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The purpose of this note is to point out a mistake in the definition of the dimension of the J-kerenl in
section 3 of this paper. Because of this mistake, there are some errors in examples and remarks.

Throughout this note, (K , J) denotes a Krein space equipped with an indefinite inner product ⟨·, ·⟩J,
unless specified otherwise.

In section 3 of the paper, we defined the J-kernel of T, J- ker(T), by

J- ker(T) := {x ∈ K : ⟨Tx,Tx⟩J = 0}.

In general, unlike the kernel, the J-kernel is not a subspace ofK .

For example, consider the finite dimensional space K = C3 equipped with the standard inner product
⟨·, ·⟩. For J = diag(1,−1,−1), (C3, J) becomes a 3-dimensional Krein space. Let T = I3 be the identity operator
on C3. For u1 := (1, 1, 0), u2 := (1, 0, 1) ∈ C3, we have that

⟨Tui,Tui⟩J = ⟨JTui,Tui⟩ = ⟨Jui,ui⟩ = 0 (i = 1, 2),

so that u1,u2 ∈ J- ker(T). On the other hand, ⟨T(u1+u2),T(u1+u2)⟩J = 2 , 0, which shows that theJ-kernel
is not a subspace.

LetVµ be a chain of neutral subspaces inJ- ker(T) containing ker(T) and let Vµ be the maximal element
ofVµ. We define the dimension of J- ker(T) by

dimJ- ker(T) := sup
µ

dim Vµ

where the supremum is taken over all maximal elements in such all chains.
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Using this definition, we can define the J-ascent as before, that is,

φ(T) := sup
k

dim(J- ker(Tk)).

Remark 3.5 should be revised as follows;

Remark 3.5. Unlike the Fredholm index, in general, the index product formula does not hold for the
J-index. More precisely, even if T,S ∈ L(K ) are J-Fredholm, we may see that J-ind(ST) , J-ind(S) +
J-ind(T). We have an example which does not satisfy the index product formula for theJ-index as follows;

The Krein space K given in Example 3.2 is finite dimensional, so that T is J-Fredholm. We see that T2

is also J-Fredholm. If x = (x1, x2, x3) belongs to J- ker(T), then we have

0 = ⟨Tx,Tx⟩J = ⟨JTx,Tx⟩ = −x2
2 − x2

3 + x2
1,

so that x2
1 = x2

2 + x2
3. Let Vµ be a chain of neutral subspaces in J- ker(T) contaning ker(T) = {0}. Then

a maximal element of Vµ is spanned by a set {x}. This means that dimJ- ker(T) = 1. However, if
y = (y1, y2, y3) belongs to J- ker(T2), then we also have

0 = ⟨T2y,T2y⟩J = ⟨JT2y,T2y⟩ = −y2
3 − y2

1 + y2
2.

Hence this implies that dimJ- ker(T2) = 1, so that J-ind(T2) = 1. Thus the index product formula does
not hold for the J-index since J-ind(T) +J-ind(T) = 2 , 1 = J-ind(T2).

For the accuracy of the exposure, we use this opportunity to make the following corrections:

• On the page 6003, line −2, “the J-kernel J- ker(T) is not an invariant subspace of T” should be
replaced by “the J-kernel J- ker(T) is not invariant under T”.

• On the page 6004, line 4 and 6, “J- ker(T) is an invariant subspace of T” should be replaced by
“J- ker(T) is invariant under T”.

• The first two lines of the proof of Theorem 3.10 (i) must be revised as follows;

If T is J-Weyl and selfadjoint, then we have that dimJ- ker(T) = dim ker(T). Assume that x <
ker(T) and x ∈ J- ker(T). Then αx ∈ J- ker(T) for arbitrary α ∈ C. This means that x ⊕ ker(T) ⊂
J- ker(T). However this contradicts because dim{x ⊕ ker(T)} ≥ dimJ- ker(T). Thus we get the
equality J- ker(T) = ker(T).

• In Example 4.7.2, “dim ker(V∗ − I) = 2” should be “dim ker(V∗ − I) = 1”. In line 6 of Example 4.7.2,
“Thus we see that dimJ- ker(V − I) = 2” should be replaced by “The maximal element of a chain
of neutral subspace in J- ker(V − I) containing ker(V − I) is spanned by a set {e1}. Thus, we see that
dimJ- ker(V − I) = 1”.


