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Abstract. In this paper, we consider a linear operator of the Korteweg-de Vries type

Lu =
∂u
∂y
+ R2(y)

∂3u
∂x3 + R1(y)

∂u
∂x
+ R0(y)u

initially defined on C∞0,π(Ω), where Ω = {(x, y) : −π ≤ x ≤ π,−∞ < y < ∞}. C∞0,π(Ω) is a set of infinitely
differentiable compactly supported function with respect to a variable y and satisfying the conditions:

u(i)
x (−π, y) = u(i)

x (π, y), i = 0, 1, 2.

With respect to the coefficients of the operator L , we assume that these are continuous functions in
R(−∞,+∞) and strongly growing functions at infinity.

In this paper, we proved that there exists a bounded inverse operator and found a condition that
ensures the compactness of the resolvent under some restrictions on the coefficients in addition to the
above conditions. Also, two-sided estimates of singular numbers (s-numbers) are obtained and an example
is given of how these estimates allow finding estimates of the eigenvalues of the considered operator.

1. Introduction. Formulation of results. Examples

The solvability of boundary value problems for differential equations of odd order and, in particular,
for the Korteweg-de Vries equation is devoted to a significant literature [1-9] and the papers cited there.

In this paper, in contrast to those interesting papers, we consider the existence, compactness and
estimates of the eigenvalues and s-numbers of the resolvent of a class of the Korteweg-de Vries type linear
singular operators in the case of an unbounded domain with strongly increasing coefficients.

In the paper, we consider the differential operator

Lu + µu =
∂u
∂y
+ R2(y)

∂3u
∂x3 + R1(y)

∂u
∂x
+ R0(y)u + µu (1)
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initially defined on C∞0,π(Ω), where Ω = {(x, y) : −π ≤ x ≤ π,−∞ < y < ∞}, µ ≥ 0. C∞0,π(Ω) is the set of
infinitely differentiable and compactly supported functions with respect to the variable y and satisfying the
conditions:

u(i)
x (−π, y) = u(i)

x (π, y), i = 0, 1, 2. (2)

Further assume that the coefficients R0(y),R1(y),R2(y) satisfy the following conditions:
i) R0(y) ≥ δ0 > 0, R1(y) ≥ δ1 > 0, −R2(y) ≥ δ2 > 0 are continuous functions in R = (−∞,+∞);
ii) µ0 = sup

|y−t|≤1

R0(y)
R0(t) < ∞, µ1 = sup

|y−t|≤1

R1(y)
R1(t) < ∞, µ2 = sup

|y−t|≤1

R2(y)
R2(t) < ∞.

The operator L + µI admits closure in the space L2(Ω), which is also denoted by L + µI.
The indicated operator generates the so-called periodic problem without initial conditions. As you

know, if the boundary regime operates sufficiently long, then due to the friction inherent in any real
physical system, the influence of the initial data weakens over time. Thus, we arrive at a problem without
initial conditions [10].

Theorem 1.1. Let the condition i) be fulfilled. Then the operator L+µI is continuously invertible in the space L2(Ω)
for µ ≥ 0 and the equality

u(x, y) = (L + µI)−1 f =
∞∑

n=−∞

(ln + µI)−1 fn(y)einx, (3)

holds, where f (x, y) ∈ L2(Ω), f (x, y) =
∞∑

n=−∞
fn(y) · einx, fn(y) =< f (x, y), einx >, i2 = −1, < ·, · > is a scalar

product and
(ln + µI)z = z′(y) + (−in3R2(y) + inR1(y) + R0(y) + µ)z, z ∈ D(ln)

Defination 1.1 We say the operator L is separable in space L2(Ω) if the estimate∥∥∥∥∥∂u∂y

∥∥∥∥∥
2
+

∥∥∥∥∥∥R2(y)
∂3u
∂x3

∥∥∥∥∥∥
2

+

∥∥∥∥∥R1(y)
∂u
∂x

∥∥∥∥∥
2
+
∥∥∥R0(y)u

∥∥∥
2
≤ C(∥Lu∥2 + ∥u∥2),

holds for u ∈ D(L), where C is independent of u(x, y), and ∥ · ∥2 is the norm of L2(Ω).

Theorem 1.2. Let the conditions i) - ii) be fulfilled. Then the operator L is separable.

Example 1. Let R0(y) = |y| + 1, R1(y) = e|y|, R2(y) = −10 · e|y|, −∞ < y < ∞. It is easy to verify that all the
conditions of Theorem 1.2 are satisfied. Consequently, the operator L is separable, i.e.∥∥∥∥∥∂u∂y

∥∥∥∥∥
2
+

∥∥∥∥∥∥−10 · e|y|
∂3u
∂x3

∥∥∥∥∥∥
2

+

∥∥∥∥∥e|y| ∂u∂x
∥∥∥∥∥

2
+
∥∥∥(|y| + 1)u

∥∥∥
2
≤ C(∥Lu∥2 + ∥u∥2),

where C is a constant.

Theorem 1.3. Let the conditions i)- ii) be fulfilled. Then the resolvent of the operator L+λI, λ ≥ 0 is compact if and
only if

lim
|y|→∞

R0(y) = ∞. (∗)

Definition [11]. Let A be a linear completely continuous operator and let |A| =
√

A ∗ A. The eigenvalues of
|A| are called the s-numbers of the operator A.

The non-zero s-numbers of the operator (L+µI)−1 be numbered according to decreasing magnitude and
observing their multiplicities and so

Sk((L + µI)−1) = λk(|(L + µI)−1
|), k = 1, 2, ...

We introduce the counting function N(λ) =
∑

Sk>λ
1, of those Sk greater than λ > 0.
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Theorem 1.4. Let the conditions i) - ii) be fulfilled. Then the estimates

c−1
∞∑

n=−∞

λ−1mes(y ∈ R : Qn(y) ≤ c−1λ−1) ≤ N(λ) ≤ c
∞∑

n=−∞

λ−1mes(y ∈ R : Qn(y) ≤ c−1λ−1)

hold, where Qn(y) = | − in3R2(y) + inR1(y) + R0(y)| and c > 0 is a constant not depending on Qn(y) and λ.

Example 2. In this example we will show how Theorem 1.4 allows to obtain estimates of the eigenvalues
for the operator (L + µI)−1.

Consider the operator:

(L + µI)u =
∂u
∂y
+ (−|y| + 1)

∂3u
∂x3 + (|y| + 1)

∂u
∂x
+ (|y| + 1)u + µu (4)

u ∈ D(L), µ ≥ 0. From equality (3) it follows that if s is a singular point of the operator (L + µI)−1, then
s is a singular number of one of the operators (ln + µI)−1 (n = 0,±1,±2, ...) , and vice versa. Therefore,
taking this into account, further, we denote by Sk,n(k = 1, 2, ...) the singular values of the operator (ln + µI)−1

(n = 0,±1,±2, ...) for µ ≥ 0. According to Theorem 1.4, we have

c−1

(|n| + 1)3/2k1/2
≤ Sk,n ≤

c
(|n| + 1)3/2k1/2

, k = 1, 2, ..., n = 0,±1,±2, ... (5)

Now, suppose that the operator (ln +µI)−1 has an infinite number of eigenvalues, then from estimate (5)
and Weyl’s inequality [11], we obtained that

|λk,n|
k
≤

k∏
j=1

|λ j,n| ≤

k∏
j=1

S j,n ≤ ck(k!)−
1
2 ·

1

(|n| + 1)
3
2

Further, using the inequality ek
· k! ≥ kk (k = 1, 2, ...), we obtain the estimate of the eigenvalues:

|λk,n| ≤
c · e

1
2 k−

1
2

(|n| + 1)
3
2

, k = 1, 2, ...

2. The existence of the resolvent. Proof of Theorem 1.1

Lemma 2.1. Let the condition i) be fulfilled and µ ≥ 0. Then the inequality∥∥∥(L + µI)u
∥∥∥

L2(Ω)
≥ (δ0 + µ) ∥u∥L2(Ω) ,

holds for all u ∈ D(L), where δ0 > 0.

Proof. Compose the scalar product < (L + λI)u,u >, u ∈ C∞0,π(Ω). Integrating by parts and taking into
account that terms outside the integral vanish by virtue of u ∈ C∞0,π(Ω), we obtain∥∥∥(L + µI)u

∥∥∥
L2(Ω)

≥ (δ0 + µ) ∥u∥L2(Ω) .

Since the norm is continuous, the last estimate holds for all u ∈ D(L) . Lemma 2.1 is proved.
It is easy to verify by direct computations that the operator (1) in L2(Ω) can be reduced using the Fourier

method to the study of the following operator

(ln + µI)z = z′(y) + (−in3R2(y) + inR1(y) + R0(y) + µ)z(y), (6)
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z ∈ D(ln), n = 0,±1,±2, ....
Here we present a number of statements that reduce the existence and compactness of the resolvent

of the operator ln with strongly increasing coefficients to the case of an operator with periodic bounded
coefficients.

Consider the operator

(ln, j + µI)z = z′(y) + (−in3R2, j(y) + inR1, j(y) + R0, j(y) + µ)z(y),

where R2, j(y), R1, j(y), R0, j(y) are bounded periodic functions of the same period, obtained by the continu-
ation of R2(y), R1(y), R0(y), from ∆ j = ( j − 1, j + 1), j ∈ Z to all R = (−∞,∞).

The operator ln, j + µI admits closure in L2(Ω) , which is also denote by ln, j + µI.

Lemma 2.2. Let the condition i) be fulfilled. Then the estimate∥∥∥(ln, j + µI)z
∥∥∥

2
≥ (δ0 + µ) ∥z∥2

holds for all z(y) ∈ D(ln, j + µI), where ∥ · ∥2 is the norm of L2(R).

Proof. Let z(y) ∈ C∞0 (R), z(y) = u(y) + iϑ(y). Then the equality

< (ln, j + µI)z, z >= i(2
∫
∞

−∞

uϑ′dy +
∫
∞

−∞

(−n3R2, j(y) + nR1, j(y))|z|2dy) +
∫
∞

−∞

(R0, j(y) + µ)|z|2dy

holds. Hence, using the properties of complex numbers and taking into account that R0, j(y) does not change
sign, we obtain

| < (ln, j + µI)z, z > | ≥
∫
∞

−∞

|R0, j(y) + µ| |z|2dy.

Hence, using the continuity of the scalar product for all z(y) ∈ D(ln, j + µI) , we have∥∥∥(ln, j + µI)z
∥∥∥

2
≥ (δ0 + µ) ∥z∥2 .

Lemma is proved.

Lemma 2.3. Let the condition i) be fulfilled.Then the operator (ln, j+µI) has a continuous inverse operator (ln, j+µI)−1

defined on the whole L2(R).

Proof. Lemma 2.3 is proved in the same way as Lemma 2.2 of [12].
Let {φ j}

∞

j=−∞ ∈ C∞0 (R) be a set of functions such that φ j(y) ≥ 0, sup pφ j ⊆ ∆ j( j ∈ Z), ∆ j = ( j − 1, j + 1),
∞∑

j=−∞
φ2

j (y) = 1.

Here we note immediately that any point y ∈ R can belong to no more than three segments from the
system of segments {suppφ j}[13,14].

Assume

Kµ f =
∞∑

j=−∞

φ j(y)(ln, j + µI)−1φ j f ,

Bµ f =
∞∑

j=−∞

φ′j(y)(ln, j + µI)−1φ j f , f ∈ C∞0 (R), µ ≥ 0.

It is easy to verify that
(ln + µI)Kµ f = f +

∑
j

φ′j(y)(ln, j + µI)−1φ j f , (7)

where (ln + µI)z = −z′(y) + (−in3R2(y) + inR1(y) + R0(y) + µ)z, z ∈ D(ln).
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Lemma 2.4. Let the condition i) be fulfilled. Then there is a number µ0 > 0 such that
∥∥∥Bµ∥∥∥2→2

< 1 for all µ ≥ µ0.

Proof. Repeating the computations and arguments used in the proof of Lemma 3.2 of [12], we obtain the
proof of Lemma 2.4.

Lemma 2.5. Let the condition i) be fulfilled. Then the estimate∥∥∥(ln + µI)z
∥∥∥

2
≥ (δ0 + µ) ∥z∥2 .

holds for all z ∈ D(ln).

Lemma 2.5 is proved in exactly the same way as Lemma 2.2.

Lemma 2.6. Let the condition i) be fulfilled. Then the operator ln + µI for µ ≥ µ0 is boundedly invertible and the
equality

(ln + µI)−1 = Kµ(I − Bµ)−1. (8)

holds. Here µ0 is the number in Lemma 2.4.

The proof of Lemma 2.6 follows from the representation (7) and Lemmas 2.4 and 2.5.

Lemma 2.7. [15]. Let the operator L + µ0I, (µ0 > 0) is boundedly invertible in L2(Ω) and the estimate∥∥∥(L + µI)u
∥∥∥

L2(Ω)
≥ c ∥u∥L2(Ω), u ∈ D(L + µI) holds for µ ∈ [0, µ0]. Then the operator L : L2(Ω) → L2(Ω) is

also boundedly invertible.

Proof of Theorem 1.1. Lemma 2.6 implies that

uk(x, y) =
k∑

n=−k

(ln + µI)−1 fn(y)einx (9)

is the solution of the problem
(L + µI)uk(x, y) = fk(x, y),

u(i)
k (−π, y) = u(i)

k (π, y), i = 0, 1, 2,

where fk(x, y)
L2
→ f (x, y), fk(x, y) =

k∑
n=−k

fn(y) · einx, i2 = −1, (ln + µI)−1 is the inverse operator to the operator

ln + µI. Using Lemma 2.1, we obtain

∥uk − um∥L2(Ω) ≤
1

δ0 + µ

∥∥∥ fk − fm
∥∥∥

L2(Ω
→ 0, as k,m→∞.

Hence, by the completeness of the space L2(Ω), it follows that there exist a unique function u ∈ L2(Ω)
such that

uk(x, y)
L2
→um(x, y), as k,m→∞ (10)

It follows from (9) and (10) that

u(x, y) = (L + µI)−1 f (x, y) =
∞∑

n=−∞

(ln + µI)−1 fn(y) · einx (11)

is a strong solution for the problem
(L + µI)u = f (12)

u(i)
x (−π, y) = u(i)

x (π, y), i = 0, 1, 2. (13)

for any f ∈ L2(Ω).
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Let us recall the definition of a strong solution. The function u ∈ L2(Ω) is called a strong solution of the
problem (12)-(13) if there exists a sequence {uk}

∞

k=1 ⊂ C∞0,π(Ω) such that

∥uk − u∥2 → 0,
∥∥∥(L + µI)uk − f

∥∥∥
2
→ 0, as k→∞.

Hence, it is easy to verify that formula (11) is the inverse operator to the closed operator L + µI.
Now it follows from Lemmas 2.1, 2.7 and equality (11) that Theorem 1.1 is holds for all µ ≥ 0. Theorem

1.1 is completely proved.

3. Proof of Theorem 1.2.

In order to prove separability (maximal regularity of solutions), we first give a series of lemmas that
reduce the question of separability of an operator with unbounded coefficients to the case of an operator
with periodic bounded coefficients.

Lemma 3.1. Let z(y) ∈ D(ln, j + µI) and z(y) = u(y) + iϑ(y), then in3R2(y)z(y) ∈ L2(R) if and only if
n3R2(y)u(y) ∈ L2(R) and n3R2(y)ϑ(y) ∈ L2(R).

Proof. The proof follows from the property of complex numbers. Let in3R2(y)z(y) ∈ L2(R). Then∥∥∥in3R2(y)z(y)
∥∥∥2

2
=
∥∥∥n3R2(y)u

∥∥∥2
2
+
∥∥∥n3R2(y)ϑ

∥∥∥2
2

Remark. This Lemma is also holds for inR1(y)z(y).
By virtue of Lemma 3.1 we consider the operator

(ln, j + µI)u = u′(y) + (−in3R2, j(y) + inR1, j(y) + R0, j(y) + µ)u,

in the set of infinitely differentiable, compactly supported and real-valued functions and the set is also
denoted by C∞0 (R), where R0, j(y), R1, j(y), R2, j(y) are bounded periodic coefficients of the same period
∆ j = ( j − 1, j + 1), j = ±0,±1,±2....

Lemma 3.2. Let the condition i) be fulfilled. Then the estimates:∥∥∥(ln, j + µI)u(y)
∥∥∥

2
≥ R0(y j) ∥u∥2 , n = 0,±1,±2..., where R0(y j) = min

y∈∆ j

R0, j(y);

∥∥∥(ln, j + µI)u(y)
∥∥∥

2
≥ |n|R1(y j) ∥u∥2 , n = ±1,±2..., where R1(y j) = min

y∈∆ j

R1, j(y);∥∥∥(ln, j + µI)u(y)
∥∥∥

2
≥ |n|3R2(y j) ∥u∥2 n = ±1,±2..., where R2(y j) = min

y∈∆ j

|R2, j(y)|,

hold for all u(y) ∈ D(ln, j + µI).

Proof. Taking the fulfillment of the equality
∫
∞

−∞
u′(y)u(y)dy = 0 for all u(y) ∈ C∞0 (R) into account, we find

that

| < (ln, j + µI)u,u > | = |
∫
∞

−∞

(−in3R2, j(y) + inR1, j(y) + R0, j(y) + µ)|u|2dy|,

Hence, using the Cauchy inequality, we have∥∥∥ln, j + µI)u(y)
∥∥∥

2
≥ R0(y j) ∥u∥2 , n = 0,±1,±2...;∥∥∥(ln, j + µI)u(y)

∥∥∥
2
≥ |n|R1(y j) ∥u∥2 , n = ±1,±2...;∥∥∥(ln, j + µI)u(y)

∥∥∥
2
≥ |n|3R2(y j) ∥u∥2 n = ±1,±2....

Here we take into account that the coefficients R0(y), R1(y), R2(y) do not change sign for y ∈ R. Lemma 3.2.
is proved.
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Lemma 3.3. Let the condition i) be fulfilled and µ ≥ µ0, α = 0, 1, 2, 3, p(y) be a continuous function defined on R.
Then the estimate ∥∥∥p(y)|n|α(ln + µI)−1

∥∥∥2
L2(R)→L2(R)

≤ c(µ) sup
j∈Z

∥∥∥p(y)|n|αφ j(ln, j + µI)−1
∥∥∥2

L2(∆ j)→L2(∆ j)
. (14)

holds.

Proof. Let f ∈ C∞0 (R). From the representation (8), taking the properties of the functions φ j ( j ∈ Z) into
account, we have:

∥∥∥p(y)|n|α(ln + µI)−1 f
∥∥∥

L2(R)
≤

∞∑
j=−∞

∫
∞

−∞

|

j+1∑
k= j−1

p(y)|n|αφk(ln,k + µI)−1φk(I − Bµ)−1 f |2dy.

Hence, applying the inequality (a + b + c)2
≤ 3(a2 + b2 + c2) once again and using Lemma 2.6, we obtain

the estimate (14). Lemma 3.3 is proved.

Lemma 3.4. Let the conditions i)-ii) be fulfilled. Then the following estimates:∥∥∥R0(y)(ln + µI)−1
∥∥∥

L2(R)→L2(R)
≤ C < ∞; n = 0,±1,±2...;∥∥∥R1(y)|n|(ln + µI)−1

∥∥∥
L2(R)→L2(R)

≤ C1 < ∞; n = ±1,±2...;∥∥∥R2(y)|n|3(ln + µI)−1
∥∥∥

L2(R)→L2(R)
≤ C2 < ∞; n = ±1,±2...;

hold, where C0, C1, C2 are independent of n (n = 0,±1,±2...).

The proof of Lemma 3.4 follows from Lemmas 3.2 and 3.3.
Proof of Theorem 1.2 Using the representation (11), we find that

∥∥∥R0(y)(L + µI)−1 f
∥∥∥2

L2(Ω)
=

∥∥∥∥∥∥∥
∞∑

n=−∞

R0(y)(ln + µI)−1 fn(y) · einx

∥∥∥∥∥∥∥
2

L2(Ω)

≤ 2π
∞∑

n=−∞

∥∥∥R0(y)(ln + µI)−1 fn(y)
∥∥∥2

L2(Ω)
≤

≤ 2π
∞∑

n=−∞

∥∥∥R0(y)(ln + µI)−1
∥∥∥2

L2(Ω)→L2(Ω)
·

∥∥∥ fn(y)
∥∥∥2

L2(Ω)
.

Using the last inequality and Lemma 3.4, we obtain

∥∥∥R0(y)u(x, y)
∥∥∥2

L2(Ω)
=
∥∥∥R0(y)(L + µI)−1 f

∥∥∥2
L2(Ω)

≤ 2π · C2
∞∑

n=−∞

∥∥∥ fn(y)
∥∥∥2

L2(Ω)
≤ C
∥∥∥ f
∥∥∥2

L2(Ω)
.

From here we finally have ∥∥∥R0(y)u(x, y)
∥∥∥2

L2(Ω)
≤ C
∥∥∥(L + µI)u

∥∥∥2
L2(Ω)
, (15)

where (L + µI)u = f (x, y).
Similarly, using Lemma 3.4, we have∥∥∥∥∥R1(y)

∂u
∂x

∥∥∥∥∥2
L2(Ω)

≤ C1

∥∥∥(L + µI)u
∥∥∥2

L2(Ω)
; (16)

∥∥∥∥∥∥R2(y)
∂3u
∂x3

∥∥∥∥∥∥2
L2(Ω)

≤ C2

∥∥∥(L + µI)u
∥∥∥2

L2(Ω)
. (17)
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It is easy to verify that∥∥∥∥∥∂u∂y

∥∥∥∥∥
L2(Ω)

=

∥∥∥∥∥∥(L + µI)u − R2(y)
∂3u
∂x3 − R1(y)

∂u
∂x
− R0(y)u − µu

∥∥∥∥∥∥
L2(Ω)

.

Hence, from inequalities (15)-(17) we obtain∥∥∥∥∥∂u∂y

∥∥∥∥∥
L2(Ω)

≤ C3

∥∥∥(L + µI)u
∥∥∥

L2(Ω)
, (18)

where C3 > 0 is a constant number.
The inequalities (15)-(18) prove Theorem 1.2.

4. Proof of Theorem 1.3. Compactness of the resolvent

Lemma 4.1. Let conditions i)-ii) be fulfilled. Then the resolvent of ln(n = 0,±1,±2, ...) is compact if and only if

lim
|y|→∞

R0(y) = ∞.

Lemmas 2.5 and 2.6 imply that the resolvent of the operator (ln + µI)u exists for all µ ≥ 0. Therefore, it
suffices to prove the compactness of the inverse operator l−1

n .
To prove Lemma 4.1, first consider the case n = 0. In this case, the operator l0 will take the form:

l0z(y) = z′(y) + R0(y)z(y), z(y) ∈ D(ln).

It follows from Lemma 3.4 that the domain of the operator coincides with the space W1
2,R0(y)(R). W1

2,R0(y)(R)
is the Sobolev space with weight obtained by completing C∞0 (R) with respect to the norm:

∥u∥W1
2,R0(y)(R) = (

∫
R

|z′(y)|2 + R2
0(y)|z(y)|2dy)

1
2 .

It is easy to note that the range of the operator l−1
0 coincides with the space W1

2,R0(y)(R). Therefore, it remains
to prove the compactness of the embedding of the space W1

2,R0(y)(R) into the space L2(R).

The space W1
2,R0(y)(R) is compactly embedded in L2(R) according to the result of [16] (Theorem 6.1) if and

only if
R∗0(y)→∞, as y→∞, (19)

where R∗0(y) is a special averaging of functions R0(y), where

R∗0(y) = inf{d−1 : d−1
≥

∫ y+ d
2

y− d
2

R2
0(t)dt}.

To complete the proof of Lemma 4.1, we need the following lemma.

Lemma 4.2. Let conditions i)-ii) be fulfilled. Then

c−1R0(y) ≤ R∗0(y) ≤ cR0(y), f or all y ∈ R, (20)

where c > 0 is a constant.
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Lemma 4.2 is proved in the same way as Lemma 12 of [17] and Lemma 2.7 of [18].
From (19) and (20) the proof of Lemma 4.1 follows for the case n = 0.
Now it remains to prove Lemma 4.1 for the case n , 0. Note that according to Lemma 3.4 for µ ≥ 0

lim
|n|→∞

∥∥∥(ln + µI)−1
∥∥∥

L2(R)→L2(R)
= 0,

where (ln + µI)z = z′(y) + (−in3R2(y) + inR1(y) + R0(y) + µ)z(y), z(y) ∈ D(ln).
Hence it follows that it is sufficient to prove the compactness of the operator l−1

n for any finite n , 0.
Taking this into account, to complete the proof of Lemma 4.1 for the case n , 0, we repeat all computations

and arguments used in [12] to the proof of Theorems 1.2–1.3.
Proof of Theorem 1.3. Theorem 1.1 and equality (11) imply that the resolvent of the operator (L + µI) has
the form:

u(x, y) = (L + µI)−1 f =
∞∑

n=−∞

(ln + µI)−1 fn(y) · einx, (21)

where f (x, y) ∈ L2(Ω), f (x, y) =
∞∑

n=−∞
fn(y) · einx.

According to Lemma 3.4
lim
|n|→∞

∥∥∥(ln + µI)−1
∥∥∥ = 0.

It follows from this and from (21) that the operator (L + µI)−1 is completely continuous if and only if
(ln + µI)−1 is completely continuous. Now Theorem 1.3 being proved follows from Lemma 4.1. Theorem
1.3 is proved.

5. Estimates of singular numbers (s-numbers). The proof of Theorem 1.4

To prove Theorem 1.4, we need the following lemmas below. We introduce the following sets:

M = {u ∈ L2(R) : ∥lnu∥22 + ∥u∥
2
2 ≤ 1},

where ∥·∥ norm in L2(R).

M̃C0 = {u ∈ L2(R) : ∥u′∥22 +
∥∥∥−in3R2(y)u

∥∥∥2
2
+
∥∥∥inR1(y)u

∥∥∥2
2
+
∥∥∥R0(y)u

∥∥∥2
2
≤ C0};

M̃C−1
0
= {u ∈ L2(R) : ∥u′∥22 +

∥∥∥−in3R2(y)u
∥∥∥2

2
+
∥∥∥inR1(y)u

∥∥∥2
2
+
∥∥∥R0(y)u

∥∥∥2
2
≤ C−1

0 },

where C0 > 0 is a constant independent of u(y) and n.

Lemma 5.1. Let the conditions i)-ii) be fulfilled. Then the inclusions are valid

M̃C−1
0
⊆M ⊆ M̃C

where C0 > 0,C > 0 are constant numbers independent of u(y) and n(n = 0,±1,±2, ...).

Proof. Let u ∈ M̃C−1
0

. Then we have

∥lnu∥22 + ∥u∥
2
2 ≤ ∥u

′
∥

2
2 +
∥∥∥−in3R2(y)u

∥∥∥2
2
+
∥∥∥inR1(y)u

∥∥∥2
2
+
∥∥∥R0(y)u

∥∥∥2
2
+ ∥u∥22 . (22)

By virtue of condition i), we find:∥∥∥R0(y)u
∥∥∥2

2
+ ∥u∥22 ≤

∥∥∥R0(y)u
∥∥∥2

2
+

1
δ

∥∥∥R0(y)u
∥∥∥2

2
≤ (1 +

1
δ2 )
∥∥∥R0(y)u

∥∥∥2
2
. (23)
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Using (23), we obtain from inequality (22)

∥lnu∥22 + ∥u∥
2
2 ≤ ∥u

′
∥

2
2 +
∥∥∥−in3R2(y)u

∥∥∥2
2
+
∥∥∥inR1(y)u

∥∥∥2
2
+
∥∥∥R0(y)u

∥∥∥2
2
+ ∥u∥22 ≤

≤ ∥u′∥22 +
∥∥∥−in3R2(y)u

∥∥∥2
2
+
∥∥∥inR1(y)u

∥∥∥2
2
+ (1 +

1
δ2 )
∥∥∥R0(y)u

∥∥∥2
2
≤

≤ C0(∥u′∥22 +
∥∥∥−in3R2(y)u

∥∥∥2
2
+
∥∥∥inR1(y)u

∥∥∥2
2
+
∥∥∥R0(y)u

∥∥∥2
2
),

where C0 = max{1, 1 + 1
δ2 }.

Since u ∈ M̃C−1
0

, the last inequality implies that

∥lnu∥22 + ∥u∥
2
2 ≤ C0 · C−1

0 ≤ 1. (24)

The inequality (24) implies that u ∈M, i.e. M̃C−1
0
⊂M. The left inclusion is proved.

Now, let us prove the right inclusion. Let u ∈ M. This means that u ∈ D(ln + µI). Therefore, by Lemma
3.4, we have: ∥∥∥R0(y)u

∥∥∥2
2
=
∥∥∥R0(y)(ln + µI)−1(ln + µI)u

∥∥∥2
2
≤ C2

∥∥∥(ln + µI)u
∥∥∥2

2
.

Hence, we get that ∥∥∥R0(y)u
∥∥∥2

2
≤ C2

∥∥∥(ln + µI)u
∥∥∥2

2
(25)

Similarly, repeating the above computations, we get∥∥∥inR1(y)u
∥∥∥2

2
≤ C2

1

∥∥∥(ln + µI)u
∥∥∥2

2
(26)∥∥∥−in3R2(y)u

∥∥∥2
2
≤ C2

2

∥∥∥(ln + µI)u
∥∥∥2

2
(27)

where C, C1 and C2 from Lemma 3.4.
Now compute the norm ∥u′∥:

∥u′∥2 =
∥∥∥(ln + µI)u − (−in3R2(y) + inR1(y) + R0(y) + µ)u

∥∥∥
2
≤

∥∥∥(ln + µI)u
∥∥∥

2
+

+C2

∥∥∥(ln + µI)u
∥∥∥

2
+ C1

∥∥∥(ln + µI)u
∥∥∥

2
+ C
∥∥∥(ln + µI)u

∥∥∥
2
+
∥∥∥(ln + µI)u

∥∥∥
2
≤ C3

∥∥∥(ln + µI)u
∥∥∥

2
.

Hence, we have
∥u′∥2 ≤ C3

∥∥∥(ln + µI)u
∥∥∥

2
, (28)

where C3 = max{1,C2,C1,C}.
In order to estimate the norm

∥∥∥µu
∥∥∥

2
, we used Lemma 2.5 here, i.e. the inequality∥∥∥µu

∥∥∥
2
≤

∥∥∥(ln + µI)u
∥∥∥

2
.

From inequalities (25) – (28) we find

∥u′∥22 +
∥∥∥−in3R2(y)u

∥∥∥2
2
+
∥∥∥inR1(y)u

∥∥∥2
2
+
∥∥∥R0(y)u

∥∥∥2
2
≤ C2

4

∥∥∥(ln + µ)u
∥∥∥2

2
, (29)

where C4 = max{C,C1,C2,C3}.
From inequality (29) we find

∥u′∥22 +
∥∥∥−in3R2(y)u

∥∥∥2
2
+
∥∥∥inR1(y)u

∥∥∥2
2
+
∥∥∥R0(y)u

∥∥∥2
2
≤ C2

4

∥∥∥(ln + µ)u
∥∥∥2

2
≤

≤ 2 · C2
4 ∥lnu∥22 + 2 · C2

4 · µ
2
∥u∥22 .



M.B. Muratbekov, A.O. Suleimbekova / Filomat 36:11 (2022), 3689–3700 3699

Hence, we obtain

∥u′∥22 +
∥∥∥−in3R2(y)u

∥∥∥2
2
+
∥∥∥inR1(y)u

∥∥∥2
2
+
∥∥∥R0(y)u

∥∥∥2
2
≤ C0(∥lnu∥22 + ∥u∥

2
2),

where C0 = max{2 · C2
4, 2 · µ · C

2
4}.

Since u ∈M, the last inequality implies that

∥u′∥22 +
∥∥∥−in3R2(y)u

∥∥∥2
2
+
∥∥∥inR1(y)u

∥∥∥2
2
+
∥∥∥R0(y)u

∥∥∥2
2
≤ C0(∥lnu∥22 + ∥u∥

2
2) ≤ C0.

This implies that u ∈ M̃C0 , i.e. M ⊆ M̃C0 . Lemma 5.1 is completely proved.
Definition 5.1 [11]. The magnitude

dk = inf
{Yk}

sup
u∈M

inf
υ∈Yk

∥u − υ∥2

is called Kolmogorov k-widths (diameters) of the set M, where {Yk} is the set of all subspaces in L2(R) whose
dimensions do not exceed k.

The following lemmas are valid.

Lemma 5.2. Let the conditions i)-ii) be fulfilled. Then the estimates

c−1d̃k ≤ Sk+1 ≤ cd̃k, k = 1, 2, ..,

hold, where c > 0 is a constant, Sk are the s numbers of the operator l−1
n , dk , d̃k are the Kolmogorov widths of the

corresponding sets M, M̃.

Lemma 5.3. Let the conditions i)-ii) be fulfilled. Then the estimates

Ñ(cλ) ≤ N(λ) ≤ Ñ(c−1λ),

hold, where N(λ) =
∑

Sk+1>λ
1 is the counting function of those Sk+1 of the operator l−1

n that are greater than λ > 0,

Ñ(λ) =
∑

dk>λ
1 is the counting function of those d̃k greater than λ > 0.

Lemmas 5.2 and 5.3 are proved in exactly the same way as Lemmas 4.3 and 4.4 of [12].

Lemma 5.4. Let the conditions i)-ii) be fulfilled. Then the estimates

c−1λ−1mes(y ∈ R : Qn(y) ≤ c−1λ−1) ≤ N(λ) ≤ cλ−1mes(y ∈ R : Qn(y) ≤ cλ−1),

hold, where Qn(y) = | − in3R2(y) + inR1(y) + R0(y)| and c > 0 is a constant not depending on Qn(y) and λ.

To prove Lemma 5.4, we first prove the following lemma.

Lemma 5.5. Let the conditions i) - ii) be fulfilled. Then the estimates

c−1Qn(y) ≤ Q∗n(y) ≤ cQn(y), (30)

hold, where c > 0 is a constant and Q∗n(y) is a special averaging of the functions Qn(y) (see Lemmas 4.1 - 4.2).

Lemma 5.5 is proved in the same way as Lemma 4.2.
Proof of Lemma 5.4. We denote by L1

2(R,Qn(y)) the space obtained by completing C∞0 (R) with respect to the
norm

∥u∥L1
2(R,Qn(y)) = (

∫
|u′|2 +Q2

n(y)|u|2dy)
1
2 .

It is easy to verify that M̃ ⊂ L1
2(R,Qn(y)). Hence, using Lemma 5.5 and also repeating the computations

and arguments used in the proof of Theorem 1.4 from [12], we obtain the proof of Lemma 5.4.
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Proof of Theorem 1.4. Theorem 1.1 and the equality (11) imply that

u(x, y) = (L + µI)−1 f (x, y) =
∞∑

n=−∞

(ln + µI)−1 fn(y) · einx, µ ≥ 0. (31)

The representation (31) implies that if s is a singular point of (L + µI)−1 then s is a singular number of
one of (ln + µI)−1(n = 0,±1,±2, ...), and vice versa, if s is a singular number of one of (ln + µI)−1 then s is a
singular point of (L + µI)−1. The proof of Theorem 1.4 follows from this and Lemma 5.4.
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