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Induction Functors for Hom-Doi-Hopf Module Categories
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Abstract. In this paper, we mainly investigate a revised induction funtor to study Hom-Doi-Hopf modules
and the coinvariant modules for Hom-Hopf comodule algebras.

1. Introduction and Preliminaries

The authors in [1] introduced the notions of Hom-associative algebras generalizing associative algebras
to a situation where associativity law is twisted by a linear map providing a different way for constructing
a subclass of quasi-Lie algebras. The coalgebra counterpart and the related notions of Hom-bialgebra and
Hom-Hopf algebra were explored in [2-7, 9-10]. Afterwards, many important structures of Hopf algebra
theory such as Doi-Hopf module, Yetter-Drinfeld modules, the Drinfeld doubles and other contexts have
been replanted in Hom-setting.

Let H be a Hopf algebra with bijective antipode, and A/B an H-extension. Then it is well-known that the
functor (−)coH :MH

A →MB sending M ∈ MH
A to the module of coinvariants McoH has a left adjoint, which is

called the induced functor A⊗B− :MB →M
H
A . (See [8, 11]).

Motivated by the study of Hom-Hopf structures and the work in [8, 11], the ultimate purpose of this
paper is to investigate a modified induction functor −⊗BA which together with the coinvariant functor
(−)coH determines an equivalence betweenMB and a full subcategory ofMH

A
for a Hom-Hopf algebra H

with bijective antipode and a Haar integral.
Conventions Throughout the paper we work over a field k. We use Sweedler-type notation for coalgebras

and comodules: for a coalgebra C, we write its comultiplication ∆(c) = c1 ⊗ c2, for c ∈ C; for a right C-
comodule M, we denote its coaction by ρ(m) = m[0] ⊗m[1].

Firstly we recall some basic definitions ([10]) needed in what follows. For further results see [1-7, 9].
Let C be a category. We introduce a new category H̃(C) as follows: objects are couples (M, µ), with

M ∈ C and µ ∈ AutC(M). A morphism f : (M, µ)→ (N, ν) is a morphism f : M→ N in C satisfying ν f = fµ.
Let Uk denote the category of k-modules. H(Uk) will be called the Hom-category associated to Uk.

If (M, µ) ∈ Uk, then µ : M → M is obviously a morphism in H(Uk). It is easy to show that H̃(Uk) =
(H(Uk),⊗, (I, I), ã, l̃, r̃) is a monoidal category by Proposition 1.1 in [1]: the tensor product of (M, µ) and (N, ν)
in H̃(Uk) is given by the formula (M, µ) ⊗ (N, ν) = (M ⊗N, µ ⊗ ν).
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Assume that (M, µ), (N, ν), (P, π) ∈ H̃(Uk). The associativity and unit constraints are given by the formu-
las: ãM,N,P((m⊗ n)⊗ p) = µ(m)⊗ (n⊗π−1(p)) and l̃M(x⊗m) = r̃M(m⊗ x) = xµ(m). An algebra in H̃(Uk) will be
called a monoidal Hom-algebra.

Definition 1.1. A monoidal Hom-algebra is an object (A, α) ∈ H̃(Uk) together with a k-linear map mA : A →
A, mA(a ⊗ b) = ab and an element 1A ∈ A such that for any a, b, c ∈ A:

α(ab) = α(a)α(b); (1)

1Aa = a1A = α(a); (2)

α(a)(bc) = (ab)α(c); (3)

α(1A) = 1A. (4)

Definition 1.2. A monoidal Hom-coalgebra is an object (C, β) ∈ H̃(Uk) together with k-linear maps ∆C : C →
C ⊗ C, ∆C(c) = c1 ⊗ c2 (summation implicitly understood) and εC : C→ k such that for any x ∈ C:

β(x)1 ⊗ β(x)2 = β(x1) ⊗ β(x2); (5)

ε(β(x)) = ε(x); (6)

ε(x1)x2 = ε(x2)x1 = β
−1(x); (7)

β−1(x1) ⊗ x21 ⊗ x22 = x11 ⊗ x12 ⊗ β
−1(x2). (8)

Definition 1.3. A monoidal Hom-bialgebra H = (H, γ,m, η,∆, ε) is a bialgebra in the symmetric monoidal
category H̃(Uk). This means that (H, γ,m, η) is a monoidal Hom-algebra, (H, γ,∆, ε) is a monoidal Hom-
coalgebra and that ∆ and ε are morphisms of Hom-algebras, that is, for any h, 1 ∈ H:

(h1)1 ⊗ (h1)2 = h111 ⊗ h212; (9)

∆(1) = 1 ⊗ 1; (10)

ε(h1) = ε(h)ε(1); (11)

ε(1) = 1. (12)

Definition 1.4. A monoidal Hom-Hopf algebra is a monoidal Hom-bialgebra (H, γ) together with a linear map
S : H→ H ∈ H̃(Uk) such that S ∗ I = I ∗ S = ηε and Sγ = γS.

Definition 1.5. Let (A, α) be a monoidal Hom-algebra. A right (A, α)-Hom-module is an object (M, µ) ∈ H̃(Uk)
consists of a k-module M and a linear map µ : M → M together with a morphism · : M ⊗ A → M ∈ H̃(Uk)
satisfying for any a, b ∈ A and m ∈M:

(m · b) · α(a) = µ(m) · (ab); (13)

m · 1 = µ(m); (14)

µ(m · a) = µ(m) · α(a). (15)

The category of right (A, α)-Hom-modules is denoted byMA.
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Definition 1.6. Let (C, β) be a monoidal Hom-coalgebra. A right (C, β)-Hom-comodule is an object (M, µ) ∈ H̃(Uk)
together with a k-linear map ρM : M ⊗M→ C, ρM(m) = m[0] ⊗m[1] ∈ H̃(Uk) satisfying for any m ∈M:

µ(m)[0] ⊗ µ(m)[1] = µ(m[0]) ⊗ β(m[1]); (16)

m[0][0] ⊗m[0][1] ⊗ β
−1(m[1]) = µ−1(m[0]) ⊗m[1]1 ⊗m[1]2; (17)

ε(m[1])m[0] = µ
−1(m). (18)

The category of right (C, β)-Hom-comodules is denoted byMC. Define the coinvariant of (C, β) on (M, µ)
as the set

McoH = {m ∈M | m[0] ⊗m[1] = µ
−1(m) ⊗ 1}.

Definition 1.7. Let (H, γ) be a monoidal Hom-Hopf algebra. A monoidal Hom-algebra (A, α) is called a right
(H, γ)-Hom-comodule algebra if (A, α) is a right (H, γ)-Hom-comodule such that for any a, b ∈ A:

(ab)[0] ⊗ (ab)[1] = a[0]b[0] ⊗ a[1]b[1]; (19)

1[0] ⊗ 1[1] = 1 ⊗ 1. (20)

Let B = AcoH, then A/B is called a Hom-(H, γ)-extension.

Definition 1.8. Let (H, γ) be a monoidal Hom-Hopf algebra, and (A, α) a right (H, γ)-Hom-comodule algebra. A
right (H, γ)-Hom-comodule (M, µ) is called a right ((H, γ), (A, α))-Hom-Doi-Hopf module if it is also a right (A, α)-
Hom-module such that for any a ∈ A and m ∈M,

(m · a)[0] ⊗ (m · a)[1] = m[0] · a[0] ⊗m[1]a[1]. (21)

In the following, the category of right ((H, γ), (A, α))-Hom-Doi-Hopf modules will be denoted byMH

A
.

Example 1.9. Let (A, α) be a right (H, γ)-Hom-comodule algebra and (M, µ) a right (A, α)-Hom-module.
Then (M⊗BA, µ ⊗ α) is a right ((H, γ), (A, α))-Hom-Doi-Hopf module with the right action (m ⊗ a) · b = µ(m) ⊗

aα−1(b) and the right coaction (m ⊗ a)[0] ⊗ (m ⊗ a)[1] = µ
−1(m) ⊗ a[0] ⊗ α(a[1]) for and m ∈M, a, b ∈ A.

Obviously, (M⊗BA, µ ⊗ α) is both a right (A, α)-Hom-module and a right (H, γ)-Hom-comodule. The only thing
left to prove is that the compatibility condition (21) is satisfied. Now for any m ∈M, a, b ∈ A, we compute:

((m ⊗ a) · b)[0] ⊗ ((m ⊗ a) · b)[1] = m ⊗ a[0]α−1(b[0]) ⊗ γ(a[1])b[1]
= (m ⊗ a)[0] · b[0] ⊗ (m ⊗ a)[1]b[1].

Directly from Example 1.9, there exists an induction functor F :MB →M
H

A
, F(M) =M⊗BA.

Proposition 1.10. Let (A, α) be a right (H, γ)-Hom-comodule algebra. Then (F,G) is a pair of adjoint functors, where
G :MH

A
→MB, G(N) = NcoH.

Proof. Firstly, we define the unit and counit as follows:

η(M,µ) : M→ (M⊗BA)coH, m 7→ µ−1(m)⊗B1;

δ(N,ν) : NcoH
⊗BA→ N, n⊗Ba 7→ n · a.

Clearly, η(M,µ) is well-defined. The fact that δ(N,ν) is reasonable follows from the computation δ(N,ν)(n⊗ba) =

n · (ba)
(13)
= δ(N,ν)(n · ν−1(b) ⊗ α(a)), n ∈ N, b ∈ B, a ∈ A.

We end the proof by checking the triangular identity:

(δF(M,µ) ◦ Fη(M,µ) )(m⊗Ba) = (µ−1(m)⊗B1) · a = m⊗Ba;
(Gδ(N,ν) ◦ ηG(N,ν))(n) = ν−1(n) · 1 = n,

for any m ∈M, a ∈ A, n ∈ N.
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Definition 1.11. Let (H, γ) be a monoidal Hom-Hopf algebra. An element λ ∈ (H∗, γ∗) is called a left integral on
(H, γ) if for any h ∈ H,

h1λ(h2) = λ(h)1H; (22)

λ(γ(h)) = λ(h). (23)

If in addition λ(1) = 1, then the left integral λ is said to be normalized.
Similarly, we can define a normalized right integral on (H, γ). A Haar integral on (H, γ) is a normalized

two-sided integral.

Lemma 1.12. Let (H, γ) be a monoidal Hom-Hopf algebra and λ a Haar integral on (H, γ). Then for any h, 1 ∈ H:

h1λ(1γ(h2)) = λ(12γ
−1(h))S(11); (24)

γ−1(h2)λ(h11) = λ(γ−2(h)11)S(12). (25)

Proof. (24) is a consequence of the following computation:

h1λ(1γ(h2))
(7),(23)
= ε(11)h1λ(1h2) = (S(111)112)h1λ(1h2)

(3),(8)
= S(11)(121γ−1(h1))λ(γ(122)h2)

(22),(23)
= S(11)λ(12γ−1(h2)).

The proof of (25) is similar and left to the reader.

2. Induction Functor

In this section, we will investigate a revised induction functor for a Hom-Doi-Hopf module.
In what follows, we will first recall the notion of a torsion theory in [12].

Definition 2.1. ([12]) Let C be an abelian theory. A torsion theory is given by a pair (U,V) of full and replete
(i.e. isomorphism closed) subcategories of C such that:

(I) For any object X ∈ C, there exists a short exact sequence:

0→ T→ X→ F→ 0,

where 0 is the zero object in C, T ∈ U, F ∈ V.
(II) The only morphism f : T→ F from T ∈ U to F ∈ V is the zero morphism.
When (U,V) is a torsion theory,U is called the torsion class of C, andV its torsion-free class.
A torsion theory (U,V) is hereditary if the torsion classU is closed under subobjects.

Lemma 2.2. Let M ∈ MH

A
. Then:

(I) The map πM : M→McoH, m 7→ λ(m[1])µ(m[0]) is an idempotent surjection ofMB.
(II) If we denote κ(M) = {m ∈M | πM(m · a) = 0, ∀a ∈ A}, then κ(M) is an object ofMH

A
.

(III) κ(M/κ(M)) = 0.
(IV) (M/κ(M))coH �McoH as right B-modules.

Proof. (I) Firstly, πM is surjective because λ is normalized. Now we show that πM is well-defined. In fact, for any
m ∈M,

πM(m)[0] ⊗ πM(m)[1] = µ(m[0][0]) ⊗ α(m[0][1])λ(m[1])
(17)
= m[0] ⊗ α(m[1]1)λα(m[1]2) = µ−1(πM(m)) ⊗ 1.
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Then we immediately obtain that πM ◦ πM = πM. Meanwhile, for any b ∈ B,

πM(m · b) = λ(m[1]b[1])µ(m[0]) · β((b[0])
= λ(m[1])µ(m[0]) · b = πM(m) · b,

finishing the proof of (I).
(II) Obviously, κ(M) is an (A, α)-Hom-submodule of M. On the other hand, for any a ∈ A and m ∈ κ(M),

πM(m[0] · a) ⊗m[1] = λ(m[0][1]a[1])µ(m[0][0]) · α(a[0]) ⊗m[1]
(17)
= λ(m[1]1a[1])m[0] · α(a[0]) ⊗ γ(m[1]2)

(25),(17)
= λ(m[1]γ2(a[0][1]))m[0] · α2(a[0][0]) ⊗ S(γ(a[1]))
= µ−1(m · α2(a[0])) ⊗ S(γ(a[1])) = 0,

therefore m[0] ⊗m[1] ∈ κ(M) ⊗H, implying that κ(M) is a subobject of M inMH

A
.

(III) First we need to show that πM(κ(M)) ⊆ κ(M). Indeed, for any a ∈ A and m ∈ κ(M),

πM(πM(m) · a) = λ(γ(m[0][1])a[1])λ(m[1])µ2(m[0][0]) · α(a[0])
(17)
= λ(γ(m[1]1)a[1])λ(m[1]2)µ(m[0]) · α(a[0])

(25),(17)
= λ(γ−1(m[1])a[0][1])λ(S(a[1]))µ(m[0]) · α2(a[0][0])
= πM(m · α(a[0]))λ(S(a[1])) = 0.

Let m+ κ(M) ∈M/κ(M) such that πM/κ(M)(m · a+ κ(M)) = 0. Since πM/κ(M)(m · a+ κ(M)) = πM(m · a)+ κ(M),
thus πM(m · a) ∈ κ(M). By (I) we have πM(m · a) = πM

2(m · a) = 0, implying that m ∈ κ(M). Hence κ(M/κ(M)) = 0.
(IV) We begin by proving that the functor (−)coH is exact. By Proposition 1.10, we know that it is left exact. We only

need to show that it is also right exact. In fact, for any surjective morphism f : (M, µ)→ (N, ν) inMH

A
and n ∈ NcoH,

there exists m ∈ M such that f (m) = n. Since f is right (H, γ)-colinear, we obtain that f (m[0]) ⊗m[1] = ν−1(n) ⊗ 1.
Applying λ on the second tensorand of both sides, we get f (πM(m)) = n as required.

Next, for any M ∈ MH

A
, κ(M)coH = 0. Indeed, for any m ∈ κ(M)coH, then m ∈ κ(M)∩McoH, thus m = πM(m) =

0, implying that f |McoH : McoH
→ NcoH is surjective inMB. So the functor (−)coH is exact.

Now, since (−)coH is exact,
(M/κ(M))coH �McoH/κ(M)coH =McoH,

thus we complete the proof.

As a consequence of Lemma 2.2, we immediately obtain the following result:

Lemma 2.3. There exists a hereditary torsion theory (U,V) in MH

A
, where U = {T ∈ MH

A
| κ(T) = T} and

V = {F ∈ MH

A
| κ(F) = 0}.

By Lemma 2.2 (II), we can induce a factor Hom-Doi-Hopf module

N⊗BA = (N⊗BA)/κ(N⊗BA), N ∈ MB.

We denote by n⊗Ba the image of the element n⊗Ba ∈ N⊗BA in N⊗BA. Moreover, if M,P ∈ MH

A
and f : M→ P

is a morphism inMH

A
, then f maps κ(M) to κ(P). So it induces a morphism f : M/κ(M) → P/κ(P) inMH

A
. For

simplicity, we write M/κ(M) as M.

Proposition 2.4. As mentioned above, (−⊗BA, (−)coH) is an adjoint pair of functors.
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Proof. Let (M, µ) ∈ MH

A
and (N, ν) ∈ MB, we define

χ : Hom(A,H)(N⊗BA,M)→ HomB(N,McoH), χ( f )(n) = f (n⊗B1),

for any n ∈ N and f ∈ Hom(A,H)(N⊗BA,M). It is easy to see that χ( f ) is right B-Hom-linear and χ( f )(n) ∈ M
coH

,
hence it also belongs to McoH by Lemma 2.2 (IV). Therefore χ is well-defined.

Consider another map ω : HomB(N,McoH) → Hom(A,H)(N⊗BA,M) by ω(1)(n⊗Ba) = µ−1(1(n)) · α−1(a) for any
1 ∈ HomB(N,McoH) and n⊗Ba ∈ N⊗BA.

Now we have to show that χ is the inverse of ω. In fact, for any a ∈ A, n ∈ N, 1 ∈ HomB(N,McoH) and
f ∈ Hom(A,H)(N⊗BA,M),

(χ ◦ ω)(1)(n) = χ(ω(1))(n) = µ−1(1(n)) · 1
(14)
= 1(n) = 1(n);

(ω ◦ χ)( f )(n⊗Ba) = µ−1(χ( f )(n)) · α−1(a)

= µ−1( f (n⊗B1)) · α−1(a) = f (ν−1(n)⊗B1) · α−1(a) = f (n⊗Ba),

so χ ◦ ω = idHomB(N,McoH) and ω ◦ χ = idHom(A,H)(N⊗BA,M) if we notice that McoH =McoH.

The remainder of this section will be denoted to the discussion of equivalence between the full subcategory of all
0-generated Hom-Doi-Hopf modules which are torsion free andMB.

Definition 2.5. Let (M, µ) ∈ MH

A
. It is called 0-generated if M =McoH.

If every object inMH

A
is 0-generated, then the categoryMH

A
is called 0-generated .

Lemma 2.6. Assume that (M, µ) ∈ MH

A
is a 0-generated Hom-Doi-Hopf module and (N, ν) ∈ MB. Then for any

morphism θ ∈ HomB(McoH,N), there exists a unique morphism ϑ ∈ Hom(A,H)(M,N⊗BA) such that ϑ|McoH = θ⊗B1A.

Proof. By Proposition 1.10 the counit δ(M,µ) : McoH
⊗BA → M is a morphism inMH

A
, and its kernel ker(δ(M,µ)) is a

torsion Hom-Doi-Hopf submodule of McoH
⊗BA. Since (M, µ) is 0-generated, δ(M,µ) is an epimorphism. It implies that

the statements hold if and only if there is a unique morphism ϕ : McoH
⊗BA → N⊗BA such that ϕ(ker(δ(M,µ))) = 0

and ϕ ◦ (idMcoH⊗B1A) = θ⊗B1A.
It is clear that

ϕ : McoH
⊗BA

θ⊗BidA
−→ N⊗BA −→ N⊗BA

is a morphism inMH

A
such that the above statements are true. We still have to prove that ker(δ(M,µ)) ⊆ ker(ϕ). It is

obviously satisfied because ker(δ(M,µ)) ⊆ κ(McoH
⊗BA) ⊆ ker(ϕ) since N⊗BA is torsion free.

Lemma 2.7. For any (N, ν) ∈ MB, the factor unit ηN : N→ (N⊗BA)coH is bijective.

Proof. By Lemma 2.2 (Iv), it suffice to prove that the unit

ηN : N→ (N⊗BA)coH

is an isomorphism for any (N, ν) ∈ MB. We define the map

ξN : (N⊗BA)coH
→ N, ξN(n⊗Ba) = n · πA(a),

and claim that it is the inverse of ηN. Indeed, for any n ∈ N, a ∈ A, we compute:

(ξN ◦ ηN)(n) = ξN(ν−1(n)⊗B1) = ν−1(n) · 1 = n;
(ηN ◦ ξN)(n⊗Ba) = ν−1(n · πA(a))⊗B1A = ν−1(n) · a[0]λ(a[1])⊗B1A
= ν−1(n) · α−1(a)⊗B1A = n⊗Ba,

finishing the proof.
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Lemma 2.8. For any 0-generated (M, µ) ∈ MH

A
, the factor counit

δ(M,µ) : McoH
⊗BA→M

is bijective.

Proof. We first suppose that (M, µ) is torsion free, that is M = M. By Lemma 2.6, there is a unique Hom-Doi-Hopf
module morphism ϑ such that ϑ|McoH = idMcoH⊗B1A. Meanwhile since (M, µ) is torsion free, by the definition of χ,
which is bijective in Proposition 2.4, there exists a unique Hom-Doi-Hopf module morphism φ : McoH

⊗BA → M
such that φ ◦ (idMcoH⊗B1A

) = idMcoH . Note that φ = δ(M,µ) by the uniqueness. Combining the foregoing two assertions,
we can obtain a Hom-Doi-Hopf morphism δ(M,µ) ◦ ϑ that restricts to the identity on McoH.

For any m ∈ M, there exists x ∈ McoH and a ∈ A such that m = x · a since (M, µ) is 0-generated. Thus
(δ(M,µ) ◦ ϑ)(m) = (δ(M,µ) ◦ ϑ)(x · a) = (δ(M,µ) ◦ ϑ)(x) · a = x · a = m, which implies that ϑ is injective. On the other
hand, by the construction of ϑ in Lemma 2.6, we know that ϕ is the surjection from McoH

⊗BA to McoH
⊗BA and

ϕ = ϑ ◦ δ(M,µ). Thus ϑ is surjective and hence an isomorphism. Then so is δ(M,µ).
Now for any 0-generated (M, µ) ∈ MH

A
, the factor (M = M/κ(M), µ) ∈ MH

A
is torsion free and 0-generated too.

So M �M
coH
⊗BA �McoH

⊗BA.

As a consequence of the above argument, we have the following main result.

Theorem 2.9. The pair of functors (−⊗BA, (−)coH) forms an equivalence between the full subcategory of all 0-generated
Hom-Doi-Hopf modules which are torsion free andMB.

Corollary 2.10. IfMH

A
is 0-generated and torsion free, then (−⊗BA, (−)coH) forms an equivalence betweenMH

A
and

MB.
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