ we obtain from the above equation that

$$
\begin{equation*}
-T_{21}^{*} X_{21}+X_{21}^{*} T_{21}=0 \tag{12}
\end{equation*}
$$

From (11) and (12) we have

$$
X_{21}^{*} T_{21}=0
$$

Since \mathcal{A} is prime, then we get $T_{21}=0$.
It suffices to show that $T_{12}=T_{11}=0$. For this purpose for $X_{12} \in \mathcal{A}_{12}$ we write

$$
\begin{aligned}
& \Phi\left(\left(\left(A_{11}+A_{12}\right) \diamond X_{12}\right) \diamond P_{1}\right)=\Phi\left(\left(A_{11}+A_{12}\right) \diamond X_{12}\right) \diamond P_{1}+\left(\left(A_{11}+A_{12}\right) \diamond X_{12}\right) \diamond \Phi\left(P_{1}\right) \\
& =\left(\Phi\left(A_{11}+A_{12}\right) \diamond X_{12}+\left(A_{11}+A_{12}\right) \diamond \Phi\left(X_{12}\right)\right) \diamond P_{1}+\left(A_{11}+A_{12}\right) \diamond X_{12} \diamond \Phi\left(P_{1}\right) \\
& =\Phi\left(A_{11}+A_{12}\right) \diamond X_{12} \diamond P_{1}+A_{11} \diamond \Phi\left(X_{12}\right) \diamond P_{1}+A_{12} \diamond \Phi\left(X_{12}\right) \diamond P_{1} \\
& +A_{11} \diamond X_{12} \diamond \Phi\left(P_{1}\right)+A_{12} \diamond X_{12} \diamond \Phi\left(P_{1}\right) .
\end{aligned}
$$

So, we showed that

$$
\begin{align*}
& \Phi\left(\left(\left(A_{11}+A_{12}\right) \diamond X_{12}\right) \diamond P_{1}\right)=\Phi\left(A_{11}+A_{12}\right) \diamond X_{12} \diamond P_{1}+A_{11} \diamond \Phi\left(X_{12}\right) \diamond P_{1} \\
& +A_{12} \diamond \Phi\left(X_{12}\right) \diamond P_{1}+A_{11} \diamond X_{12} \diamond \Phi\left(P_{1}\right)+A_{12} \diamond X_{12} \diamond \Phi\left(P_{1}\right) . \tag{13}
\end{align*}
$$

Since $A_{12} \diamond X_{12} \diamond P_{1}=0$ we have

$$
\begin{aligned}
& \Phi\left(\left(\left(A_{11}+A_{12}\right) \diamond X_{12}\right) \diamond P_{1}\right)=\Phi\left(\left(A_{11} \diamond X_{12}\right) \diamond P_{1}\right)+\Phi\left(\left(A_{12} \diamond X_{12}\right) \diamond P_{1}\right) \\
& =\Phi\left(A_{11} \diamond X_{12}\right) \diamond P_{1}+\left(A_{11} \diamond X_{12}\right) \diamond \Phi\left(P_{1}\right)+\Phi\left(A_{12} \diamond X_{12}\right) \diamond P_{1}+\left(A_{12} \diamond X_{12}\right) \diamond \Phi\left(P_{1}\right) \\
& =\left(\Phi\left(A_{11}\right) \diamond X_{12}+A_{11} \diamond \Phi\left(X_{12}\right)\right) \diamond P_{1}+\left(A_{11} \diamond X_{12}\right) \diamond \Phi\left(P_{1}\right) \\
& +\left(\Phi\left(A_{12}\right) \diamond X_{12}+A_{12} \diamond \Phi\left(X_{12}\right)\right) \diamond P_{1}+\left(A_{12} \diamond X_{12}\right) \diamond \Phi\left(P_{1}\right) \\
& =\Phi\left(A_{11}\right) \diamond X_{12} \diamond P_{1}+A_{11} \diamond \Phi\left(X_{12}\right) \diamond P_{1}+A_{11} \diamond X_{12} \diamond \Phi\left(P_{1}\right) \\
& +\Phi\left(A_{12}\right) \diamond X_{12} \diamond P_{1}+A_{12} \diamond \Phi\left(X_{12}\right) \diamond P_{1}+A_{12} \diamond X_{12} \diamond \Phi\left(P_{1}\right) .
\end{aligned}
$$

So,

$$
\begin{align*}
& \Phi\left(\left(\left(A_{11}+A_{12}\right) \diamond X_{12}\right) \diamond P_{1}\right)=\Phi\left(A_{11}\right) \diamond X_{12} \diamond P_{1}+A_{11} \diamond \Phi\left(X_{12}\right) \diamond P_{1} \\
& +A_{11} \diamond X_{12} \diamond \Phi\left(P_{1}\right)+\Phi\left(A_{12}\right) \diamond X_{12} \diamond P_{1} \\
& +A_{12} \diamond \Phi\left(X_{12}\right) \diamond P_{1}+A_{12} \diamond X_{12} \diamond \Phi\left(P_{1}\right) . \tag{14}
\end{align*}
$$

From (13) and (14) we have

$$
\Phi\left(A_{11}+A_{12}\right) \diamond X_{12} \diamond P_{1}=\Phi\left(A_{11}\right) \diamond X_{12} \diamond P_{1}+\Phi\left(A_{12}\right) \diamond X_{12} \diamond P_{1}
$$

It follows that $T \diamond X_{12} \diamond P_{1}=0$, so $T_{11}^{*} X_{12}+X_{12}^{*} T_{11}=0$. We have $T_{11}^{*} X_{12}=0$ or $T_{11} X P_{2}=0$ for all $X \in \mathcal{A}$, then we have $T_{11}=0$. Similarly, we can show that $T_{12}=0$ by applying P_{2} instead of P_{1} in above.

Claim 2. For each $A_{11} \in \mathcal{A}_{11}, A_{12} \in \mathcal{A}_{12}, A_{21} \in \mathcal{A}_{21}$ and $A_{22} \in \mathcal{A}_{22}$ we have

1. $\Phi\left(A_{11}+A_{12}+A_{21}\right)=\Phi\left(A_{11}\right)+\Phi\left(A_{12}\right)+\Phi\left(A_{21}\right)$.
2. $\Phi\left(A_{12}+A_{21}+A_{22}\right)=\Phi\left(A_{12}\right)+\Phi\left(A_{21}\right)+\Phi\left(A_{22}\right)$.

We show that

$$
T=\Phi\left(A_{11}+A_{12}+A_{21}\right)-\Phi\left(A_{11}\right)-\Phi\left(A_{12}\right)-\Phi\left(A_{21}\right)=0
$$

So, we have

$$
\begin{aligned}
& \Phi\left(A_{11}+A_{12}+A_{21}\right) \diamond X_{21}+\left(A_{11}+A_{12}+A_{21}\right) \diamond \Phi\left(X_{21}\right) \\
& =\Phi\left(\left(A_{11}+A_{12}+A_{21}\right) \diamond X_{21}\right)=\Phi\left(A_{11} \diamond X_{21}\right)+\Phi\left(A_{12} \diamond X_{21}\right)+\Phi\left(A_{21} \diamond X_{21}\right) \\
& \left(\Phi\left(A_{11}\right)+\Phi\left(A_{12}\right)+\Phi\left(A_{21}\right)\right) \diamond X_{21}+\left(A_{11}+A_{12}+A_{21}\right) \diamond \Phi\left(X_{21}\right)
\end{aligned}
$$

It follows that $T \diamond X_{21}=0$. Since $T=T_{11}+T_{12}+T_{21}+T_{22}$ we have

$$
T_{22}^{*} X_{21}+T_{21}^{*} X_{21}+X_{21}^{*} T_{22}+C_{21}^{*} T_{21}=0
$$

Therefore, $T_{22}=T_{21}=0$.
From Claim 1, we obtain

$$
\begin{aligned}
& \Phi\left(A_{11}+A_{12}+A_{21}\right) \diamond X_{12}+\left(A_{11}+A_{12}+A_{21}\right) \diamond \Phi\left(X_{12}\right) \\
& =\Phi\left(\left(A_{11}+A_{12}+A_{21}\right) \diamond X_{12}\right)=\Phi\left(\left(A_{11}+A_{12}\right) \diamond X_{12}\right)+\Phi\left(A_{21} \diamond X_{12}\right) \\
& =\Phi\left(A_{11} \diamond X_{12}\right)+\Phi\left(A_{12} \diamond X_{12}\right)+\Phi\left(A_{21} \diamond X_{12}\right) \\
& =\left(\Phi\left(A_{11}\right)+\Phi\left(A_{12}\right)+\Phi\left(A_{21}\right)\right) \diamond X_{12}+\left(A_{11}+A_{12}+A_{21}\right) \diamond \Phi\left(X_{12}\right) .
\end{aligned}
$$

Hence,

$$
T_{11}^{*} X_{12}+T_{12}^{*} X_{12}+X_{12}^{*} T_{11}+X_{12}^{*} T_{12}=0
$$

Then $T_{11}=T_{12}=0$. Similarly

$$
\Phi\left(A_{12}+A_{21}+A_{22}\right)=\Phi\left(A_{12}\right)+\Phi\left(A_{21}\right)+\Phi\left(A_{22}\right)
$$

Claim 3. For each $A_{11} \in \mathcal{A}_{11}, A_{12} \in \mathcal{A}_{12}, A_{21} \in \mathcal{A}_{21}$ and $A_{22} \in \mathcal{A}_{22}$ we have

$$
\Phi\left(A_{11}+A_{12}+A_{21}+A_{22}\right)=\Phi\left(A_{11}\right)+\Phi\left(A_{12}\right)+\Phi\left(A_{21}\right)+\Phi\left(A_{22}\right)
$$

We show that

$$
T=\Phi\left(A_{11}+A_{12}+A_{21}+A_{22}\right)-\Phi\left(A_{11}\right)-\Phi\left(A_{12}\right)-\Phi\left(A_{21}\right)-\Phi\left(A_{22}\right)=0
$$

From Claim 2, we have

$$
\begin{aligned}
& \Phi\left(A_{11}+A_{12}+A_{21}+A_{22}\right) \diamond X_{12}+\left(A_{11}+A_{12}+A_{21}+A_{22}\right) \diamond \Phi\left(X_{12}\right) \\
& =\Phi\left(\left(A_{11}+A_{12}+A_{21}+A_{22}\right) \diamond X_{12}\right) \\
& =\Phi\left(\left(A_{11}+A_{12}+A_{21}\right) \diamond X_{12}\right)+\Phi\left(A_{22} \diamond X_{12}\right) \\
& =\Phi\left(A_{11} \diamond X_{12}\right)+\Phi\left(A_{12} \diamond X_{12}\right)+\Phi\left(A_{21} \diamond X_{12}\right)+\Phi\left(A_{22} \diamond X_{12}\right) \\
& =\left(\Phi\left(A_{11}\right)+\Phi\left(A_{12}\right)+\Phi\left(A_{21}\right)+\Phi\left(A_{22}\right)\right) \diamond X_{12} \\
& +\left(A_{11}+A_{12}+A_{21}+A_{22}\right) \diamond \Phi\left(X_{12}\right)
\end{aligned}
$$

So, $T \diamond X_{12}=0$. It follows that

$$
T_{11}^{*} X_{12}+T_{12}^{*} X_{12}+X_{12}^{*} T_{11}+X_{12}^{*} T_{12}=0
$$

Then $T_{11}=T_{12}=0$.
Similarly, by applying X_{21} instead of X_{12} in above, we obtain $T_{21}=T_{22}=0$.
Claim 4. For each $A_{i j}, B_{i j} \in \mathcal{A}_{i j}$ such that $i \neq j$, we have

$$
\Phi\left(A_{i j}+B_{i j}\right)=\Phi\left(A_{i j}\right)+\Phi\left(B_{i j}\right)
$$

It is easy to show that

$$
\left(P_{i}+A_{i j}\right)\left(P_{j}+B_{i j}\right)+\left(P_{j}+B_{i j}^{*}\right)\left(P_{i}+A_{i j}^{*}\right)=A_{i j}+B_{i j}+A_{i j}^{*}+B_{i j}^{*}
$$

So, we can write

$$
\begin{aligned}
& \Phi\left(A_{i j}+B_{i j}\right)+\Phi\left(A_{i j}^{*}+B_{i j}^{*}\right)=\Phi\left(\left(P_{i}+A_{i j}^{*}\right) \diamond\left(P_{j}+B_{i j}\right)\right) \\
& =\Phi\left(P_{i}+A_{i j}^{*}\right) \diamond\left(P_{j}+B_{i j}\right)+\left(P_{i}+A_{i j}^{*}\right) \diamond \Phi\left(P_{j}+B_{i j}\right) \\
& =\left(\Phi\left(P_{i}\right)+\Phi\left(A_{i j}^{*}\right) \diamond\left(P_{j}+B_{i j}\right)+\left(P_{i}+A_{i j}^{*}\right) \diamond\left(\Phi\left(P_{j}\right)+\Phi\left(B_{i j}\right)\right)\right. \\
& =\Phi\left(P_{i}\right) \diamond B_{i j}+P_{i} \diamond \Phi\left(B_{i j}\right)+\Phi\left(A_{i j}^{*}\right) \diamond P_{j}+A_{i j}^{*} \diamond \Phi\left(P_{j}\right) \\
& =\Phi\left(P_{i} \diamond B_{i j}\right)+\Phi\left(A_{i j}^{*} \diamond P_{j}\right) \\
& =\Phi\left(B_{i j}\right)+\Phi\left(B_{i j}^{*}\right)+\Phi\left(A_{i j}\right)+\Phi\left(A_{i j}^{*}\right) .
\end{aligned}
$$

Therefore, we show that

$$
\begin{equation*}
\Phi\left(A_{i j}+B_{i j}\right)+\Phi\left(A_{i j}^{*}+B_{i j}^{*}\right)=\Phi\left(A_{i j}\right)+\Phi\left(B_{i j}\right)+\Phi\left(A_{i j}^{*}\right)+\Phi\left(B_{i j}^{*}\right) \tag{15}
\end{equation*}
$$

By an easy computation, we can write

$$
\left(P_{i}+A_{i j}\right)\left(i P_{j}+i B_{i j}\right)+\left(-i P_{j}-i B_{i j}^{*}\right)\left(P_{i}+A_{i j}^{*}\right)=i A_{i j}+i B_{i j}-i A_{i j}^{*}-i B_{i j}^{*}
$$

Then, we have

$$
\begin{aligned}
& \Phi\left(i A_{i j}+i B_{i j}\right)+\Phi\left(-i A_{i j}^{*}-i B_{i j}^{*}\right)=\Phi\left(\left(P_{i}+A_{i j}^{*}\right) \diamond\left(i P_{j}+i B_{i j}\right)\right) \\
& =\Phi\left(P_{i}+A_{i j}^{*}\right) \diamond\left(i P_{j}+i B_{i j}\right)+\left(P_{i}+A_{i j}^{*}\right) \diamond \Phi\left(i P_{j}+i B_{i j}\right) \\
& =\left(\Phi\left(P_{i}\right)+\Phi\left(A_{i j}^{*}\right) \diamond\left(i P_{j}+i B_{i j}\right)+\left(P_{i}+A_{i j}^{*}\right)\left(\Phi\left(i P_{j}\right)+\Phi\left(i B_{i j}\right)\right)\right. \\
& =\Phi\left(P_{i}\right) \diamond i B_{i j}+P_{i} \diamond \Phi\left(i B_{i j}\right)+\Phi\left(A_{i j}^{*}\right) \diamond i P_{j}+A_{i j}^{*} \diamond \Phi\left(i P_{j}\right) \\
& =\Phi\left(P_{i} \diamond i B_{i j}\right)+\Phi\left(A_{i j}^{*} \diamond i P_{j}\right) \\
& =\Phi\left(i B_{i j}\right)+\Phi\left(-i B_{i j}^{*}\right)+\Phi\left(i A_{i j}\right)+\Phi\left(-i A_{i j}^{*}\right) .
\end{aligned}
$$

We showed that

$$
\Phi\left(i A_{i j}+i B_{i j}\right)+\Phi\left(-i A_{i j}^{*}-i B_{i j}^{*}\right)=\Phi\left(i B_{i j}\right)+\Phi\left(-i B_{i j}^{*}\right)+\Phi\left(i A_{i j}\right)+\Phi\left(-i A_{i j}^{*}\right)
$$

From Lemma 2.2 and the above equation, we have

$$
\begin{equation*}
\Phi\left(A_{i j}+B_{i j}\right)-\Phi\left(A_{i j}^{*}+B_{i j}^{*}\right)=\Phi\left(B_{i j}\right)-\Phi\left(B_{i j}^{*}\right)+\Phi\left(A_{i j}\right)-\Phi\left(A_{i j}^{*}\right) \tag{16}
\end{equation*}
$$

By adding equations (15) and (16), we obtain

$$
\Phi\left(A_{i j}+B_{i j}\right)=\Phi\left(A_{i j}\right)+\Phi\left(B_{i j}\right)
$$

Claim 5. For each $A_{i i}, B_{i i} \in \mathcal{A}_{i i}$ such that $1 \leq i \leq 2$, we have

$$
\Phi\left(A_{i i}+B_{i i}\right)=\Phi\left(A_{i i}\right)+\Phi\left(B_{i i}\right)
$$

We show that

$$
T=\Phi\left(A_{i i}+B_{i i}\right)-\Phi\left(A_{i i}\right)-\Phi\left(B_{i i}\right)=0 .
$$

We can write

$$
\begin{aligned}
& \Phi\left(A_{i i}+B_{i i}\right) \diamond P_{j}+\left(A_{i i}+B_{i i}\right) \diamond \Phi\left(P_{j}\right)=\Phi\left(\left(A_{i i}+B_{i i}\right) \diamond P_{j}\right) \\
& =\Phi\left(A_{i i} \diamond P_{j}\right)+\Phi\left(B_{i i} \diamond P_{j}\right) \\
& \Phi\left(A_{i i}\right) \diamond P_{j}+A_{i i} \diamond \Phi\left(P_{j}\right)+\Phi\left(B_{i i}\right) \diamond P_{j}+B_{i i} \diamond \Phi\left(P_{j}\right) \\
& =\left(\Phi\left(A_{i i}\right)+\Phi\left(B_{i i}\right)\right) \diamond P_{j}+\left(A_{i i}+B_{i i}\right) \diamond \Phi\left(P_{j}\right) .
\end{aligned}
$$

So, we have

$$
T \diamond P_{j}=0
$$

Therefore, we obtain $T_{i j}=T_{j i}=T_{j j}=0$.
On the other hand, for every $X_{i j} \in \mathcal{A}_{i j}$, we have

$$
\begin{aligned}
& \Phi\left(A_{i i}+B_{i i}\right) \diamond X_{i j}+\left(A_{i i}+B_{i i}\right) \diamond \Phi\left(X_{i j}\right)=\Phi\left(\left(A_{i i}+B_{i i}\right) \diamond X_{i j}\right) \\
& =\Phi\left(A_{i i} \diamond X_{i j}\right)+\Phi\left(B_{i i} \diamond X_{i j}\right)=\Phi\left(A_{i i}\right) \diamond X_{i j}+A_{i i} \diamond \Phi\left(X_{i j}\right) \\
& +\Phi\left(B_{i i}\right) \diamond X_{i j}+B_{i i} \diamond \Phi\left(X_{i j}\right) \\
& =\left(\Phi\left(A_{i i}\right)+\Phi\left(B_{i i}\right)\right) \diamond X_{i j}+\left(A_{i i}+B_{i i}\right) \diamond \Phi\left(X_{i j}\right) .
\end{aligned}
$$

So,

$$
\left(\Phi\left(A_{i i}+B_{i i}\right)-\Phi\left(A_{i i}\right)-\Phi\left(B_{i i}\right)\right) \diamond X_{i j}=0
$$

It follows that $T \diamond X_{i j}=0$ or $T_{i i} X_{i j}=0$. By knowing that \mathcal{A} is prime, we have $T_{i i}=0$.
Hence, the additivity of Φ comes from the above claims.
In the rest of this paper, we show that Φ is *-derivation.
Claim 6. Ф preserves star.
Since $\Phi(I)=0$ then we can write

$$
\Phi(I \diamond A)=I \diamond \Phi(A)
$$

Then

$$
\Phi\left(A+A^{*}\right)=\Phi(A)+\Phi(A)^{*}
$$

So, we showed that Φ preserves star.

Claim 7. we prove that Φ is derivation.
For every $A, B \in \mathcal{A}$ we have

$$
\begin{aligned}
\Phi\left(A B+B^{*} A^{*}\right) & =\Phi\left(A^{*} \diamond B\right) \\
& =\Phi\left(A^{*}\right) \diamond B+A^{*} \diamond \Phi(B) \\
& =\Phi\left(A^{*}\right)^{*} B+\Phi(B)^{*} A^{*}+B^{*} \Phi\left(A^{*}\right)+A \Phi(B)
\end{aligned}
$$

On the other hand, since Φ preserves star, we have

$$
\begin{equation*}
\Phi\left(A B+B^{*} A^{*}\right)=\Phi(A) B+A \Phi(B)+B^{*} \Phi\left(A^{*}\right)+\Phi(B)^{*} A^{*} \tag{17}
\end{equation*}
$$

So, from (17), we have

$$
\begin{aligned}
& \Phi\left(i\left(A B-B^{*} A^{*}\right)=\Phi\left(A(i B)+(i B)^{*} A^{*}\right)\right. \\
& =\Phi(A)(i B)+A \Phi(i B)+(i B)^{*} \Phi\left(A^{*}\right)+\Phi(i B)^{*} A^{*}
\end{aligned}
$$

Therefore, from Lemma 2.2 we have

$$
\begin{equation*}
\Phi\left(A B-B^{*} A^{*}\right)=\Phi(A) B+A \Phi(B)-B^{*} \Phi\left(A^{*}\right)-\Phi\left(B^{*}\right) A^{*} \tag{18}
\end{equation*}
$$

By adding equations (17) and (18), we have

$$
\Phi(A B)=\Phi(A) B+A \Phi(B)
$$

This completes the proof.

References

[1] Z. Bai, S. Du, The structure of non-linear Lie derivations on factor von Neumann algebras, Linear Algebra Appl. 436 (2012) 2701-2708.
[2] E. Christensen, Derivations of nest algebras, Ann. Math. 229 (1977) 155-161.
[3] J. Cui, C.K. Li, Maps preserving product $X Y-Y X^{*}$ on factor von Neumann algebras, Linear Algebra Appl. 431 (2009) 833-842.
[4] C. Li, F. Zhao, Q. Chen, Nonlinear maps preserving product $X^{*} Y+Y^{*} X$ on von Neumann algebras, Bull. Iran. Math. Soc. 44 (2018) 729-738.
[5] R. V. Kadison, J. R. Ringrose, Fundamentals of the theory of operator algebras I, New York, Academic Press (1983).
[6] R. V. Kadison, J. R. Ringrose, Fundamentals of the theory of operator algebras II, New York, Academic Press (1986).
[7] C. Li, F. Lu, X. Fang, Nonlinear ξ-Jordan *-derivations on von Neumann algebras, Linear and Multilinear Algebra. 62 (2014) 466-473.
[8] C. Li, F. Lu, X. Fang, Nonlinear mappings preserving product $X Y+Y X^{*}$ on factor von Neumann algebras, Linear Algebra Appl. 438 (2013), 2339-2345.
[9] C. R. Miers, Lie homomorphisms of operator algebras, Pacific J Math. 38 (1971) 717-735.
[10] L. Molnár, A condition for a subspace of $B(H)$ to be an ideal, Linear Algebra Appl. 235 (1996), 229-234.
[11] S. Sakai, Derivations of W^{*}-algebras, Ann. Math. 83 (1966) 273-279.
[12] P. Šemrl, Additive derivations of some operator algebras, Illinois J. Math. 35 (1991) 234-240.
[13] P. Šemrl, Ring derivations on standard operator algebras, J. Funct. Anal. 112 (1993) 318-324.
[14] A. Taghavi, V. Darvish, H. Rohi, Additivity of maps preserving products $A P \pm P A^{*}$ on C^{*}-algebras, Math. Slovaca 67 (2017) 213-220.
[15] A. Taghavi, M. Nouri, M. Razeghi, V. Darvish, A note on non-linear *-Jordan derivations on *-algebras, Math. Slovaca 69 (3) (2019) 639-646.
[16] A. Taghavi, H. Rohi, V. Darvish, Non-linear *-Jordan derivations on von Neumann algebras, Linear Multilinear Algebra 64 (2016)426-439.
[17] A. Taghavi, M. Nouri, M. Razeghi, V. Darvish, Non-linear λ-Jordan triple *-derivation on prime *-algebras, Rocky Mountain J. Math. 48 (8) (2018) 2705-2716.
[18] W. Yu, J. Zhang, Nonlinear *-Lie derivations on factor von Neumann algebras, Linear Algebra Appl. 437 (2012) 1979-1991.
[19] F. Zhang, Nonlinear skew Jordan derivable maps on factor von Neumann algebras, Linear Multilinear Algebra 64 (2016) 20902103.

[^0]: 2020 Mathematics Subject Classification. 46J10, 47B48, 46L10
 Keywords. New product derivation, Prime *-algebra, Additive map
 Received: 15 September 2019; Accepted: 24 August 2022
 Communicated by Dragan S. Djordjević
 Corresponding author: Vahid Darvish
 The second author is supported by the Talented Young Scientist Program of Ministry of Science and Technology of China (Iran-19-001).

 Email addresses: vahid.darvish@mail.com, vdarvish@nuist.edu.cn (Vahid Darvish), mojtaba.nori2010@gmail.com (Mojtaba Nouri), razeghi.mehran19@yahoo.com (Mehran Razeghi)

