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Available at: http://www.pmf.ni.ac.rs/filomat

Positive Semidefinite Solution to Matrix Completion Problem and
Matrix Approximation Problem

Xifu Liua

aSchool of Mathematical Sciences, Chongqing Normal University, Chongqing 401331, China

Abstract. In this paper, firstly, we discuss the following matrix completion problem in the spectral norm:∥∥∥∥∥∥
(

A B
B∗ X

)∥∥∥∥∥∥
2

< 1 subject to
(

A B
B∗ X

)
⩾ 0.

The feasible condition for the above problem is established, in this case, the general positive semidefinite
solution and its minimum rank are presented. Secondly, applying the result of the above problem, we also
study the matrix approximation problem:

∥A − BXB∗∥2 < 1 subject to A − BXB∗ ⩾ 0,

where A ∈ Cm×m
⩾ , B ∈ Cm×n, and X ∈ Cn×n

⩾ .

1. Introduction

Let Cm×n (Rm×n) denote the set of all m× n matrices over the complex (real) field C (R), Cm×m
H denote the

set of all m×m Hermitian matrices,Cm×m
⩾ denote the set of all m×m Hermitian positive semidefinite matrices,

and In denote the identity matrix of order n. For A ∈ Cm×n, its rank, conjugate transpose and Moore-Penrose
inverse are denoted by r(A), A∗ and A† respectively, and EA = Im − AA†, FA = In − A†A. The symbols ∥A∥2
and ∥A∥F denote the spectral norm and Frobenius norm of A ∈ Cm×n respectively. For Hermitian matrix
A, its positive and negative indexes of inertia are symbolled by i+(A) and i−(A) respectively. If matrix A is
positive semidefinite (positive definite), we denote it by A ⩾ 0 (A > 0) for short.

Let S ⊆ Rm×n be a closed set. Consider the rank minimization problem:

Minimize {r(X) : X ∈ S},

which has found many applications in system control, matrix completion, machine learning, image re-
construction, quadratic optimization, to name but a few, see [1-6] and the references therein. In many
applications, S is defined by a linear map A : Rm×n

→ Rp. Two typical situations are:

S = {X ∈ Rm×n : A (X) = b} and S = {X ∈ Rn×n : A (X) = b, X ⩾ 0}.
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In this paper, we focus our interest on the complex matrices.
In the literatures, rank-constrained matrix approximation problems have been widely studied in the

spectral norm and Frobenius norm. In the spectral norm, some of them are as follows:
(1) min

X
r(X) subject to ∥A − BXC∥2 = min, see [7];

(2) min
X=X∗(or X=−X∗)

r(X) subject to ∥A − BXB∗∥2 = min, see [8];

(3) min
X⩾0

r(X) subject to ∥A − BXB∗∥2 = min, see [10];

(4) min
X

r(X) subject to ∥A − BXC∥2 < 1, where B has full column rank and C has full row rank, see [6];

(5) min
X

r(X) subject to ∥A − BXC∥2 < ξ, see [7];

(6) min
X=X∗(or X⩾0)

r(X) subject to ∥A − BXB∗∥2 < 1, see [9];

(7) min
X

r(X) subject to

∥∥∥∥∥∥
(

A B
C X

)∥∥∥∥∥∥
2

< 1, min
X=X∗

r(X) subject to

∥∥∥∥∥∥
(

A B
B∗ X

)∥∥∥∥∥∥
2

< 1, see [9].

In Frobenius norm, there are also many nice results on matrix approximation problems [11-16], we list
some of them:

(1) min
r(X)⩽k

∥A − BXC∥2F, see [11];

(2) min
r(X)=p,X⩾0

∥A − BXB∗∥2F, see [12];

(3) For an appropriate chosen nonnegative integer k, characterize the set

S =

{
X

∣∣∣∣∣∣
∥∥∥∥∥∥
(

A B
C D

)
−

(
X J
K L

)∥∥∥∥∥∥
F

= min subject to r
(

X J
K L

)
= k

}
, see [13];

(4) min
r(X)=k

∥A − BXC∥2F, see [14]; min
r(X)=k

∥A − BXB∗∥2F, see [16];

(5) For an appropriate chosen nonnegative integer b, characterize the set

S = {X | ∥C − AX∥ F = min subject to r(C − AX) = b}, see [15].

For more information on matrix approximation problems please see the above mentioned papers and the
references therein.

As introduced in [1], the matrix approximation problem with respect to positive semidefinite matrix is
also significant. So, in this paper, we focus our research interest on the following matrix completion and
matrix approximation problems:

Problem I. Given A ∈ Cm×m
⩾ and B ∈ Cm×n such that AA†B = B, determine the matrix X ∈ Cn×n

⩾ such that∥∥∥∥∥∥
(

A B
B∗ X

)∥∥∥∥∥∥
2

< 1 subject to
(

A B
B∗ X

)
⩾ 0.

Also, we determine the minimum rank of matrix X.
We emphasize that the condition AA†B = B in Problem I is necessary by Lemma 1.1.
Problem II. Given A ∈ Cm×m

⩾ and B ∈ Cm×n, determine the matrix X ∈ Cn×n
⩾ (or X ∈ Cn×n

H ) such that

∥A − BXB∗∥2 < 1 subject to A − BXB∗ ⩾ 0.

For the matrix completion problem∥∥∥∥∥∥
(

A B
B∗ X

)∥∥∥∥∥∥
2

= min subject to
(

A B
B∗ X

)
⩾ 0.

It is easy to know that the minimum spectral norm is

∥∥∥∥∥∥
(

A B
B∗ B∗A†B

)∥∥∥∥∥∥
2

, and an optimal minimum rank

solution is X = B∗A†B.
Before proceeding to the next section, we list some useful results which will facilitate the proof of our

theorems.
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Lemma 1.1. ([17]) Let M =
(

A B
B∗ D

)
, where A and D are Hermitian matrices. Then M ⩾ 0 if and only if A ⩾ 0,

AA†B = B and D − B∗A†B ⩾ 0.

Remark 1.2. Under the conditions and notations of Lemma 1.1, M ⩾ 0 if and only if M has the form M =(
A AY

Y∗A Y∗AY +M

)
or M =

(
Z∗DZ +N Z∗D

DZ D

)
, where Y and Z are arbitrary matrices with proper sizes, M and

N are arbitrary positive semidefinite matrices with proper sizes.

Lemma 1.3. Let M =
(

A B
B∗ D

)
, where A and D are Hermitian matrices. Then M > 0 if and only if A > 0 and

D − B∗A−1B > 0.

Lemma 1.4. ([17]) Let A ∈ Cm×m
H , B ∈ Cm×n and D ∈ Cn×n

H . Then

i±(D − B∗A†B) = i±

(
A3 AB

(AB)∗ D

)
− i±(A).

Note that, when the matrix A in Lemma 1.4 is nonsingular, the sub-block A3 can be replaced by A.

2. Main results

In this section, firstly, we establish the feasible condition for Problem I, and give a general positive
semidefinite solution to this problem. Secondly, we apply the results of Problem I to study Problem II.

Theorem 2.1. Let A ∈ Cm×m
⩾ and B ∈ Cm×n be given, such that AA†B = B, and X ∈ Cn×n

⩾ be unknown.
(i) Problem I is feasible if and only if

∥A∥2 < 1. (1)

In this case, the general positive semidefinite solution to this problem can be expressed by

X = B∗A†B + Y, (2)

where Y satisfies the following inequality

0 ⩽ Y < I − B∗A†B − B∗(I − A)−1B = I − B∗(I − A)−1A†B. (3)

(ii) The minimum rank of the solution to Problem I is r(B), and an optimal minimum rank solution to this problem
can be expressed by X⋆ = B∗A†B.

Proof. (i) It follows form Lemma 1.1 and
(

A B
B∗ X

)
⩾ 0 that X can be written as the form given by (2) with

Y ⩾ 0 unknown. And

∥∥∥∥∥∥
(

A B
B∗ X

)∥∥∥∥∥∥
2

< 1 is equivalent to
(

A B
B∗ X

)
< I. Then

(
I − A −B
−B∗ I − B∗A†B − Y

)
> 0. (4)

According to Lemma 1.3, (4) is equivalent to

I − A > 0, I − B∗A†B − B∗(I − A)−1B − Y > 0. (5)
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The first inequality in (5) is equivalent to ∥A∥2 < 1. The second inequality in (5) is solvable for Y if and only
if

I − B∗A†B − B∗(I − A)−1B > 0 or i+[I − B∗A†B − B∗(I − A)−1B] = n. (6)

Applying Lemma 1.4 to (6), we have

i+[I − B∗A†B − B∗(I − A)−1B]

= i+

(
A3 AB

(AB)∗ I − B∗(I − A)−1B

)
− i+(A)

= i+

{(
A3 AB

(AB)∗ I

)
−

(
0
B∗

)
(I − A)−1

(
0 B

)}
− i+(A)

= i+

 I − A 0 (I − A)B
0 A3 AB

B∗(I − A) B∗A I

 − i+(I − A) − i+(A)

= i+

 I − A −A (I − A)B
−A A3 + A(I − A)−1A 0

B∗(I − A) 0 I

 − i+(I − A) − i+(A)

= i+

 I − A −A 0
−A A3 + A(I − A)−1A 0
0 0 I

 − i+(I − A) − i+(A)

= i+

(
I − A −A
−A A3 + A(I − A)−1A

)
+ n − i+(I − A) − i+(A)

= i+(I − A) + i+(A3) + n − i+(I − A) − i+(A)
= n,

which shows that the second inequality in (5) is solvable. Moreover, it follows from AA†B = B that there
exists a matrix Q ∈ Cm×n such that B = AQ, hence,

I − B∗A†B − B∗(I − A)−1B = I −Q∗AQ −Q∗A(I − A)−1AQ
= I −Q∗AQ −Q∗[I − (I − A)](I − A)−1AQ
= I −Q∗(I − A)−1AQ = I −Q∗(I − A)−1AA†AQ
= I −Q∗A(I − A)−1A†AQ = I − B∗(I − A)−1A†B.

So, (3) is evident.
(ii) Since X = B∗A†B + Y ⩾ B∗A†B ⩾ 0, hence

r(X) ⩾ r(B∗A†B) = r[(A†)
1
2 B] = r(A†B) = r(B).

The lower bound is obtained when we take Y = 0.

The following corollary can also be proved by Lemma 1.3 similarly.

Corollary 2.2. If the condition
(

A B
B∗ X

)
⩾ 0 in Problem I is replaced by

(
A B
B∗ X

)
> 0, then the feasible condition

to this problem is also ∥A∥2 < 1 (or 0 < A < I), and the general positive semidefinite solution X can be expressed by
X = B∗A−1B + Y, where Y satisfies the following inequality

0 < Y < I − B∗A−1B − B∗(I − A)−1B = I − B∗(I − A)−1A−1B.
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Next, we apply Theorem 2.1 to investigate Problem II. Without loss of generality, in the following

contents, we always assume that matrix B has the singular value decomposition B = U
(

0 0
0 Σ

)
V∗. Corre-

spondingly, partition matrices A and X as

A = U
(

A11 A12
A∗12 A22

)
U∗, X = V

(
X11 X12
X∗12 X22

)
V∗.

Then

A − BXB∗ = U
(

A11 A12
A∗12 A22 − ΣX22Σ

)
U∗. (7)

Theorem 2.3. Let A ∈ Cm×m
⩾ and B ∈ Cm×n be given, and X ∈ Cn×n

⩾ be unknown. Then, Problem II is feasible if and
only if

∥A11∥2 = ∥EBAEB∥2 < 1.

In this case, a general positive semidefinite solution to this problem can be expressed by

X = V
(

Z∗X22Z +N Z∗X22
X22Z X22

)
V∗, (8)

in which Z is arbitrary with proper size, and N is arbitrary positive semidefinite matrix, X22 = Σ
−1(A22−A∗12A†11A12−

Y)Σ−1, where Y satisfies the following inequalities

0 ⩽ Y < I − A∗12A†11A12 − A∗12(I − A11)−1A12 = I − A∗12(I − A11)−1A†11A12, (9)

0 ⩽ Y ⩽ A22 − A∗12A†11A12. (10)

Proof. By Lemma 1.1, it follows from A ⩾ 0 that A11 ⩾ 0 and A11A†11A12 = A12. In view of Theorem 2.1,
Problem II is feasible if and only if 1 > ∥A11∥2 = ∥EBAEB∥2. Moreover

A22 − ΣX22Σ = A∗12A†11A12 + Y.

Solving the above equation produces X22 = Σ
−1(A22−A∗12A†11A12−Y)Σ−1, where Y satisfies the condition (9).

Moreover, note that X is positive semidefinite, so is X22 ⩾ 0. Therefore, (10) is evident. Since X22 is positive
semidefinite, by Remark 1.2, X has the form (8).

According to Theorem 2.3, the Hermitian solution to Problem II can be stated as follows.

Corollary 2.4. Let A ∈ Cm×m
⩾ and B ∈ Cm×n be given, and X ∈ Cn×n

H be unknown. Then, Problem II is feasible if and
only if

∥A11∥2 = ∥EBAEB∥2 < 1.

In this case, a general Hermitian solution to this problem can be expressed by

X = V
(

X11 X12
X∗12 Σ−1(A22 − A∗12A†11A12 − Y)Σ−1

)
V∗,

where X11 = X∗11 and X12 are arbitrary matrices with proper sizes, and Y satisfies the following inequality

0 ⩽ Y < I − A∗12A†11A12 − A∗12(I − A11)−1A12 = I − A∗12(I − A11)−1A†11A12.

Corollary 2.5. Let A ∈ Cm×m
⩾ and B ∈ Cm×n be given, and X ∈ Cn×n

⩾ be unknown. If ∥A∥2 < 1, then Problem II is
feasible, and a general positive semidefinite solution to this problem can be expressed by (8) with Y satisfying

0 ⩽ Y ⩽ A22 − A∗12A†11A12. (11)
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Proof. It follows from ∥A∥2 < 1 that ∥EBAEB∥2 ⩽ ∥A∥2 < 1, so, Problem II is feasible. Moreover, 0 ⩽ A < I,
i.e., I − A > 0. Therefore

I − A = U
(

I − A11 −A12
−A∗12 I − A22

)
U∗ > 0,

which means that I − A11 > 0 and I − A22 − A∗12(I − A11)−1A12 > 0. Hence, the following inequality holds

I − A∗12A†11A12 − A∗12(I − A11)−1A12 > A22 − A∗12A†11A12.

Combining (9) and (10) yields (11).

3. Conclusion

In this paper, we have discuss a matrix completion problem (Problem I), its feasible condition, general
expression for the positive semidefinite solution and the minimum rank are established. Furthermore,
based on the results of Problem I, we derive the feasible condition and the expression for the positive
semidefinite (Hermitian) solution to a matrix approximation problem (Problem II).

4. Acknowledgements

The author would like to thank the Editor and the referees for their very detailed comments and valuable
suggestions which greatly improved the presentation of this paper.

References

[1] Y. Zhao, An approximation theory of matrix rank minimization and its application to quadratic equations, Linear Algebra Appl.
437 (2012) 77-93.

[2] J. Demmel, The smallest perturbation of a submatrix which lowers the rank and constrained total least squares problems, SIAM
J. Numer. Anal. 24 (1987) 199-206.

[3] G. Golub, A. Hoffman, G. Stewart, A generalization of the Eckart-Young-Mirsky matrix approximation theorem, Linear Algebra
Appl. 88-89 (1987) 317-327.

[4] I. Markovsky, Low rank approximation: algorithms, implementation, applications, Springer, 2012.
[5] I. Markovsky, K. Usevich, Software for weighted structured low-rank approximation, J. Comput. Appl. Math. 256 (2014) 278-292.
[6] K. Sou, A. Rantzer, On the generalized matrix approximation problems in the spectral norm, Linear Algebra Appl. 436 (2012)

2331-2341.
[7] M. Wei, D. Shen, Minimum rank solutions to the matrix approximation problems in the srectral norm, SIAM J. Matrix Anal.

Appl. 33 (2012) 940-957.
[8] D. Shen, M. Wei, Y. Liu, Minimum rank (skew) Hermitian solutions to the matrix approximation problem in the spectral norm,

J. Comput. Appl. Math. 288 (2015) 351-365.
[9] X. Liu, Minimum rank Hermitian solution to the matrix approximation problem in the spectral norm and its application, Appl.

Math. Lett. 98 (2019) 164-170.
[10] X. Liu, L. Luo, Minimum rank positive semidefinite solution to the matrix approximation problem in the spectral norm, Appl.

Math. Lett. 107 (2020) 106408.
[11] S. Friedland, A. Torokhti, Generalized rank-constrained matrix approximations, SIAM J. Matrix Anal. Appl. 29 (2007) 656-659.
[12] M. Wei, Q. Wang, On rank-constrained Hermitian nonnegative-definite least squares solutions to the matrix equation AXAH = B,

Int. J. Comput. Math. 84 (2007) 945-952.
[13] H. Wang, On least squares solutions subject to a rank restriction, Linear Multilinear Algebra, 63 (2015) 264-273.
[14] H. Wang, Rank constrained matrix best approximation problem, Appl. Math. Lett. 50 (2015) 98-104.
[15] H. Wang, Least squares solutions to the rank-constrained matrix approximation problem in the Frobenius norm, Calcolo, 56

(2019) 47.
[16] X. Liu, W. Li, H. Wang, Rank constrained matrix best approximation problem with respect to (skew) Hermitian matrices, J.

Comput. Appl. Math. 319 (2017) 77-86.
[17] Y. Tian, Equalities and inequalities for inertias of Hermitian matrices with applications, Linear Algebra Appl. 433 (2010) 263-296.


