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Abstract. In this paper, we investigate additive properties of generalized Drazin inverse for bounded
linear operators. As an application we present new conditions under which a 2 × 2 operator matrix has
g-Drazin inverse. These extend the main results of Dana and Yousefi (Int. J. Appl. Comput. Math., 4(2018),
page 9), Yang and Liu (J. Comput. Appl. Math., 235(2011), 1412–1417) and Sun et al. (Filomat, 30(2016),
3377–3388).

1. Introduction

Let X be an arbitrary complex Banach space and A denote the Banach algebra L(X) of all bounded
linear operators on X. An element a in A has g-Drazin inverse, i.e., generalized Drazin inverse, provided
that there exists b ∈ R such that

b = bab, ab = ba, a − a2b ∈ Aqnil.

Here,Aqnil = {a ∈ A | 1+λa ∈ A is invertible for every λ ∈ C}. As is well known, a ∈ Aqnil
⇔ lim

n→∞
∥ an
∥

1
n= 0.

Such b, if exists, is unique, and is called the g-Drazin inverse of a, and denote it by ad. We always use
A

d to stand for the set of all g-Drazin invertible a ∈ A. The g-Drazin inverse of operator matrix has
various applications in singular differential equations, Markov chains and iterative methods (see [1–4, 6–
8, 10, 12, 13]). The motivation of this paper is to explore wider conditions under which the sum of two
generalized Drazin invertible operators on Banach spaces has generalized Drazin inverse. As an application
we establish new conditions for the g-Drazin inverse of a 2 × 2 partitioned operator matrix.

In Section 2, we present wider conditions on generalized Drazin invertible operators a and b under
which the sum a + b has generalized Drazin inverse. These extend the main results of Dana and Yousefi [5,
Theorem 4], Yang and Liu [17, Theorem 2.1] and Sun et al. [14, Theorem 3.1]. They are also the main tool
in our following development.

In Section 3, we investigate the generalized Drazin inverse of a 2 × 2 operator matrix

M =
(

A B
C D

)
(1)
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where A ∈ L(X),B ∈ L(X,Y),C ∈ L(Y,X) and D ∈ L(Y). Here, M is a bounded linear operator on X⊕Y. This
problem is quite complicated and was expensively studied by many authors. Our results contain many
known results, e.g., [6] and [12].

If a ∈ A has g-Drazin inverse ad, the element aπ := 1 − aad
∈ A is called the spectral idempotent of

a. Finally, in Section 4, we present new conditions with the perturbation under which M has generalized
Drazin inverse. These also extend [5, Theorem 8] to the g-Drazin inverse of an operator matrix.

2. Additive results

The purpose of this section is to establish new conditions under which the sum of two g-Drazin invertible
operators has g-Drazin inverse. We begin with

Lemma 2.1. Let a, b ∈ A and ab = 0. If a, b ∈ Ad, then a + b ∈ Ad and

(a + b)d = (1 − bbd)
( ∞∑

n=0

bn(ad)n
)
ad + bd

( ∞∑
n=0

(bd)nan
)
(1 − aad).

Proof. See [8, Theorem 2.3].

Lemma 2.2. Let a, b ∈ A have g-Drazin inverses. If aba = 0 and ab2 = 0 and b3 = 0, then a + b ∈ Ad. In this case,

(a + b)d = ad + b(ad)2 + b2(ad)3 + (ad)2b + b(ad)3b + b2(ad)4b.

Proof. Let p = a2 + ab and q = ba + b2. Since (ab)2 = 0, we see that ab ∈ Ad. By Cline’s formula, ba ∈ Ad.
Clearly, (ab)a2 = (ab)b2 = 0, it follows by Lemma 2.1 that p, q ∈ Ad. Furthermore, we check that

pq = (a2 + ab)(ba + b2) = a2ba + a2b2 + ab2(a + b) = 0,

and then (a + b)2 = p + q ∈ Ad by Lemma 2.1. According to [11, Corollary 2.2], a + b ∈ Ad. The detailed
formula of the g-Drazin inverse (a + b)d can be derived by the straightforward computation according to
the preceding discussion.

In [5], Dana and Yousefi considered the Drazin inverse of P + Q under the conditions that PQP =
0,QPQ = 0,P2Q2 = 0 and PQ3 = 0 for complex matrices P and Q. We note that every complex matrix has
Drazin inverse which coincides with its g-Drazin inverse. We now extend this result to g-Drazin inverse of
bounded linear operators as follows.

Theorem 2.3. Let a, b ∈ Ad. If aba = 0, bab = 0, a2b2 = 0 and ab3 = 0, then a + b ∈ Ad and

(a + b)d = (a + b, ab + b2)Md
(

a
1

)
,Md = Fd + G(Fd)2 + G2(Fd)3 + (Fd)2G + G(Fd)3G + G2(Fd)4G,

where
Fd = (I − KKd)

[ ∞∑
n=0

Kn(Hd)n
]
Hd + Kd

[ ∞∑
n=0

(Kd)nHn
]
(I −HHd);

Hd =

(
(ad)2 0
(ad)3 0

)
,Kd =

(
0 0

(bd)3 (bd)2

)
,G3 = 0.

Proof. Set

M =
(

a3 + a2b + ab2 a3b
a2 + ab + ba + b2 a2b + ab2 + b3

)
.

Then

M =

(
a2b + ab2 a3b

0 a2b + ab2

)
+

(
a3 0

a2 + ab + ba + b2 b3

)
:= G + F.
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We see that G3 = 0,FG2 = and FGF = 0. Moreover, we have

F =

(
a3 0

a2 + ab + ba + b2 b3

)
=

(
a3 0

a2 + ba 0

)
+

(
0 0

b2 + ab b3

)
:= H + K.

One easily checks that

H =
(

a3 0
a2 + ba 0

)
=

(
a2

a + b

)
(a, 0).

Since (a, 0)
(

a2

a + b

)
= a3

∈ A
d, it follows by Cline’s formula (see [9, Theorem 2.1]), we see that

Hd =

(
a2

a + b

)
((a3)d)2(a, 0) =

(
a2

a + b

)
(ad)6(a, 0)

=

(
(ad)3 0

(ad)4 + b(ad)5 0

)
.

Likewise, We have

Kd =

(
0
b

)
(bd)4(1, b) =

(
0 0

(bd)3 (bd)2

)
.

Clearly, HK = 0. In light of Lemma 2.1,

Fd = (I − KKd)
[ ∞∑

n=0

Kn(Hd)n
]
Hd + Kd

[ ∞∑
n=0

(Kd)nHn
]
(I −HHd).

As Gd = 0, by Lemma 2.2, we have

Md = Fd + G(Fd)2 + G2(Fd)3 + (Fd)2G + G(Fd)3G + G2(Fd)4G.

Clearly, M =
( ( a

1

)
(1, b)

)3
. By using Cline’s formula,

(a + b)d =
(
(1, b)

(
a
1

) )d
= (a + b, ab + b2)Md

(
a
1

)
.

as asserted.

Corollary 2.4. Let a, b, ab ∈ Ad have g-Drazin inverses. If a2b = 0 and ab2 = 0, then a + b ∈ Ad.

Proof. Since ab ∈ Ad, we see that ba ∈ Ad by Cline’s formula. As a2(ab) = 0, it follows by Lemma 2.1 that
p := a2 + ab ∈ Ad. Likewise, q := ba + b2

∈ A
d. One easily checks that

pqp = 0, qpq = 0, p2q2 = 0 and pq3 = 0.

In light of Theorem 2.2, (a + b)2 = p + q ∈ Ad. According to [11, Corollary 2.2], a + b ∈ Ad, as asserted.

Let a, b ∈ Ad. If aba = 0, bab = 0, a2b2 = 0 and a3b = 0, then a + b ∈ Ad. This is a symmetrical result of
Theorem 2.1, and can be proved by a similar route.

In [17], Sun et al. considered the Drazin inverse of P+Q in the case of PQ2 = 0,P2QP = 0, (QP)2 = 0 for
two square matrices over a skew field. As is well known, every square matrix over skew fields has Drazin
inverse. We are now ready to extend [17, Theorem 3.1] to g-Drazin inverses of bounded linear operators
and prove:
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Theorem 2.5. Let a, b ∈ Ad. If ab2 = 0, a2ba = 0 and (ba)2 = 0, then a + b ∈ Ad and

(a + b)d = (a + b, ab + b2)Md
(

a
1

)
,Md = Fd + G(Fd)2 + G2(Fd)3 + (Fd)2G + G(Fd)3G + G2(Fd)4G,

where

Fd = (I − KKd)
[ ∞∑

n=0
Kn(Hd)n

]
Hd + Kd

[ ∞∑
n=0

(Kd)nHn
]
(I −HHd);

Hd =

(
(ad)2 0
(ad)3 0

)
,Kd =

(
0 0

(bd)3 (bd)2

)
,G4 = 0.

Proof. Set

M =
(

a3 + a2b + aba a3b + abab
a2 + ab + ba + b2 a2b + bab + b3

)
.

Then

M =

(
a2b + aba a3b + abab

0 a2b + bab

)
+

(
a3 0

a2 + ab + ba + b2 b3

)
:= G + F.

We see that G3 = 0,FGF = 0 and FG2 = 0. Moreover, we have

F =

(
a3 0

a2 + ba 0

)
+

(
0 0

b2 + ab b3

)
:= H + K.

As in the proof of Theorem 2.2, One easily checks that

Hd =

(
(ad)3 0

(ad)4 + b(ad)5 0

)
,Kd =

(
0 0

(bd)3 (bd)2

)
.

Further,

Fd = (I − KKd)
[ ∞∑

n=0

Kn(Hd)n
]
Hd + Kd

[ ∞∑
n=0

(Kd)nHn
]
(I −HHd)

In light of Lemma 2.2,

Md = Fd + G(Fd)2 + G2(Fd)3 + (Fd)2G + G(Fd)3G + G2(Fd)4G.

Obviously, M =
( ( a

1

)
(1, b)

)3
. By virtue of Cline’s formula,

(a + b)d =
(
(1, b)

(
a
1

) )d
= (a + b, ab + b2)Md

(
a
1

)
,

as desired.

Let a, b ∈ Ad. If a2b = 0, aba2 = 0 and (ba)2 = 0, then a + b ∈ Ad. This can be proved in a symmetric way
as in Theorem 2.5.
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3. Block operator matrices

To illustrate the preceding results, we are concerned with the generalized Drazin inverse for a block
operator matrix. Throughout this section, the operator matrix M is given by (1.1), i.e.,

M =
(

A B
C D

)
,

where A ∈ L(X)d,B ∈ L(X,Y),C ∈ L(Y,X) and D ∈ L(Y)d. Using different splitting approach, we shall
obtain various conditions for the g-Drazin inverse of M. In fact, the explicit g-Drazin inverse of M could be
computed by the formula in Theorem 2.5.

Theorem 3.1. If ABC = 0,DCA = 0,DCB = 0,CBCA = 0 and CBCB = 0, then M has g-Drazin inverse.

Proof. Write M = p + q, where

p =
(

A B
0 D

)
, q =

(
0 0
C 0

)
.

It is obvious by [8, Lemma 2.2] that p and q have g-Drazin inverses. Clearly, q2 = 0, and so pq2 = 0. As
ABC = 0,DCA = 0 and DCB = 0, then p2qp = 0. It follows from CBCA = 0 and CBCB = 0 that (qp)2 = 0.
Then by applying Theorem 2.5, p + q =M has g-Drazin inverse.

Corollary 3.2. ( [6, Theorem 3]) If BC = 0 and DC = 0, then M has g-Drazin inverse.

Proof. It is obvious by Theorem 3.1.

Theorem 3.3. If ABC = 0,ABD = 0,DCB = 0,BCBC = 0 and BCBD = 0, then M has g-Drazin inverse.

Proof. Write M = p + q, where

p =
(

A 0
C D

)
, q =

(
0 B
0 0

)
.

By using [8, Lemma 2.2] it is clear that p, q have g-Drazin inverses. Obviously, pq2 = 0. Also by the
assumptions ABC = 0,ABD = 0,DCB = 0 we have p2qp = 0. By using BCBC = 0 and BCBD = 0, we have
(qp)2 = 0. Then we get the result by Theorem 2.5.

Corollary 3.4. If ABC = 0,ABD = 0,BCB = 0 and DCB = 0, then M has g-Drazin inverse.

Proof. It is special case of Theorem 3.3.

If AB = 0 and CB = 0, we claim that M has g-Drazin inverse (see [6, Theorem 2]). This is a direct
consequence of Corollary 3.4.

Example 3.5. Let M =
(

A B
C D

)
, where

A =

 0 0 0
0 0 0
1 0 1

 ,B =
 1

1
−1

 ,C = (
1 0 1

)
and D = 0

are complex matrices. Then ABC = 0,ABD = 0,BCB = 0 and DCB = 0. In this case, AB,CB , 0.

Lemma 3.6. If CBCB = 0, then
(

0 B
C 0

)
has g-Drazin inverse.
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Proof. Write (
0 B
C 0

)
=

(
0 0
C 0

)
+

(
0 B
0 0

)
.

Let p =
(

0 0
C 0

)
and q =

(
0 B
0 0

)
. In view of [8, Lemma 2.2], p has g-Drazin inverse. By virtue of Lemma

3.6, q has g-Drazin inverse. It is obvious that pq2 = 0, p2qp = 0 and (qp)2 = 0. Then by Theorem 2.5, M has
g-Drazin inverse.

Lemma 3.7. If ABC = 0 and CBCB = 0, then
(

A B
C 0

)
has g-Drazin inverse.

Proof. Write (
A B
C 0

)
=

(
A 0
0 0

)
+

(
0 B
C 0

)
.

Let p =
(

A 0
0 0

)
and q =

(
0 B
C 0

)
. It is obvious that pq2 = 0, p2qp = 0 and (qp)2 = 0. Then by Theorem 2.5,

it has g-Drazin inverse.

Theorem 3.8. If ABC = 0,DCA = 0,DCB = 0 and CBCB = 0, then M has g-Drazin inverse.

Proof. Write

M =
(

0 0
0 D

)
+

(
A B
C 0

)
.

Let p =
(

0 0
0 D

)
and q =

(
A B
C 0

)
. Then p has g-Drazin inverse as p2 = 0. In light of Lemma 3.7, q has

g-Drazin inverse. Also pq2 = 0, p2qp = 0 and (qp)2 = 0. Then by Theorem 2.5, M has g-Drazin inverse.

Corollary 3.9. If ABC = 0,CBC = 0,DCA = 0 and DCB = 0, then M has g-Drazin inverse.

Proof. it is clear by Theorem 3.8

Lemma 3.10. If DCB = 0 and CBCB = 0, then
(

0 B
C D

)
has g-Drazin inverse.

Proof. Write (
0 B
C D

)
= p + q

where p =
(

0 0
0 D

)
and q =

(
0 B
C 0

)
. In view of [8, Lemma 2.2], p has g-Drazin inverse. According to

Lemma 3.6, q has g-Drazin inverse. Also pq2 = 0, p2qp = 0 and (qp)2 = 0. Then by Theorem 2.5, it has
g-Drazin inverse.

Theorem 3.11. If ABC = 0,ABD = 0,DCB = 0 and CBCB = 0, then M has g-Drazin inverse.

Proof. Write

M =
(

A 0
0 0

)
+

(
0 B
C D

)
.

Clearly, p has g-Drazin inverse. By Lemma 3.10, q has g-Drazin inverse. From ABC = 0 and ABD = 0 we
have pq2 = 0, p2qp = 0 and (qp)2 = 0. Therefore we complete the proof by Theorem 2.5.

As an immediate consequence, we derive

Corollary 3.12. If ABC = 0,ABD = 0,BCB = 0 and DCB = 0, then M has g-Drazin inverse.
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4. Multiplicative perturbation

Let M be an operator matrix M given by (1.1). It is of interest to consider the g-Drazin inverse of M under
generalized Schur condition D = CAdB (see [14]). We now investigate various perturbation conditions with
spectral idempotents under which M has g-Drazin inverse. We now extend [5, Theorem 8] to the g-Drazin
inverse of block operator matrices.

Theorem 4.1. Let A ∈ L(X)d,D ∈ L(Y)d and M be given by (1.1). If CAπAB = 0,AπA2BC = 0,AπBCA2 =
0,AπBCB = 0,ABCAd = BCAAd and D = CAdB, then M ∈ L(X ⊕ Y)d.

Proof. Clearly, we have

M =
(

A B
C CAdB

)
= P +Q,

where

P =
(

AAπ 0
0 0

)
,Q =

(
A2Ad B

C CAdB

)
.

By assumption, we verify that PQP = 0,QPQ = 0,P2Q2 = 0 and PQ3 = 0. Since AAπ ∈ L(X)qnil, we easily
see that P is quasinilpotent, and then it has g-Drazin inverse. Furthermore, we have

Q = Q1 +Q2, Q1 =

(
A2Ad AAdB
CAAd CAdB

)
, Q2 =

(
0 AπB

CAπ 0

)
and Q2Q1 = 0. Since AπBCA2 = 0,AπBCB = 0, we see that (AπBCAπ)2 = AπBCBCAπ −AπBCA2(Ad)2 = 0 and
(CAπB)2 = CAπBC(I − AAd)B = CAπBCB − CAπBCA2(Ad)2B = 0. Therefore Q4

2 = 0.Moreover, we have

Q1 =

(
AAd

CAd

) (
A AAdB

)
.

By hypothesis, we see that (
A AAdB

) ( AAd

CAd

)
= A2Ad + AAdBCAd.

Since AπBCA2 = 0, we have (I − AAd)BCA2 = 0, and so BCA2 = AAdBCA2. This implies that BCAd =
AAdBCAd, and then

A2Ad + AAdBCAd = A2Ad + BCAd.

Since D = CAdB has g-Drazin inverse, by Cline’s formula, BCAd has g-Drazin inverse. In view of [8,
Theorem 2.1], A2Ad = A(AAd) has g-Drazin inverse.

Since ABCAd = BCAAd, we check that

(A2Ad)(BCAd) = A(AAdBCAd)
= ABCAd

= BCAAd

= (BCAd)(A2Ad).

By virtue of [8, Theorem 2.1], A2Ad + BCAd has g-Drazin inverse. By using Cline’s formula again, Q1 has
g-Drazin inverse. Therefore Q has g-Drazin inverse. According to Theorem 2.2, M has g-Drazin inverse, as
asserted.

Corollary 4.2. Let A ∈ L(X)d,D ∈ L(Y)d and M be given by (1.1). If CAπAB = 0,AπA2BC = 0,AπBCA2 =
0,AπBCB = 0,A2BCA = ABCA2 and D = CAdB, then M ∈ L(X ⊕ Y)d.
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Proof. As in the proof of Theorem 4.1, BCAd = AAdBCAd. Since A2BCA = ABCA2, we have

ABCAd = A(AAdBCAd)
= Ad(A2BCA)(Ad)2

= Ad(ABCAd)(A2Ad)
= BCAd(A2Ad)
= BCAAd.

Therefore we complete the proof by Theorem 4.1.

Regarding a complex matrix as the operator matrix on C× · · · ×C, we now present a numerical example
to demonstrate Theorem 4.1.

Example 4.3. Let

A =


1 0 0 0
0 0 0 0
0 0 0 0
0 1 1 0

 ,B =


1 0
1 −1
−1 1
1 −1

 ,
C =

(
1 1 1 1
1 −1 −1 1

)
D =

(
1 0
1 0

)
be complex matrices and set

M =
(

A B
C D

)
.

Then

Ad =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,Aπ =


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .
We easily check that

CAπAB = 0,AπA2BC = 0,AπBCA2 = 0,
AπBCB = 0,ABCAd = BCAAd,D = CAdB.

In this case, A,D and M have Drazin inverses, and so they have g-Drazin inverses.

By the other splitting approach, we derive

Theorem 4.4. Let A ∈ L(X)d,D ∈ L(Y)d and M be given by (1.1). If AπA2BC = 0,AπBCBC = 0,AπCABC =
0,ABCAd = BCAAd and D = CAdB, then M ∈ L(X ⊕ Y)d.

Proof. We easily see that

M =
(

A B
C CAdB

)
= P +Q,

where

P =
(

A AAdB
C CAdB

)
,Q =

(
0 AπB
0 0

)
.

Then we check that P2QP = 0, (QP)2 = 0,Q2 = 0. Clearly, Q has g-Drazin inverse. Moreover, we have

P = P1 + P2, P1 =

(
A2Ad AAdB
CAAd CAdB

)
, P2 =

(
AAπ 0
CAπ 0

)
,
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P2P1 = 0 and P2 is quasinilpotent. Since Ad = A(Ad)2, we have

P1 =

(
AAd

CAd

) (
A AAdB

)
.

By hypothesis, we see that (
A AAdB

) ( AAd

CAd

)
= A2Ad + AAdBCAd.

As in the proof of Theorem 4.1, we easily check that A2Ad + AAdBCAd has g-Drazin inverse. Therefore P1
has g-Drazin inverse. By Lemma 2.1, P has g-Drazin inverse. According to Theorem 2.5, M has g-Drazin
inverse.

Corollary 4.5. Let A ∈ L(X)d,D ∈ L(Y)d and M be given by (1.1). If AπA2BC = 0,AπBCBC = 0,AπCABC =
0,A2BCA = ABCA2 and D = CAdB, then M ∈ L(X ⊕ Y)d.

Proof. As in the proof of Corollary 4.2, we prove that ABCAd = BCAAd. This completes the proof by
Theorem 4.4.

Corollary 4.6. Let A ∈ L(X)d,D ∈ L(Y)d and M be given by (1.1). If AπBC = 0,A2BCA = ABCA2 and D = CAdB,
then M ∈ L(X ⊕ Y)d.

Proof. This is obvious by Corollary 4.5.
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