Corrigendum to "Weyl type theorems for selfadjoint operators on Krein spaces" [Filomat 32:17 (2018), 6001-6016]

Il Ju An ${ }^{\text {a }}$, Jaeseong Heo ${ }^{\text {b }}$
${ }^{a}$ Institute of Mathematical Sciences, Ewha Womans University, Seoul 03760, Korea
${ }^{b}$ Department of Mathematics, Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea

The purpose of this note is to point out a mistake in the definition of the dimension of the \mathcal{J}-kerenl in section 3 of this paper. Because of this mistake, there are some errors in examples and remarks.

Throughout this note, (\mathcal{K}, J) denotes a Krein space equipped with an indefinite inner product $\langle\cdot, \cdot\rangle_{J}$, unless specified otherwise.

In section 3 of the paper, we defined the \mathcal{J}-kernel of $T, \mathcal{J}-\operatorname{ker}(T)$, by

$$
\mathcal{J}-\operatorname{ker}(T):=\left\{x \in \mathcal{K}:\langle T x, T x\rangle_{J}=0\right\}
$$

In general, unlike the kernel, the \mathcal{J}-kernel is not a subspace of \mathcal{K}.
For example, consider the finite dimensional space $\mathcal{K}=\mathbb{C}^{3}$ equipped with the standard inner product $\langle\cdot, \cdot\rangle$. For $J=\operatorname{diag}(1,-1,-1),\left(\mathbb{C}^{3}, J\right)$ becomes a 3-dimensional Krein space. Let $T=I_{3}$ be the identity operator on \mathbb{C}^{3}. For $u_{1}:=(1,1,0), u_{2}:=(1,0,1) \in \mathbb{C}^{3}$, we have that

$$
\left\langle T u_{i}, T u_{i}\right\rangle_{J}=\left\langle J T u_{i}, T u_{i}\right\rangle=\left\langle J u_{i}, u_{i}\right\rangle=0 \quad(i=1,2)
$$

so that $u_{1}, u_{2} \in \mathcal{J}-\operatorname{ker}(T)$. On the other hand, $\left\langle T\left(u_{1}+u_{2}\right), T\left(u_{1}+u_{2}\right)\right\rangle_{J}=2 \neq 0$, which shows that the \mathcal{J}-kernel is not a subspace.

Let \mathcal{V}_{μ} be a chain of neutral subspaces in $\mathcal{J}-\operatorname{ker}(T)$ containing $\operatorname{ker}(T)$ and let V_{μ} be the maximal element of \mathcal{V}_{μ}. We define the dimension of $\mathcal{J}-\operatorname{ker}(T)$ by

$$
\operatorname{dim} \mathcal{J}-\operatorname{ker}(T):=\sup _{\mu} \operatorname{dim} V_{\mu}
$$

where the supremum is taken over all maximal elements in such all chains.

[^0]Using this definition, we can define the \mathcal{J}-ascent as before, that is,

$$
\varphi(T):=\sup _{k} \operatorname{dim}\left(\mathcal{J}-\operatorname{ker}\left(T^{k}\right)\right) .
$$

Remark 3.5 should be revised as follows;
Remark 3.5. Unlike the Fredholm index, in general, the index product formula does not hold for the \mathcal{J}-index. More precisely, even if $T, S \in \mathcal{L}(\mathcal{K})$ are \mathcal{J}-Fredholm, we may see that \mathcal{J}-ind $(S T) \neq \mathcal{J}$-ind $(S)+$ \mathcal{J}-ind (T). We have an example which does not satisfy the index product formula for the \mathcal{J}-index as follows;

The Krein space \mathcal{K} given in Example 3.2 is finite dimensional, so that T is \mathcal{J}-Fredholm. We see that T^{2} is also \mathcal{J}-Fredholm. If $x=\left(x_{1}, x_{2}, x_{3}\right)$ belongs to $\mathcal{J}-\operatorname{ker}(T)$, then we have

$$
0=\langle T x, T x\rangle_{J}=\langle J T x, T x\rangle=-x_{2}^{2}-x_{3}^{2}+x_{1}^{2},
$$

so that $x_{1}^{2}=x_{2}^{2}+x_{3}^{2}$. Let \mathcal{V}_{μ} be a chain of neutral subspaces in $\mathcal{J}-\operatorname{ker}(T)$ contaning $\operatorname{ker}(T)=\{0\}$. Then a maximal element of \mathcal{V}_{μ} is spanned by a set $\{x\}$. This means that $\operatorname{dim} \mathcal{J}-\operatorname{ker}(T)=1$. However, if $y=\left(y_{1}, y_{2}, y_{3}\right)$ belongs to $\mathcal{J}-\operatorname{ker}\left(T^{2}\right)$, then we also have

$$
0=\left\langle T^{2} y, T^{2} y\right\rangle_{J}=\left\langle J T^{2} y, T^{2} y\right\rangle=-y_{3}^{2}-y_{1}^{2}+y_{2}^{2} .
$$

Hence this implies that $\operatorname{dim} \mathcal{J}-\operatorname{ker}\left(T^{2}\right)=1$, so that $\mathcal{J}-\operatorname{ind}\left(T^{2}\right)=1$. Thus the index product formula does not hold for the \mathcal{J}-index since \mathcal{J}-ind $(T)+\mathcal{J}$-ind $(T)=2 \neq 1=\mathcal{J}$-ind $\left(T^{2}\right)$.

For the accuracy of the exposure, we use this opportunity to make the following corrections:

- On the page 6003, line -2 , "the $\mathcal{J}-\operatorname{kernel} \mathcal{J}-\operatorname{ker}(T)$ is not an invariant subspace of T " should be replaced by "the \mathcal{J} - $\operatorname{kernel} \mathcal{J}-\operatorname{ker}(T)$ is not invariant under T ".
- On the page 6004 , line 4 and $6, ~ " \mathcal{J}-\operatorname{ker}(T)$ is an invariant subspace of T " should be replaced by " $\mathcal{J}-\operatorname{ker}(T)$ is invariant under T ".
- The first two lines of the proof of Theorem 3.10 (i) must be revised as follows;

If T is \mathcal{J}-Weyl and selfadjoint, then we have that $\operatorname{dim} \mathcal{J}-\operatorname{ker}(T)=\operatorname{dim} \operatorname{ker}(T)$. Assume that $x \notin$ $\operatorname{ker}(T)$ and $x \in \mathcal{J}-\operatorname{ker}(T)$. Then $\alpha x \in \mathcal{J}-\operatorname{ker}(T)$ for arbitrary $\alpha \in \mathbb{C}$. This means that $x \oplus \operatorname{ker}(T) \subset$ $\mathcal{J}-\operatorname{ker}(T)$. However this contradicts because $\operatorname{dim}\{x \oplus \operatorname{ker}(T)\} \geq \operatorname{dim} \mathcal{J}-\operatorname{ker}(T)$. Thus we get the equality $\mathcal{J}-\operatorname{ker}(T)=\operatorname{ker}(T)$.

- In Example 4.7.2, "dim $\operatorname{ker}\left(V^{*}-I\right)=2^{\prime \prime}$ should be " $\operatorname{dim} \operatorname{ker}\left(V^{*}-I\right)=1$ ". In line 6 of Example 4.7.2, "Thus we see that $\operatorname{dim} \mathcal{J}-\operatorname{ker}(V-I)=2$ " should be replaced by "The maximal element of a chain of neutral subspace in $\mathcal{J}-\operatorname{ker}(V-I)$ containing $\operatorname{ker}(V-I)$ is spanned by a set $\left\{e_{1}\right\}$. Thus, we see that $\operatorname{dim} \mathcal{J}-\operatorname{ker}(V-I)=1^{\prime \prime}$.

[^0]: 2020 Mathematics Subject Classification. Primary 47A10, 47A11, 47A53, 47B50.
 Keywords. Krein space, \mathcal{J}-kernel; \mathcal{J}-Fredholm index; essential spectrum; \mathcal{J}-Weyl spectrum; \mathcal{J}-Browder spectrum; \mathcal{J}-Weyl's theorem; \mathcal{J}-Browder's theorem.

 Received: 03 February 2020; Accepted: 04 June 2022
 Communicated by Dragan S. Djordjević
 Email addresses: 66431004@naver.com (Il Ju An), hjs@hanyang.ac.kr (Jaeseong Heo)

