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Abstract. In this paper, we study skew (A,m)-symmetric operators in a complex Hilbert spaceH . Firstly, by
introducing the generalized notion of left invertibility we show that if T ∈ B(H) is skew (A,m)-symmetric,
then eisT is left (A,m)-invertible for every s ∈ R. Moreover, we examine some conditions for skew (A,m)-
symmetric operators to be skew (A,m − 1)-symmetric. The connection between c0-semigroups of (A,m)-
isometries and skew (A,m)-symmetries is also described. Next, we investigate the stability of a skew
(A,m)-symmetric operator under some perturbation by nilpotent operators commuting with T. In addition,
we show that if T is a skew (A,m)-symmetric operator, then Tn is also skew (A,m)-symmetric for odd n.
Finally, we consider a generalization of skew (A,m)-symmetric operators to the multivariable setting. We
introduce the class of skew (A,m)-symmetric tuples of operators and characterize the joint approximate
point spectrum of such a family.

1. Introduction and preliminaries

Throughout this paper H stands for an infinite separable complex Hilbert space with inner product
⟨· | ·⟩. ByB(H) we denote the Banach algebra of all bounded linear operators onH . For T ∈ B(H), we write
R(T),N(T), σ(T), σp(T) and σap(T) for the range space, the null space, the spectrum, the point spectrum and
the approximate point spectrum of T, respectively. The cone of positive (semi-definite) operators is given
by

B(H)+ :=
{
A ∈ B(H) : ⟨Au | u⟩ ≥ 0, ∀ u ∈ H

}
.

For A ∈ B(H)+, let

BA(H) :=
{
T ∈ B(H) : R(T∗A) ⊂ R(A)

}
.

Any A ∈ B(H)+ defines a positive semi-definite sesquilinear form: ⟨· | ·⟩A : H × H −→ C, ⟨u | v⟩A :=
⟨Au | v⟩. By ∥ · ∥A we denote the semi-norm induced by ⟨· | ·⟩A, i.e. ∥u∥2A = ⟨u | u⟩A. Observe that ∥ · ∥A is a
norm if and only if A is injective.
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For R, S, X ∈ B(H), let consider the map ΘR,S : B(H) −→ B(H), ΘR,S(X) := RXS − X. An induction
argument shows that

Θ(m)
R,S(X) =

m∑
k=0

(−1)m−k
(
m
k

)
RkXSk, m ≥ 0. (1)

The m-isometric operators were introduced by Agler back in the early nineties and were statued in detail
by Agler and Stankus in a series of three papers ([1–3]). An operator T ∈ B(H) is said to be an m-isometry if
Θ(m)

T∗,T(I) := Θ(m)
T (I) = 0. Equivalently, T is left m-invertible with T∗ as a left inverse. Recently, Sid Ahmed et al.

([27]) generalized the concept of those operators on a Hilbert space. They introduced the (A,m)-isometric
operators: For m ≥ 1, an operator T ∈ B(H) is said to be an (A,m)-isometry if Θ(m)

T (A) = 0, that is T is left
(A,m)-invertible with T∗ as a left inverse (see Definition 2.4). They showed many important results of such
an operator (for more details see again [27–29]).

For R, S ∈ B(H), let SR,S : B(H) −→ B(H) be the generalized derivation operator defined by SR,S(X) :=
RX − XS. For every integer n, we have

S
(n)
R,S(X) =

n∑
k=0

(−1)n−k
(
n
k

)
RkXSn−k. (2)

The concept of the Helton class of an operator has been the object of some intensive study (see [24, 26]).
For R, S ∈ B(H), we say that S ∈ Heltonm(R) if S(m)

R,S(I) = 0. In [16], [17], J. W. Helton initiated the study
of m-symmetries. A bounded linear operator T is said to be m-symmetric if T ∈ Heltonm(T∗), that is
S

(m)
T∗,T(I) := S(m)

T (I) = 0. In light of complex symmetric operators, using the identity (2), M. Chō defined
(m,C)-complex symmetric operators as follows: an operator T ∈ B(H) is said to be (m,C)-complex sym-
metric if there exists some conjugation C such that S(m)

T (C)C = 0. For more details, we refer the readers
to [6–9, 13–15, 20–23, 25]. Recently, in [19], we have introduced the class of (A,m)-symmetric operators,
i.e operators satisfying S(m)

T (A) = 0 where A ∈ B(H)+. We have shown that some properties and results
related to m-symmetries and (m,C)-symmetries hold true also for the new class. Sid Ahmed et al. ([10])
extended the study of such a family to the multivariable setting. Particularly, they showed that if T is
(A,m)-symmetric, then eitT is (A,m)-isometric for every t ∈ R (Theorem 2.6).

We aim in this paper to study the class of skew (A,m)-symmetric operators introduced in [10]. We will
show that some results for skew m-symmetric and skew m-complex symmetric operators remain true if we
consider an additional semi-inner product defined by a positive operator A. Recall that T ∈ B(H) is said to
be skew (A,m)-symmetric if ζ(m)

T (A) = 0, where

ζ(m)
T (A) :=

m∑
k=0

(
m
k

)
T∗kATm−k. (3)

Remark 1.1. 1. T is skew (A, 1)-symmetric (or skew A-symmetric) if AT = −T∗A.
2. T is said to be skew (A, 2)-symmetric if

AT2 + 2T∗AT + T∗2A = 0.

3. An operator T ∈ B(H) is said to be strict skew (A,m)-symmetric if T is (A,m)-symmetric, but it is not a skew
(A,m − 1)-symmetric operator.

4. For an invertible operator A, let

R :=
1
2

(
T + A−1T∗A

)
, S :=

1
2

(
T − A−1T∗A

)
.

It is easy to see that R is A-symmetric, S is skew A-symmetric and T = R + S ([19]).
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5. If T is (A,m)-symmetric, then (αT) is skew (A,m)-symmetric for α pure imaginary ([19]).

The following example ensures that, in general, skew (A,m)-symmetric operators are not skew m-
symmetric and vice versa ([19]).

Example 1.2. Let H = C2, ∥(x, y)∥2 = |x|2 + |y|2 for all x, y ∈ C. Take A =
(

1 −1
−1 1

)
, T =

(
0 1
0 1

)
,

S =
(

0 −1
1 0

)
. Then, T is skew A-symmetric and not skew 3-symmetric. Moreover, S is skew symmetric and not

skew (A, 3)-symmetric.

A family (T(t))t≥0 of bounded linear operators on H is called a strongly continuous (one-parameter)
semigroup (or a C0-semigroup) if it satisfies the functional equation{

T(t + s) = T(t)T(s) for all t, s ≥ 0,
T(0) = I,

and is strongly continuous in the following sense: the orbit maps t 7−→ T(t)x are continuous fromR+ intoH
for every x ∈ H ([11]). The generator B : D(B) ⊆ H −→ H of a C0-semigroup (T(t))t≥0 onH is the operator

D(B) :=
{
x ∈ H : lim

h−→0

T(h)x − x
h

exists
}
,

Bx := lim
h−→0

T(h)x − x
h

, x ∈ D(B).

Our study of skew (A,m)-symmetric operators is motivated by the connection between Co-semigroups of
(A,m)-isometries and their generators, as mentioned by the following theorem.

Theorem 1.3. ([19]) Let (T(t))t≥0 be a C0-semigroup on H with generator (X,D(X)). Assume that T(t) ∈ BA(H)
for every t ≥ 0. Then, the following properties are equivalent:

1. (T(t))t≥0 is an (A,m)-isometry for every t ≥ 0.
2. The generator X is skew (A,m)-symmetric onD(Xm).

Inspired by [4] and [10], we extend (3) to commuting d-tuples. A d-tuple of commuting operators
T = (T1, · · · ,Td) ∈ B(H)d is said to be skew (A,m)-symmetric if

m∑
k=0

(
m
k

)
(T∗1 + · · · + T∗d)kA(T1 + · · · + Td)m−k = 0,

equivalently, if (T1 + · · · + Td) is a skew (A,m)-symmetric bounded linear operator. In this framework, we
aim to give some basic properties concerning such a family.

The present paper is organized as follows: In Section 2, the notion of left (A,m)-invertible operators is
introduced. Theorem 2.5 shows that, under a suitable assumption, a left (A,m)-invertible operator is also
left (A,m − 1)-invertible. In Theorem 2.6, 2.7 and 2.8 we study the power, the product and the bounded
perturbation of left (A,m)-invertible operators. Theorem 2.11 shows that if T is skew (A,m)-symmetric, then
eisT is left (A,m−1)-invertible. As a consequence of such a characterization, we prove in Theorem 2.12 that if
T is skew (A,m)-symmetric, then it is skew (A,m−1)-symmetric. Moreover, it is shown in Theorem 2.15 that
if R is skew (A,m)-symmetric and S is skew (A,n)-symmetric, then eis(R+S) is left (A,m+n−1)-invertible. The
connection between c0-semigroups of (A,m)-isometries and skew (A,m)-symmetric operators is described
in Theorem 2.16. The aim of Section 3 is to study the stability of skew (A,m)-symmetries under bounded
nilpotent perturbation. We show in Theorem 3.3 that if T and Q are commuting operators, T is skew
(A,m)-symmetric and Q is l-nilpotent, then (T +Q) is skew (A,m + 2l − 2)-symmetric. Moreover, we show
that for n odd the power of a skew (A,m)-symmetry is also skew (A,m)-symmetric. Finally, in the closing
section, we introduce the skew (A,m)-symmetric tuple of commuting operators. Especially, we characterize
the joint spectrum and the joint approximate spectrum related to such a family.
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2. Basic properties of skew (A,m)-symmetric operators

In this section we aim to give some properties and some characterizations of skew (A,m)-symmetric
bounded linear operators.

In [10], the authors introduced the following polynomials{
(y + x)m

}
a
=

{ m∑
k=0

(
m
k

)
ykxm−k

}
a

:=
m∑

k=0

(
m
k

)
ykaxm−k,

{
(y − x)n

}
a
=

{ n∑
k=0

(−1)n−k
(
n
k

)
ykxn−k

}
a

:=
n∑

k=0

(−1)n−k
(
n
k

)
ykaxn−k,

{
(yx − 1)m

}
a
=

{ m∑
k=0

(−1)m−k
(
m
k

)
ykxk

}
a

:=
m∑

k=0

(−1)m−k
(
m
k

)
ykaxk.

For T ∈ B(H) and A ∈ B(H)+, it follows that

ζ(m)
T (A) =

{
(y + x)m

}
a
(T∗,T,A), S(m)

T (A) =
{
(y − x)m

}
a
(T∗,T,A)

and Θ(m)
T (A) =

{
(yx − 1)m

}
a
(T∗,T,A).

For nonzero R,S ∈ B(H), we denote by R ⊗ S the tensor product of R and S on the Hilbert spaceH⊗H(
H⊗H denotes the completion, endowed with a reasonable uniform cross-norm, of the algebraic tensor

productH ⊗H
)
. It is defined as follows:

⟨R ⊗ S(x1 ⊗ y1) | x2 ⊗ y2⟩ := ⟨Rx1 | x2⟩ ⟨Sy1 | y2⟩, x1, x2, y1, y2 ∈ H . (4)

Proposition 2.1. Let Ti ∈ B(H), Ai ∈ B(H)+ (i = 1, 2). Then, the following statements hold.

1. If Ti is skew (Ai,m)-symmetric (i = 1, 2), then (T1 ⊕ T2) is skew (A1 ⊕ A2,m)-symmetric.
2. If T1 is skew (A1,m)-symmetric and T2 is skew (A2,n)-symmetric, then (T1⊗ I) is skew (A1⊗A2,m)-symmetric

and (I ⊗ T2) is skew (A1 ⊗ A2,n)-symmetric.

Proof. 1. Assume that Ti is skew (Ai,m)-symmetric for i = 1, 2. Then, we have{
(y + x)m

}
a

(
(T1 ⊕ T2)∗,T1 ⊕ T2,A1 ⊕ A2

)
=

{
(y + x)m

}
a

(
T∗1,T1,A1

)
︸                      ︷︷                      ︸

(=0)

⊕

{
(y + x)m

}
a

(
T∗2,T2,A2

)
︸                      ︷︷                      ︸

(=0)

= 0.

Hence, (T1 ⊕ T2) is skew (A1 ⊕ A2,m)-symmetric.
2. Let u = u1 ⊗ u2 ∈ H ⊗H . Since (R ⊗ S)(A ⊗ B) = RA ⊗ SB and (R ⊗ S)∗(R ⊗ S) = R∗R ⊗ S∗S, it holds〈{

(y + x)m
}

a

(
(T1 ⊗ I)∗,T1 ⊗ I,A1 ⊗ A2

)
u | u

〉
=

〈{
(y + x)m

}
a

(
T∗1,T1,A1

)
u1 | u1

〉
︸                                 ︷︷                                 ︸

(=0)

〈
A2u2 | u2

〉
= 0.

Arguing in the same way as previously, we obtain〈{
(y + x)m

}
a

(
(I ⊗ T2)∗, I ⊗ T2,A1 ⊗ A2

)
u | u

〉
=

〈{
(y + x)m

}
a

(
T∗2,T2,A2

)
u2 | u2

〉
︸                                 ︷︷                                 ︸

(=0)

〈
A1u1 | u1

〉
= 0.
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Remark 2.2. It follows from (1)-Proposition 2.1 that if Ti is skew (Ai,m)-symmetric (i = 1, · · · ,n), then
( n⊕

i=1

Ti

)
is

skew
( n⊕

i=1

Ai,m
)
-symmetric.

If there exists an integer k ≥ 1 such that S ∈ B(H) satisfies S(k)
R,S(A) = 0, we say that S belongs to the

HeltonA class of an operator R with order k. We denote this by S ∈ HeltonA,k(R). Recall that an operator
Q ∈ B(H) is said to be nilpotent of order n if Qn = 0 and Qn−1 , 0.
In the following theorem, we consider a class of (2 × 2) upper triangular operator matrices.

Theorem 2.3. Let Ti,X ∈ B(H), Ai ∈ B(H)+ (i = 1, 2), R =
(

T1 X
0 T2

)
, S =

(
T∗1 X
0 T∗2

)
andA =

(
A1 0
0 A2

)
be operators onH ⊕H . Then, the following statements hold true.

1. If Ti is skew (Ai, 2)-symmetric (i = 1, 2). Then, we have(
R ∈ HeltonA,2(S)

)
⇐⇒

(
(A1T1 + 2T∗1A1)X + A1XT2 = −X(2A2T2 + T∗2A2) − T∗1XA2

)
.

2. If T1 is (A1,m)-symmetric and T2 is n-nilpotent, then R satisfies R∗n
{
(y + x)m

}
a

(
R∗,R,A

)
Rn = 0.

Proof. 1. The desired statement follows from the following equality{
(y + x)2

}
a

( ( T∗1 X
0 T∗2

)
,

(
T1 X
0 T2

)
,

(
A1 0
0 A2

) )
=


{
(y + x)2

}
a

(
T∗1,T1,A1

)
Y

0
{
(y + x)2

}
a

(
T∗2,T2,A2

)  ,
where

Y = A1(T1X + XT2) + 2(T∗1A1X + XA2T2) + (T∗1X + XT∗2)A2.

2. Since Rk =

 Tk
1

k−1∑
j=0

T j
1XTk−1− j

2

0 Tk
2

 for k ≥ 1, we get

R∗n
{
(y + x)m

}
a

(
R∗,R,A

)
Rn =

(
T∗n1

{
(y + x)m

}
a

(
T∗1,T1,A1

)
Tn

1 0
0 0

)
= 0.

We introduce below the notion of left (A,m)-invertibility, which will play a central role in this paper,
and we give some of their useful properties.

Definition 2.4. Let A ∈ B(H)+ and T, S ∈ B(H). We say that the operator T is left (resp. right) (A,m)-invertible
by S, for some integer m ≥ 1, if

{
(yx − 1)m

}
a

(
S,T,A

)
= 0

(
resp.

{
(yx − 1)m

}
a

(
T,S,A

)
= 0

)
.

Sid Ahmed et al. have proved in [10, 27] that if T is (A,m)-isometric where m is even and T is invertible,
then T is an (A,m− 1)-isometry. Under suitable assumptions, we extend a similar property to left invertible
operators.

Theorem 2.5. Let A ∈ B(H)+ and T ∈ B(H) be invertible. Assume that
{
(yx − 1)m−1

}
a

(
R,T,A

)
and Rm−1

{
(yx −

1)m−1
}

a

(
R−1,T−1,A

)
Tm−1 are nonnegative. If T is left (A,m)-invertible with inverse R where m is even, then T is left

(A,m − 1)-invertible.
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Proof. Since m is even, we have (−1)k = −(−1)m−1−k. Then, it holds

Rm−1
{
(yx − 1)m−1

}
a

(
R−1,T−1,A

)
Tm−1 =

m∑
k=0

(−1)m−1−k
(
m
k

)
Rm−1−kATm−1−k

= −

{
(yx − 1)m−1

}
a

(
R,T,A

)
≥ 0.

Therefore
{
(yx − 1)m−1

}
a

(
R,T,A

)
= 0. Hence, T is left (A,m − 1)-invertible.

Theorem 2.6. Let A ∈ B(H)+ and R,S ∈ B(H). If R is a left (A,m)-inverse of S, then Rn is a left (A,m)-inverse of
Sn for each n.

Proof. Since, for some constants λk (k = 0, · · · ,m(n − 1)), it holds

(ynxn
− 1)m =

m(n−1)∑
k=0

λkym(n−1)−k(yx − 1)mym(n−1)−k.

Hence, we have {
(ynxn

− 1)m
}

a
=

m(n−1)∑
k=0

λkym(n−1)−k
{
(yx − 1)m

}
a
ym(n−1)−k

and ({
(ynxn

− 1)m
}

a

)(
R,S,A

)
=

m(n−1)∑
k=0

λkRm(n−1)−k
({

(yx − 1)m
}

a

)(
R,S,A

)
Sm(n−1)−k.

If R is a left (A,m)-inverse of S, then
({

(yx − 1)m
}

a

)(
R,S,A

)
= 0. From which we deduce that

({
(ynxn

−

1)m
}

a

)(
R,S,A

)
= 0, and so Rn is a left (A,m)-inverse of Sn for each n.

Theorem 2.7. Let A ∈ B(H)+ and R1, R2, S1, S2 ∈ B(H) such that R1R2 = R2R1 and S1S2 = S2S1. Assume that
R1 is a left (A,m)-inverse of S1 and R2 is a left (A,m)-inverse of S2, then R1R2 is a left (A,m+ n− 1)-inverse of S1S2.

Proof. Fix x, y ∈ H and let ai, j = ⟨Ri
1R j

2ASi
1S j

2 x | y⟩. Then, for all non-negative integers k and l, we have

ak+i,l = ⟨Ri
1ASi

1

(
Sk

1Sl
2 x

)
|

(
R∗k1 R∗l2 y

)
⟩, ak,l+ j = ⟨R

j
2AS j

2

(
Sk

1Sl
2 x

)
|

(
R∗k1 R∗l2 y

)
⟩.

The left (A,m)-invertibility of S1 by R1 and the left (A,n)-invertibility of S2 by R2 gives

m∑
i=0

(−1)m−iak+i,l = 0,
n∑

j=0

(−1)n− jak,l+ j = 0.

Applying [12, Corollary 2.5] we deduce that

0 =
m+n−1∑

s=0

(−1)m+n−1−sas,s =

m+n−1∑
s=0

(−1)m+n−1−s
(
m + n − 1

s

) 〈
(R1R2)sA(S1S2)s)x|y

〉
.

Since x and y are arbitrary inH , it follows from that

m+n−1∑
s=0

(−1)m+n−1−s
(
m + n − 1

s

)
(R1R2)sA(S1S2)s = 0.

Hence, R1R2 is a left (A,m + n − 1)-inverse of S1S2.
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Theorem 2.8. Let A ∈ B(H)+ and R, S, P, Q ∈ B(H) such that Q is nilpotent with order l, P is nilpotent with
order l′, RP = PR and SQ = QS. If R is a left (A,m)-inverse of S, then (R + P) is a left (A,m + l + l′ − 2)-inverse of
(S +Q).

Proof. From the multinomial formula we get{
((y + s)(x + t) − 1)n

}
a
=

{
((yx − 1) + (y + s)t + sx)n

}
a

=
{ n∑

k=0

n−k∑
j=0

(
n
k

) (
n − k

j

)
(y + s)ks j(yx − 1)n−k− jx jtk

}
a

=

n∑
k=0

n−k∑
j=0

(
n
k

) (
n − k

j

)
(y + s)ks j

{
(yx − 1)n−k− j

}
a
x jtk.

By using this identity with x replaced by S, y replaced by R, s replaced by P, t replaced by Q, we obtain{
((y + s)(x + t) − 1)n

}
a
(R + P,S +Q,A)

=

n∑
k=0

n−k∑
j=0

(
n
k

) (
n − k

j

)
(R + P)kP j

{
(yx − 1)n−k− j

}
a
(R,S,A)S jQk.

Let n = m+ l+ l′ − 2. If k ≥ l or j ≥ l′, then Qk = 0 or P j = 0.Hence (R+ P)kP j
{
(yx− 1)n−k− j

}
a
(R,S,A)S jQk = 0.

On the other hand, if k < l and j < l′, we have

n − k − j = m + l + l′ − 2 − k − j ≥ m + l + l′ − 2 − (l − 1) − (l′ − 1) = m.

Since R is a left (A,m)-inverse of S, we get
{
(yx − 1)n−k− j

}
a
(R,S,A) =

{
(yx − 1)m

}
a
(R,S,A) = 0. Hence, (R + P)

is a left (A,m + l + l′ − 2)-inverse of (S +Q).

Exponential operators
(
eisT, T ∈ B(H) and s ∈ R

)
are with some interest since they act on a wave

function to move it in time and space (see [5], [30]). Note that
(
eiT

)
is a function of an operator f (T)

which is defined by its expansion in a Taylor series. Due to this, we devote most of our interest to distin-
guish some connection between skew (A,m)-symmetric operators and their associated exponential operator.

Using the formula eαM :=
∑
k≥0

αk Mk

k!

(
M ∈ B(H), α ∈ C

)
, we can write

eisT = I + (is)T +
(is)2

2!
T2 +

(is)3

3!
T3 + · · · , eisT∗ = I + (is)T∗ +

(is)2

2!
T∗2 +

(is)3

3!
T∗3 + · · · . (5)

and it follows from that

RA(s) := eisT∗AeisT

= A + (is)
(
AT + T∗A

)
+

(is)2

2!

(
AT2 + 2T∗AT + T∗2A

)
+

(is)3

3!

(
AT3 + 3T∗AT2 + 3T∗2AT + T∗3A

)
+ · · ·

= A + (is)ζ(1)
T (A) +

(is)2

2!
ζ(2)

T (A) +
(is)3

3!
ζ(3)

T (A) + · · · . (6)

Let consider the following algebraic condition on T

P̃OLm(A) : RA(s) = A +
m∑

k=1

skEk, Ek := Ek(A,T,T∗) ∈ B(H). (7)
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Note that

dn

dsn RA(s) = ineisT∗ ζ(n)
T (A) eisT, n ∈N. (8)

The P̃OLm(A) condition is equivalent to dm+1

dsm+1

(
eisT∗A eisT

)
= 0 and consequently to ζ(m+1)

T (A) = 0. As a conse-

quence of (8), T ∈ B(H) is skew (A,m)-symmetric if it satisfies ˜POLm−1(A).

We begin our study of exponential operators with the following result in which we characterize
cos

(
sT

)
:= eisT+e−isT

2 and sin
(
sT

)
:= eisT

−e−isT

2i , for s ∈ R.

Proposition 2.9. Let A ∈ B(H)+ and T ∈ B(H). For s ∈ R, if eisT and e−isT are skew A-symmetric operators, then
cos

(
sT

)
is skew A-symmetric and sin

(
sT

)
is A-symmetric.

Proof. Since eisT and e−isT are skew A-symmetric, we get

A cos(sT) +
(

cos(sT)
)∗

A =
1
2

{
AeisT + Ae−isT + e−isT∗A + eisT∗A

}
=

1
2

{
− e−isT∗A + Ae−isT + e−isT∗A + eisT∗A

}
= 0,

A sin(sT) −
(

sin(sT)
)∗

A =
1
2i

{
AeisT

− Ae−isT + e−isT∗A − eisT∗A
}

=
1
2i

{
− e−isT∗A + eisT∗A + e−isT∗A − eisT∗A

}
= 0

and this allows to conclude.

Proposition 2.10. Let A ∈ B(H)+ and T ∈ B(H). If T is skew (A,m)-symmetric, then for each positive integer k,
the following identity holds

(
eisT∗

)k
A
(
eisT

)k
=

m−1∑
j=0

(isk) j

j!
ζ j

T(A), with ζ(0)
T (A) = A. (9)

Proof. It follows from (6) that

(
eisT∗

)k
A
(
eisT

)k
= A + (is)kζ(1)

T (A) +
(is)2k2

2!
ζ(2)

T (A) + · · · +
(is)m−1km−1

(m − 1)!
ζ(m−1)

T (A) +
(is)mkm

m!
ζ(m)

T (A) + · · · . (10)

Since T is skew (A,m)-symmetric, ζ(n)
T (A) = 0 for n ≥ m, and this finishes the proof.

In [10, Theorem 2.6], the authors proved that if T is an (A,m)-symmetric operator, then eisT is (A,m)-
isometric for every t ∈ R. By using the generalized notion of left invertible operators introduced above we
give a characterization related to skew (A,m)-symmetries.

Theorem 2.11. Let A ∈ B(H)+ and T ∈ B(H). If T is skew (A,m)-symmetric, then for every s ∈ R, the operator
eisT is left (A,m)-invertible with left inverse eisT∗ .
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Proof. By (9), it holds that{
(yx − 1)m

}
a

(
eisT∗ , eisT,A

)
=

m∑
k=0

(−1)m−k
(
m
k

) (
eisT∗

)k
A
(
eisT

)k

=

m∑
k=0

(−1)m−k
(
m
k

) {
A + (is)kζ(1)

T (A) +
(is)2k2

2!
ζ(2)

T (A) +
(is)3k3

3!
ζ(3)

T (A) + · · · +
(is)m−1km−1

(m − 1)!
ζ(m−1)

T (A)
}

= A
( m∑

k=0

(−1)m−k
(
m
k

))
+ (is)ζ(1)

T (A)
( m∑

k=0

(−1)m−k
(
m
k

)
k
)
+

(is)2

2!
ζ(2)

T (A)
( m∑

k=0

(−1)m−k
(
m
k

)
k2

)
+ · · · +

+ · · · +
(is)m−1

(m − 1)!
ζ(m−1)

T (A)
( m∑

k=0

(−1)m−k
(
m
k

)
km−1

)
.

Since

m∑
k=0

(−1)m−k
(
m
k

)
k j =

{
0, if 0 ≤ j ≤ m − 1;
m!, if j = m, (11)

we get
{
(yx − 1)m

}
a

(
eisT∗ , eisT,A

)
= 0 and this allows to conclude.

In [19] we have shown that if T is (A,m)-symmetric and m is even, then T is always (A,m − 1)-symmetric.
In the case of skew (A,m)-symmetries, we establish the following characterization.

Theorem 2.12. Let A ∈ B(H)+ and T ∈ B(H). Assume that
{
(yx − 1)m−1

}
a

(
eisT∗ , eisT,A) and (eisT∗ )m−1

{
(yx −

1)m−1
}

a

(
eisT∗ , e−isT,A)(eisT)m−1 are nonnegative. If T is skew (A,m)-symmetric where m is even, then T is skew

(A,m − 1)-symmetric.

Proof. Since T is skew (A,m)-symmetric, ζ(n)
T (A) = 0 for all n ≥ m and, by Theorem 2.11, eisT is left (A,m)-

invertible. On the other hand, since m is even and eisT is invertible, it follows from Theorem 2.5 and the
hypothesis that eisT is left (A,m − 1)-invertible for all s ∈ R. On the other hand, Equation (10) gives

0 =
{
(yx − 1)m−1

}
a

(
eisT∗ , eisT,A

)
=

m−1∑
k=0

(−1)m−1−k
(
m − 1

k

) (
eisT∗

)k
A
(
eisT

)k

=

m−1∑
k=0

(−1)m−1−k
(
m − 1

k

){
A + (is)(m − 1 − k)ζ(1)

T (A) +
(is)2(m − 1 − k)2

2!
ζ(2)

T (A)

+
(is)3(m − 1 − k)3

3!
ζ(3)

T (A) + · · · +
(is)m−1(m − 1 − k)m−1

(m − 1)!
ζ(m−1)

T (A)
}

= A
( m−1∑

k=0

(−1)m−1−k
(
m − 1

k

))
+ (is)ζ(1)

T (A)
( m−1∑

k=0

(−1)m−1−k
(
m − 1

k

)
(m − 1 − k)

)
+

(is)2

2!
ζ(2)

T (A)
( m−1∑

k=0

(−1)m−1−k
(
m − 1

k

)
(m − 1 − k)2

)
+ · · · +

+ · · · +
(is)m−1

(m − 1)!
ζ(m−1)

T (A)
( m−1∑

k=0

(−1)m−1−k
(
m − 1

k

)
(m − 1 − k)m−1

)
.

By using the identity (11), we obtain ζ(m−1)
T (A) = 0. Hence T is skew (A,m − 1)-symmetric.

Proposition 2.13. Let A ∈ B(H)+ and T ∈ B(H). Then the following statements hold.



R. Rabaoui / Filomat 36:10 (2022), 3261–3278 3270

1. If (Tn)n is a sequence of skew (A,m)-symmetric operators such that lim
n−→∞

∥∥∥eisTn − eisT
∥∥∥ = 0 then eisT is left

(A,m)-invertible.
2. If T is skew (A,m)-symmetric, then eisnT is left (A,m)-invertible with left inverse eisnT∗ for all n ∈N.
3. If T is (A,m)-symmetric, then eisαT is left (A,m)-invertible for α pure imaginary.
4. If T is skew (A,m)-symmetric and A-symmetric, then the operator eisT belongs to the HeltonA class of eisT∗ .

Proof. 1. Since Tn is skew (A,m)-symmetric, eisTn is left (A,m)-invertible. On the other hand, the fact that
the class of left (A,m)-invertible operators is closed in norm and lim

n−→∞

∥∥∥eisTn − eisT
∥∥∥ = 0 allow to deduce

that eisT is left (A,m)-invertible.
2. Since T is skew (A,m)-symmetric, it holds from Theorem 2.11 that eisT is left (A,m)-invertible with left

inverse eisT∗ . Applying Theorem 2.6 we can conclude.
3. The claim follows immediately from Remark 1.1.
4. It follows from (5) that

AeisT = A + (is)AT +
(is)2

2!
AT2 +

(is)3

3!
AT3 + · · · ,

eisT∗A = A + (is)T∗A +
(is)2

2!
T∗2A +

(is)3

3!
T∗3A + · · · .

If T is A-symmetric (that is AT = T∗A), then ATk = T∗kA for all k ≥ 0. Hence, from the two above
equalities we get AeisT = eisT∗A.

Proposition 2.14. Let s ∈ R, A ∈ B(H)+ and T ∈ B(H) be a skew A-symmetric operator. Then, the following
statements hold.

1. cos(sT) is A-isometric if and only if R
(
I − cos(2sT)

)
⊂ N(A).

2. sin(sT) is A-isometric if and only if R
(
3I − cos(2sT)

)
⊂ N(A).

Proof. Since T is skew A-symmetric, eisT is left A-invertible with left inverse eisT∗ , that is A = eisT∗AeisT.
Therefore, we obtain

A −
(

cos(sT)
)∗

A cos(sT) = A −
1
4

{
Ae2isT + 2A + Ae−2isT

}
=

1
2

A
{
I − cos(2sT)

}
,

A −
(

sin(sT)
)∗

A sin(sT) = A −
1
4

{
Ae2isT

− 2A + Ae−2isT
}
=

1
2

A
{
3I − cos(2sT)

}
and the above two identities allows to conclude.

Theorem 2.15. Let A ∈ B(H)+ and R, S ∈ B(H) such that RS = SR. If R is skew (A,m)-symmetric and S is skew
(A,n)-symmetric, then eis(R+S) is left (A,m + n − 1)-invertible with left inverse eis(R+S)∗ .

Proof. Since R is skew (A,m)-symmetric and S is skew (A,n)-symmetric, it holds from Theorem 2.11 that
S1 = eisR is left (A,m)-invertible with left inverse R1 = eisR∗ and S2 = eisS is left (A,n)-invertible with left
inverse R2 = eisS∗ , for every s ∈ R. It is clear that R1R2 = R2R1 and S1S2 = S2S1. Applying Theorem 2.7, we
deduce that S1S2 = eis(S+R) is left (A,m + n − 1)-invertible with left inverse R1R2 = eis(R+S)∗ .

As an immediate consequence of Theorem 1.3 and Theorem 2.11, we have the following result in which
we examine the relation between a semigroup of (A,m)-isometries and the exponential operator of its
infinitesimal generator.

Theorem 2.16. Let A ∈ B(H)+ and (T(t))t≥0 be a C0-semigroup on H with generator (X,D(X)). Assume that
T(t) ∈ BA(H) for every t ≥ 0. If (T(t))t≥0 is (A,m)-isometric for every t ≥ 0, then eisX is left (A,m)-invertible on
D(Xm).
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3. Sum with a nilpotent operator and power of a skew (A,m)-symmetry

In this section, we investigate the stability of a skew (A,m)-symmetric operator T under some perturba-
tion by a nilpotent operator. Moreover, in the closing part of this section, we examine the integer power of
a skew (A,m)-symmetry.

Lemma 3.1. Let T, Q ∈ B(H) with TQ = QT. Then the following identities hold.

1.

ζ(l)
T+Q(A) =

l∑
k=0

l−k∑
j=0

(
l
k

) (
l − k

j

)
Q∗ jζ(l−k− j)

T (A)Qk. (12)

2.

S
(l)
T+Q(A) =

l∑
k=0

l−k∑
j=0

(−1)k
(
l
k

) (
l − k

j

)
Q∗ jζ(l−k− j)

T (A)Qk. (13)

Proof. 1. The desired identity follows from the following{
((y + s) + (x + t))m

}
a
(T∗,T,A) =

{
((y + x) + s + t)m

}
a
(T∗,T,A)

=
{ l∑

k=0

l−k∑
j=0

(
l
k

) (
l − k

j

)
s∗ j(y + x)(l−k− j)tk

}
a
(T∗,T,A)

=
( l∑

k=0

l−k∑
j=0

(
l
k

) (
l − k

j

)
s∗ j

{
(y + x)(l−k− j)

}
a
tk
)
(T∗,T,A)

=

l∑
k=0

l−k∑
j=0

(
l
k

) (
l − k

j

)
Q∗ jζ(l−k− j)

T (A)Qk.

2. We have {
((y + s) − (x + t))m

}
a
(T∗,T,A) =

{
((y − x) − (t − s))m

}
a
(T∗,T,A)

=
{ l∑

k=0

l−k∑
j=0

(−1)k
(
l
k

) (
l − k

j

)
s∗ j(y − x)(l−k− j)tk

}
a
(T∗,T,A)

=
( l∑

k=0

l−k∑
j=0

(−1)k
(
l
k

) (
l − k

j

)
s∗ j

{
(y − x)(l−k− j)

}
a
tk
)
(T∗,T,A)

=

l∑
k=0

l−k∑
j=0

(−1)k
(
l
k

) (
l − k

j

)
Q∗ jζ(l−k− j)

T (A)Qk.

In the following theorem, we examine conditions for the operator (T + Q) to be skew (A,m + 2l − 2)-
symmetric

(
resp. (A,m + 2l − 2)-symmetric ([10, 19])

)
, where Q is l-nilpotent.

Theorem 3.2. Let T, Q ∈ B(H) satisfying TQ = QT and Q is l-nilpotent. Then the following statements hold.

1. If T is skew (A,m)-symmetric, then the following claims hold true:
(a) The operator (T +Q) is skew (A,m + 2l − 2)-symmetric.
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(b) The operator (T +Q) is strict skew (A,m + 2l − 2)-symmetric if and only if
Q∗l−1ζ(m−1)

T (A)Ql−1 , 0.
2. If T is (A,m)-symmetric, then the following assertions hold true:

(a) The operator (T +Q) is (A,m + 2l − 2)-symmetric.
(b) The operator (T +Q) is strict (A,m + 2l − 2)-symmetric if and only if

Q∗l−1
S

(m−1)
T (A)Ql−1 , 0.

Proof. Let n = m + 2l − 2.

1. Assume that T is skew (A,m)-symmetric, that is ζ(m)
T (A) = 0.

(a) According to Lemma 3.1, identity (12), it follows that

ζ(l)
T+Q(A) =

l∑
k=0

l−k∑
j=0

(
l
k

) (
l − k

j

)
Q∗ jζ(l−k− j)

T (A)Qk.

If j ≥ l or k ≥ l, then Q∗ j = Qk = 0. On the other hand, if j < l and k < l, then n − k − j ≥ m and so
ζ(n−k− j)

T (A) = 0. Hence, ζ(n)
T+Q(A) = 0, that is T is skew (A,n)-symmetric.

(b) Since Q is l-nilpotent, Ql = 0 and Ql−1 , 0. Hence, we have

ζ(n−1)
T+Q (A) =

(
n − 1
l − 1

)(
n − l
l − 1

)
Q∗l−1ζ(m−1)

T (A)Ql−1,

and the claim follows from that.
2. Using the identity (13) and arguing as in the previous statement, we can show easily the assertion.

For more details, we also refer the readers to [19, Theorem 4.2].

Theorem 3.3. Let A ∈ B(H)+, T ∈ B(H) and Q ∈ B(H) be l-nilpotent. Then, the following statements hold true.

1. If T is skew (A,m)-symmetric, then T ⊗ IH + IH ⊗Q is a skew (A ⊗ A,m + 2l − 2)-symmetric operator.
2. If T is (A,m)-symmetric, then T ⊗ IH + IH ⊗Q is (A ⊗ A,m + 2l − 2)-symmetric.

Proof. 1. Since T is skew (A,m)-symmetric, it follows from Lemma 2.1 that T ⊗ IH is skew (A,m)-
symmetric. Moreover, IH ⊗Q ∈ B(H⊗H) is a l-nilpotent operator. Hence, applying Theorem 3.2 we
can conclude.

2. Arguing in the same way as in the previous statement, we prove the desired claim.

As a consequence of Theorem 2.11 and [10, Theorem 2.6], we have the following result.

Corollary 3.4. Let A ∈ B(H)+, T ∈ B(H) and Q ∈ B(H) be an l-nilpotent operator. Then, we have:

1. If T is skew (A,m)-symmetric, then eis(T⊗IH+IH⊗Q) is left (A ⊗ A,m + 2l − 2)-invertible.
2. If T is (A,m)-symmetric, then eis(T⊗IH+IH⊗Q) is (A ⊗ A,m + 2l − 2)-isometric.

It is known from [19, Theorem 4.4] that if T ∈ B(H) is an (A,m)-symmetric operator, then Tn (n ≥ 2)
is also (A,m)-symmetric. We will give a simple proof of such a result ([10]). For skew (A,m)-symmetric
operators, we have the following result.

Theorem 3.5. Let A ∈ B(H)+ and T ∈ B(H). Then, the following statements hold true.

1. If T is skew (A,m)-symmetric, then Tn is skew (A,m)-symmetric for n odd.
2. If T is (A,m)-symmetric, then Tn is (A,m)-symmetric for all n ∈N.
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Proof. 1. Assume that T is skew (A,m)-symmetric. For an odd integer n, the following formula holds
true {

(yn + xn)m
}

a
=

{(
(y + x)(yn−1

− yn−2x + · · · − yxn−2 + xn−1
)m}

a

=
{ m(n−1)∑

k=0

ξkym(n−1)−k(y + x)mxk
}

a

=

m(n−1)∑
k=0

ξkym(n−1)−k
{
(y + x)m

}
a
xk, (14)

where ξk are constants for k = 0, · · · ,m(n − 1). It follows from (14) that{
(yn + xn)m

}
a

(
T∗,T,A

)
=

m(n−1)∑
k=0

ξkT∗m(n−1)−k
{
(y + x)m

}
a

(
T∗,T,A

)
Tk. (15)

By (15), if
{
(y+ x)m

}
a

(
T∗,T,A

)
= 0, then

{
(yn + xn)m

}
a

(
T∗,T,A

)
= 0.Hence, Tn is skew (A,m)-symmetric.

2. Assume that T is (A,m)-symmetric. The following formula hold true{
(yn
− xn)m

}
a
=

{(
(y − x)(yn−1 + yn−2x + · · · + yxn−2 + xn−1

)m}
a

=
{ m(n−1)∑

k=0

ηkym(n−1)−k(y − x)mxk
}

a

=

m(n−1)∑
k=0

ηkym(n−1)−k
{
(y − x)m

}
a
xk, (16)

where ηk are constants for k = 0, · · · ,m(n − 1). It follows from (16) that{
(yn
− xn)m

}
a

(
T∗,T,A

)
=

m(n−1)∑
k=0

ηkT∗m(n−1)−k
{
(y − x)m

}
a

(
T∗,T,A

)
Tk. (17)

By (17), if
{
(y − x)m

}
a

(
T∗,T,A

)
= 0, then

{
(yn
− xn)m

}
a

(
T∗,T,A

)
= 0. Hence, Tn is (A,m)-symmetric.

Remark 3.6. When n is even, (1)-Theorem 3.5 is not true. Let H = C2, ∥(x, y)∥2 = |x|2 + |y|2 for all x, y ∈

C, A =
(

1 −1
−1 1

)
and T =

(
2 1
2 1

)
. Then, T is skew A-symmetric. Moreover, it is easy to verify that{

(y + x)
}

a

(
T∗2,T2,A

)
, 0, so T2 is not skew A-symmetric.

4. Skew (A,m)-symmetric tuples and spectral properties

In this section, we introduce the class of skew (A,m)-symmetric commuting tuple of bounded linear
operators. Some of their spectral properties are studied.

For m ∈N, A ∈ B(H)+ and T = (T1, · · · ,Td) ∈ B(H)d, set

Φm
A(T) :=

m∑
k=0

(−1)m−k
(
m
k

)
(T∗1 + · · · + T∗d)kA(T1 + · · · + Td)m−k, (18)

Ψm
A(T) :=

m∑
k=0

(
m
k

)
(T∗1 + · · · + T∗d)kA(T1 + · · · + Td)m−k. (19)
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Definition 4.1. Let A ∈ B(H)+ and T = (T1, · · · ,Td) ∈ B(H)d. A d-tuple of commuting operators T is said to
be skew (A,m)-symmetric tuple (resp. an (A,m)-symmetric tuple) if Ψm

A(T) = 0
(
resp. Φm

A(T) = 0
)
, equivalently

if (T1 + · · · + Td) is a skew (A,m)-symmetric bounded linear operator (resp. an (A,m)-symmetric operator), that is
ζ(m)

T1+···+Td
(A) = 0

(
resp. S(m)

T1+···+Td
(A) = 0

)
.

Remark 4.2. 1. If A = I, then T is a skew m-symmetric tuple if and only if T is a skew (A,m)-symmetric tuple.
2. If A = 0, then any commuting d-tuple of operators is skew (A,m)-symmetric.
3. Let T = (T1, · · · ,Td) ∈ B(H)d be a commuting d-tuple of operators. Then:

(a) T is a skew A-symmetric tuple if

A(T1 + · · · + Td) = −(T∗1 + · · · + T∗d)A.

(b) T is a skew (A, 2)-symmetric tuple if
0 = A(T1 + · · · + Td)2 + 2(T∗1 + · · · + T∗d)A(T1 + · · · + Td) + (T∗1 + · · · + T∗d)2A

=

d∑
i=1

(AT2
i + T∗2i A + 2T∗i ATi) + 2

( d∑
1≤i< j≤d

ATiT j + T∗i T
∗

jA
)
+ 2

∑
1≤i, j≤d

T∗i AT∗j .

Example 4.3. 1. Take A =
(

1 −1
−1 1

)
, T1 =

(
2 0
0 2

)
, T2 =

(
−2 1
0 −1

)
. Then, T = (T1,T2) is a skew

A-symmetric tuple of bounded linear operators.
2. If T is skew (A,m)-symmetric, then T = (T, · · · ,T) is a skew (A,m)-symmetric d-tuple.

Set Rn := T∗1n + · · · + T∗dn, R := T∗1 + · · · + T∗d, Sn := T1n + · · · + Tdn and S := T1 + · · · + Td.

Proposition 4.4. Let A ∈ B(H)+ and T = (T1, · · · ,Td) ∈ B(H)d. Then, the following assertions hold true.

1. N
(
S
)
⊂ N

(
AS∗m

)
.

2. If T is skew (A,m)-symmetric, then T is skew (A,n)-symmetric for all n ≥ m.
3. If S is invertible, then

(a) T is skew (A,m)-symmetric if and only if S−1 is skew (A,m)-symmetric.
(b) If S∗kASm−k = Sm−kAS∗k for k = 0, 1, · · · ,m, then T is skew (A,m)-symmetric if and only if S∗−1 is skew

(A,m)-symmetric.
4. If T is skew (A,m)-symmetric, then (T − λ) is skew (A,m)-symmetric, for λ = (λ1, · · · , λd).

Proof. 1. Since S is skew (A,m)-symmetric, we obtain for x ∈ H

S∗mAx +
m−1∑
k=0

(−1)m−k
(
m
k

)
S∗kASm−kx = 0. (20)

Let x ∈ N
(
S
)
. The identity (20) gives S∗mAx = 0, and hence x ∈ N

(
S∗mA

)
.

2. The statement follows immediately from the equality below{
(y + x)m+1

}
a
(S∗,S,A) =

{
y(y + x)m + (y + x)mx

}
a
(S∗,S,A)

=
(
y
{
(y + x)m

}
a
+

{
(y + x)m

}
a
x
)

a
(S∗,S,A)

= S∗ζ(m)
S (A) + ζ(m)

S (A)S
= S∗Ψm

A(T) +Ψm
A(T)S.

3. (a) Assume that T is skew (A,m)-symmetric. Then it follows that

0 = S∗−mΨm
A(T)S−m =

m∑
k=0

(
m
k

)
(S−1)∗(m−k)A(S−1)k,

which completes the proof.
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(b) Assume that S∗kASm−k = Sm−kAS∗k for k = 0, 1, · · · ,m. Then, we have

0 = S∗mζ(m)
(S−1)∗

(A)Sm = S∗m
( m∑

k=0

(
m
k

)
(S−1)kA(S−1)∗(m−k)

)
Sm

= S∗m
( m∑

k=0

(
m
k

)
(S−1)∗(m−k)A(S−1)k

)
Sm

= Ψm
A(T).

4. The proof follows from

{
(y + x)m

}
a

(
S∗ −

d∑
i=1

λi,S −
d∑

i=1

λi,A
)
=

{
(y + x)m

}
a

(
S∗,S,A

)
.

In the following theorem we show that the class of skew (A,m)-symmetric commuting tuples of operators
is closed in norm.

Theorem 4.5. Let
(
Tn = (T1n, · · · ,Tdn)

)
n

be a sequence of skew (A,m)-symmetric commuting tuples such that
T jn −→ T j for each j = 1, · · · , d as n −→ ∞ in the strong topology of L(H). Then, the commuting tuple T =
(T1, · · · ,Td) is skew (A,m)-symmetric.

Proof. Since Tn = (T1n, · · · ,Tdn) is skew (A,m)-symmetric, we have

∥Ψm
A(T)∥ = ∥Ψm

A(Tn) −Ψm
A(T)∥

=
∥∥∥∥ m∑

k=0

(
m
k

)
Rk

nASm−k
n −

m∑
k=0

(
m
k

)
RkASm−k

∥∥∥∥
≤

∥∥∥∥ m∑
k=0

(
m
k

)
Rk

nASm−k
n −

m∑
k=0

(
m
k

)
Rk

nASm−k
∥∥∥∥

+
∥∥∥∥ m∑

k=0

(
m
k

)
Rk

nASm−k
−

m∑
k=0

(
m
k

)
RkASm−k

∥∥∥∥
≤

∥∥∥∥ m∑
k=0

(
m
k

)
Rk

nA
(
Sm−k

n − Sm−k
)∥∥∥∥ + ∥∥∥∥ m∑

k=0

(
m
k

) (
Rk

n − Rk
)
ASm−k

∥∥∥∥ −→ 0 (as n −→ ∞).

SoΨm
A(T) = 0 and hence the commuting tuple T is skew (A,m)-symmetric.

An operator T ∈ B(H) is said to have the single valued extension property at λ (abbreviated SVEP at
λ) if for every open set D containing λ the only analytic function f : D −→ H which satisfies the equation
(T − λ) f (λ) = 0 is the constant function f ≡ 0 on D. We say T has SVEP if T has SVEP at every point λ ∈ C
([18], [24]).

Theorem 4.6. Let A ∈ B(H)+ and T = (T1, · · · ,Td) ∈ B(H)d be a commuting d-tuple. Assume that 0 < σp(A). If
S∗ has the SVEP and T is skew (A,m)-symmetric, then S has the SVEP.

Proof. Let f : D −→ H be an analytic function such that (λ− S) f (λ) = 0 for all λ ∈ D. By (4)-Proposition 4.4,
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we have
m∑

k=0

(
m
k

)
S∗kASm−k f (λ) − (S∗ − λ)mA f (λ)

=

m∑
k=0

(
m
k

)
(S∗ − λ)kA(S − λ)m−k f (λ) − (S∗ − λ)mA f (λ)

=
{ m−1∑

k=0

(
m
k

)
(S∗ − λ)kA(S − λ)m−k−1

}
(S − λ) f (λ) = 0.

Since T is skew (A,m)-symmetric, we obtain (S∗ − λ)mA f (λ) = 0. Using an induction argument, we get
A f (λ) ≡ 0. Since 0 < σp(A), it holds f (λ) ≡ 0 for all λ ∈ D. Hence, S has the single valued extension
property.

In the rest of this section, we provide spectral properties of skew (A,m)-symmetric operators. Recall
that two vectors x and y are A-orthogonal if ⟨Ax | y⟩ = 0.

For a commuting tuple T = (T1, · · · ,Td) ∈ B(H)d, we denote by σ ja(T) (resp. σ jp(T)) the joint approximate
point spectrum (resp. the joint point spectrum) of T.

Definition 4.7. Let T = (T1, · · · ,Td) ∈ B(H)d. We say that :
1. λ = (λ1, · · · , λd) ∈ σ ja(T) if there exists a sequence xn of unit vectors such that

(Ti − λi)xn −→ 0 as n −→ ∞ f or all i = 1, · · · , d.

2. λ = (λ1, · · · , λd) ∈ σ jp(T) if there exists a nonzero vector x ∈ H such that

(Ti − λi)x = 0 f or all i = 1, · · · , d.

Theorem 4.8. Let A ∈ B(H)+ and T = (T1, · · · ,Td) ∈ B(H)d be a commuting d-tuple. Assume that 0 < σap(A). If
T is skew (A,m)-symmetric, then the following statements are satisfied.

1. If λ = (λ1, · · · , λd) ∈ σ ja(T), then −
(
λ1 + · · · + λd

)
∈ σap(S∗).

2. If λ = (λ1, · · · , λd) ∈ σ jp(T), then −
(
λ1 + · · · + λd

)
∈ σp(S∗).

3. Let λ = (λ1, · · · , λd) and µ = (µ1, · · · , µd) be to two joint eigenvalues of T corresponding to the eigenvectors u

and v. If
( d∑

j=1

(λ j + µ j)
)
, 0, then u and v are A-orthogonal.

4. Let λ = (λ1, · · · , λd) and µ = (µ1, · · · , µd) be to two joint eigenvalues of T such that
( d∑

j=1

(λ j + µ j)
)
, 0. If

{un}n, {vn}n are two sequences of unit vectors such that (T j−λ j)un −→ 0 and (T j−µ j)vn −→ 0 (as n −→ +∞),
j = 1, · · · , d, then ⟨Aun | vn⟩ −→ 0 (as n −→ +∞).

Proof. 1. Assume that 0 < σap(A). Let λ = (λ1, · · · , λd) ∈ σ ja(T). Then there exists a sequence (xn)n with
∥xn∥ = 1 such that lim

n−→∞
(Ti − λi)xn = 0, i = 1 · · · , d. Since T is skew (A,m)-symmetric, we get

0 = lim
n−→∞

∥∥∥∥( m∑
k=0

(
m
k

)
S∗kASm−k

)
xn

∥∥∥∥
= lim

n−→∞

∥∥∥∥( m∑
k=0

(
m
k

)
S∗kA

(
λ1 + · · · + λd

)m−k
)
xn

∥∥∥∥
= lim

n−→∞

∥∥∥∥(S∗ + (
λ1 + · · · + λd

))m

Axn

∥∥∥∥
= lim

n−→∞

∥∥∥∥(S∗ + (
λ1 + · · · + λd

))m Axn

∥Axn∥

∥∥∥∥.
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Since
(

Axn
∥Axn∥

)
n

is a sequence of unit vectors, it holds that −
(
λ1 + · · · + λd

)
∈ σap(S∗).

2. Let λ = (λ1, · · · , λd) ∈ σ jp(T), that is
d⋂

i=1

N(Ti − λi) , {0}. Then, there exists a nonzero x ∈ H such that

(Ti − λi)x = 0, i = 1 · · · , d. Since T is skew (A,m)-symmetric, it follows
(
S∗ +

(
λ1 + · · · + λd

))m
Ax = 0. If

−

(
λ1 + · · · + λd

)
< σp(S∗), then S∗ +

(
λ1 + · · · + λd

)
is injective. Hence Ax = 0, which is a contradiction.

Hence −
(
λ1 + · · · + λd

)
∈ σp(S∗).

3. Let λ = (λ1, · · · , λd) and µ = (µ1, · · · , µd) be to two joint eigenvalues of T corresponding to the
eigenvectors u and v

(
i.e

(
T j − λ j

)
u = (T j − λ j

)
v = 0, for j = 1, · · · , d

)
. By using the statement (2), we

obtain −(λ1 + · · ·+ λd) ∈ σp(S∗) and −(µ1 + · · ·+ µd) ∈ σp(S∗). Since T is skew (A,m)-symmetric, it holds

0 =
〈( m∑

k=0

(
m
k

)
S∗kASm−k

)
u | v

〉
=

m∑
k=0

(
m
k

) 〈
ASm−ku | Skv

〉
=

m∑
k=0

(
m
k

) 〈(
λ1 + · · · + λd

)m−k
Au |

(
µ1 + · · · + µd

)k
v
〉

=
( d∑

j=1

(λ j + µ j)
)m

⟨Au | v⟩.

Since
( d∑

j=1

(λ j + µ j)
)
, 0, we get ⟨Au | v⟩ = 0.

4. By arguing in the same way as in the assertion (3), we can prove the desired claim.

Applying arguments similar to those established in proving statements (1) and (2) of Theorem 4.8, we
get the following result in which we characterize the joint approximate point spectrum and the joint point
spectrum of a commuting d-tuple of operators.

Theorem 4.9. Let A ∈ B(H)+ and T = (T1, · · · ,Td) ∈ B(H)d be a commuting d-tuple. Assume that 0 < σap(A). If
T is skew (A,m)-symmetric, then the following statements hold true.

1. σ ja(T) ⊂
{
(λ1, · · · , λd) ∈ Cd :ℜe

( d∑
k=1

λk

)
= 0

}
.

2. σ jp(R) ⊂
{
(λ1, · · · , λd) ∈ Cd :ℜe

( d∑
k=1

λk

)
= 0

}
.
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