Limiting Directions of Julia Sets of Entire Solutions of Complex Difference Equations

Zheng Wang ${ }^{\text {a }}$, Zhigang Huang ${ }^{\text {a }}$
${ }^{\text {a }}$ School of Mathematical Sciences, Suzhou University of Science and Technology

Abstract

In this paper, entire solutions of a class of non-linear difference equations are studied. Under some conditions, we find that the set of common limiting directions of Julia sets of solutions, their derivatives and their primitives must have a definite range of measure.

1. Introduction and main results

In this paper, we use the fundamental results and the standard notations of the Nevanlinna value distribution theory for meromorphic functions(see [10, 12]). For a meromorphic function f in the whole complex plane \mathbb{C}, we denote by $T(r, f), m(r, f)$ and $N(r, f)$ the characteristic function, the proximity function and the counting function of f, respectively. The order $\rho(f)$ and the lower order $\mu(f)$ are, respectively, defined by

$$
\rho(f)=\underset{r \rightarrow \infty}{\limsup } \frac{\log ^{+} T(r, f)}{\log r} \text { and } \mu(f)=\liminf _{r \rightarrow \infty} \frac{\log ^{+} T(r, f)}{\log r}
$$

where $\log ^{+} x=\max \{0, \log x\}, x>0$. The deficiency of the value a is defined by

$$
\delta(a, f)=1-\limsup _{r \rightarrow \infty} \frac{N\left(r, \frac{1}{f-a}\right)}{T(r, f)}
$$

Here, when $a=\infty$, we have

$$
\delta(\infty, f)=1-\limsup _{r \rightarrow \infty} \frac{N(r, f)}{T(r, f)}
$$

We define $f^{n}, n \in \mathbb{N}$ as the nth iterate of f, that is, $f^{1}=f, \cdots, f^{n}=f \circ\left(f^{n-1}\right)$. The Fatou set $\mathcal{F}(f)$ of f is the subset of \mathbb{C} where $\left\{f^{n}(z)\right\}_{n=1}^{\infty}$ forms a normal family, and its complement $\mathcal{J}(f)=\mathbb{C} \backslash \mathcal{F}(f)$ is called the Julia set of f. It is well-known that $\mathcal{F}(f)$ is open, $\mathcal{J}(f)$ is closed and non-empty. For an introduction to the dynamics of meromorphic functions, we refer the reader to see $[2,9]$.

[^0]Definition 1.1. A ray ending at the orgin $\arg z=\theta, \theta \in[0,2 \pi)$ is called a limiting direction of Julia sets of $f(z)$, if there exits an unbounded sequence $\left\{z_{n}\right\} \subset \mathcal{J}(f)$ such that

$$
\lim _{n \rightarrow \infty} \arg z_{n}=\theta
$$

The set of arguments of all limit directions of $\mathcal{J}(f)$ is denoted by $\Delta(f)=\{\theta \in[0,2 \pi) \mid$ the ray $\arg z=\theta$ is a limiting direction of $\mathcal{J}(f)\}$. Clearly, $\Delta(f)$ is closed, so it is measurable, and we use mes $\Delta(f)$ to denote its linear measure.

The example below can help the readers understand the definition intuitively.
Example 1.2. It is well known that $\mathcal{J}(f)$ is the whole complex plane if $f(z)=\exp z$, and $\mathcal{J}(g)$ is the real axis if $g(z)=\tan z$. Clearly, $\operatorname{mes} \Delta(f)=2 \pi$, and mes $\Delta(g)=0$ since $\mathcal{J}(g)$ has only two limit directions, that is $\arg z=0, \pi$.

Baker [3] first observed that, for a transcendental entire function $f, \mathcal{J}(f)$ cannot lie in finitely many rays emanating from the origin. For the case that $f(z)$ is a transcendental entire function of finite lower order, Qiao [16] proved that mes $\Delta(f)=2 \pi$ if $\mu(f)<1 / 2$ and mes $\Delta(f) \geq \pi / \mu(f)$ if $\mu(f) \geq 1 / 2$. Furthermore, Qiao[15] obtained the following result.

Theorem 1.3. [15] Let $f(z)$ be a transcendental entire function of lower order $\mu<\infty$. Then there exists a closed interval $I \subset \mathbb{R}$ such that all $\theta \in I$ are the common limiting directions of $\mathcal{J}\left(f^{(n)}\right), n=0, \pm 1, \pm 2, \ldots$, and mes $I \geq$ $\min \{2 \pi, \pi / \mu\}$. Here $f^{(n)}$ denotes the n-th derivative or the n-th integral primitive of for $n \geq 0$ or $n<0$, respectively.

Later, in [21], Zheng et.al proved that for a transcendental meromorphic function $f(z)$ with $\mu(f)<\infty$ and $\delta(\infty, f)>0$, if $\mathcal{J}(f)$ has an unbounded component, then mes $\Delta(f) \geq \min \left\{2 \pi, \frac{4}{\mu(f)} \arcsin \sqrt{\frac{\delta(\infty, f)}{2}}\right\}$. In [17], Qiu and Wu showed that the conclusion is still valid without the assumption that $\mathcal{J}(f)$ has an unbounded component. Then a nature question arise: is there a similar result about the limiting directions of entire functions with infinite lower order? Indeed, Huang and Wang [13] studied the limiting direction of a class of entire functions with infinite lower order, which is exactly solutions of a class of linear differential equations.

Theorem 1.4. [13] Let $A_{i}(z)(i=0,1, \ldots, n-1)$ be entire functions of finite lower order such that A_{0} is transcendental and $m\left(r, A_{i}\right)=o\left(m\left(r, A_{0}\right)\right)(i=1,2, \ldots, n-1)$ as $r \rightarrow \infty$. Then every non-trivial solution f of the equation

$$
\begin{equation*}
f^{(n)}+A_{n-1} f^{(n-1)}+\ldots+A_{0} f=0 \tag{1}
\end{equation*}
$$

satisfies mes $\Delta(f) \geq \min \left\{2 \pi, \pi / \mu\left(A_{0}\right)\right\}$.
Afterward, the research of limiting directions of entire solutions of complex differential equations has attracted much attention, see[14, 18-20]. In view of the progress on the difference analogues of classical Nevanlinna theory of meromorphic functions [6,11], it is quite natural to investigate the limit directions of solutions of complex difference equations.

Consider the complex difference equation

$$
\begin{equation*}
A_{n}(z) P_{n}\left(f\left(z+c_{1}\right), \ldots, f\left(z+c_{m}\right)\right)+\ldots+A_{1}(z) P_{1}\left(f\left(z+c_{1}\right), \ldots, f\left(z+c_{m}\right)\right)=A_{0}(z) \tag{2}
\end{equation*}
$$

where $A_{i}(i=0,1, \ldots, n)$ are entire functions, $c_{q}(q=1, \ldots, m)$ are distinct complex numbers, and $P_{j}(j=1, \ldots, n)$ are distinct polynomials in m variables with degree less than d, that is

$$
\begin{equation*}
P_{j}\left(f\left(z+c_{1}\right), \ldots, f\left(z+c_{m}\right)\right)=\sum_{\lambda=\left(k_{1}, \ldots, k_{m}\right) \in \Lambda_{i}} a_{\lambda} \prod_{i=1}^{m}\left[f\left(z+c_{i}\right)\right]^{k_{i}} . \tag{3}
\end{equation*}
$$

In this equation, a_{λ} are nonzero complex numbers, Λ_{i} consists of finite multi-indices of the form $\lambda=$ $\left(k_{1}, \ldots, k_{m}\right), k_{i} \in \mathbb{N}$, and $\max _{\lambda \in \Lambda_{i}}\left\{\sum_{i=1}^{m} k_{i}\right\}<d$. The example below shows that Eq.(2) actually has entire solutions.

Example 1.5. The difference equation

$$
\left(\frac{1}{e} z-1\right) f(z+2)+e f(z+1)-e(z-e) f(z)=e^{z+2}
$$

has an entire solutions $f(z)=e^{z}$.
In 2020, Chen et.al[5] studied the shifts of solutions of Eq.(2) and proved the result as follows.
Theorem 1.6. [5] Let $A_{i}(z)(i=0,1, \ldots, n)$ be entire functions, $P_{j}\left(z_{1}, \ldots, z_{m}\right)(j=1, \ldots, n)$ be distinct polynomials of degree less than d, and $c_{k}(k=1, \ldots, m)$ be distinct finite complex numbers. Assume A_{0} is transcendental, $\mu\left(A_{0}\right)<\infty$ and $T\left(r, A_{i}\right)=o\left(T\left(r, A_{0}\right)\right)(i=1,2, \ldots, n)$ as $r \rightarrow \infty$. For any nontrivial entire solution f of $E q$.(2), we have

$$
\operatorname{mes}(R(f)) \geq \min \left\{2 \pi, \frac{\pi}{\mu\left(A_{0}\right)}\right\}
$$

where $R(f)=\bigcap_{i \in L} \Delta\left(f\left(z+\eta_{i}\right)\right)$, L is a set of positive integers, and $\left\{\eta_{i}: i \in L\right\}$ is a countable set of distinct complex numbers.

Remark 1.7. Actually, we do not know whether the solutions of Eq.(2) have infinite lower order. Especially, for a finite order solution $f(z)$ of Eq.(2), it seems meaningless, if we only consider the measure of limit directions of Julia sets of $f(z)$ or its shift, because we can estimate the lower bound of measure by Qiao's result[16]. However, Theorem 1.6 is still meaningful to study the common limiting directions of Julia sets of shifts of f.

For entire functions and their derivatives, the difference between their local properties are astonishing, because a small disturbance of the parameter may cause a gigantic change of the dynamics of some given entire functions. Inspired by Theorem 1.3, we shall show that the Julia sets of $f(z)$, its k-th derivatives and its k-th integral primitive of shifts have a large amount of common limit directions and their distribution densities influence each other, where $f(z)$ is an entire solution of Eq.(2) and $k \in \mathbb{Z}$. Set

$$
E(f)=\bigcap_{i \in L} \Delta\left(f^{(k)}\left(z+\eta_{i}\right)\right)
$$

where $k \in \mathbb{Z}, f^{(k)}$ denotes the k-th derivative of $f(z)$ for $k \geq 0$ or k-th integral primitive of $f(z)$ for $k<0, L$ is a set of positive integers, and $\left\{\eta_{i}: i \in L\right\}$ is a countable set of distinct complex numbers.

Theorem 1.8. Let $A_{i}(z)(i=0,1, \ldots, n)$ be entire functions, $P_{j}\left(z_{1}, \ldots, z_{m}\right)(j=1, \ldots, n)$ be distinct polynomials of degree less than d, and $c_{q}(q=1, \ldots, m)$ be distinct finite complex numbers. Assume A_{0} is transcendental, $\mu\left(A_{0}\right)<\infty$ and $T\left(r, A_{i}\right)=o\left(T\left(r, A_{0}\right)\right)(i=1,2, \ldots, n)$ as $r \rightarrow \infty$. For any nontrivial entire solution f of $E q$.(2), we have

$$
\operatorname{mes} E(f) \geq \min \left\{2 \pi, \frac{\pi}{\mu\left(A_{0}\right)}\right\}
$$

Clearly, Theorem 1.6 is a corollary of Theorem 1.8 when $k=0$. The next, we shall show the relationship between the limiting directions of Julia sets of the solution $f(z)$ of Eq.(2) and those of the derivatives of its shifts. Indeed, we obtain the following result.

Theorem 1.9. Let $A_{i}(z)(i=0,1, \ldots, n)$ be entire functions, $P_{j}\left(z_{1}, \ldots, z_{m}\right)(j=1, \ldots, n)$ be distinct polynomials of degree less than d, and $c_{q}(q=1, \ldots, m)$ be distinct finite complex numbers. Assume A_{0} is transcendental, $\mu\left(A_{0}\right)<\infty$ and $T\left(r, A_{i}\right)=o\left(T\left(r, A_{0}\right)\right)(i=1,2, \ldots, n)$ as $r \rightarrow \infty$. For any nontrivial entire solution f of $E q$.(2), we have

$$
\operatorname{mes}(\Delta(f) \cap E(f)) \geq \min \left\{2 \pi, \frac{\pi}{\mu\left(A_{0}\right)}\right\}
$$

Furthermore, let $\eta_{i}=0$ for every i. Then we have

$$
\operatorname{mes}\left((\Delta(f)) \cap\left(\Delta\left(f^{(k)}\right)\right) \geq \min \left\{2 \pi, \frac{\pi}{\mu\left(A_{0}\right)}\right\}\right.
$$

2. Preliminary Lemmas

Assuming $0<\alpha<\beta<2 \pi$, we denote

$$
\begin{gathered}
\Omega(\alpha, \beta)=\{z \in \mathbb{C} \mid \arg z \in(\alpha, \beta)\} \\
\Omega(\alpha, \beta, r)=\{z|z \in \Omega(\alpha, \beta),|z|<r\} \\
\Omega(r, \alpha, \beta)=\{z|z \in \Omega(\alpha, \beta),|z|>r\}
\end{gathered}
$$

and use $\bar{\Omega}(\alpha, \beta)$ to denote the closure of $\Omega(\alpha, \beta)$. Before proceeding to prove our two theorems, we still need the following lemmas.

Lemma 2.1. [4] If f is a transcendental entire function, then the Fatou set of f has no unbounded multiply connected component.

Lemma 2.2. [21] Let $f(z): \Omega(r, \alpha, \beta) \rightarrow H$ be analytic, where H is a hyperbolic domain. If there exists a finite complex number $a \in \partial H$ such that

$$
C_{H}(a):=\inf _{z \in H}\left\{\rho_{H}(z)|z-a|\right\}>0
$$

where $\rho_{H}(z)$ is the density of the hyperbolic metric on H, then there exists a constant $K>0$, such that for sufficiently small $\varepsilon>0$, we have

$$
\begin{equation*}
|f(z)|=O\left(|z|^{K}\right), z \rightarrow \infty, z \in \Omega(r, \alpha+\varepsilon, \beta-\varepsilon) \tag{4}
\end{equation*}
$$

Remark 2.3. (see [21]) The open set W is hyperbolic if $\overline{\mathbb{C}} \backslash W$ has at least three points. For any $a \in \overline{\mathbb{C}} \backslash W$, note that $|z-a| \geq \delta_{W}(z)$, where $\delta_{W}(z)$ is the Euclidean distance of $z \in W$ to ∂W. It is well known that if every component of W is simply connected, then $C_{W}(a) \geq 1 / 2$.

Lemma 2.4. [1] Let $f(z)$ be a transcendental meromorphic function of finite lower order μ, and f have one deficient value a. Let $\Lambda(r)$ be a positive function with $\Lambda(r)=o(T(r, f))$ as $r \rightarrow \infty$. Then for any fixed sequence of Pólya peaks $\left\{r_{n}\right\}$ of order μ, we have

$$
\begin{equation*}
\liminf _{r \rightarrow \infty} \operatorname{mes} D_{\Lambda}\left(r_{n}, a\right) \geq \min \left\{2 \pi, \frac{4}{\mu} \arcsin \sqrt{\frac{\delta(a, f)}{2}}\right\} \tag{5}
\end{equation*}
$$

where $D_{\Lambda}(r, a)$ is defined by

$$
D_{\Lambda}(r, \infty)=\left\{\theta \in[-\pi, \pi):\left|f\left(r \mathrm{e}^{\mathrm{i} \theta}\right)\right|>\mathrm{e}^{\Lambda(r)}\right\}
$$

and for finite a,

$$
D_{\Lambda}(r, a)=\left\{\theta \in[-\pi, \pi):\left|f\left(r \mathrm{e}^{\mathrm{i} \theta}\right)-a\right|>\mathrm{e}^{-\Lambda(r)}\right\} .
$$

Lemma 2.5. [22] Let $f(z)$ be a meromorphic function on $\Omega(\alpha-\varepsilon, \beta+\varepsilon)$ for $\varepsilon>0$ and $0<\alpha<\beta<2 \pi$. Then

$$
A_{\alpha, \beta}\left(r, \frac{f^{\prime}}{f}\right)+B_{\alpha, \beta}\left(r, \frac{f^{\prime}}{f}\right) \leq K\left(\log ^{+} S_{\alpha-\varepsilon, \beta+\varepsilon}(r, f)+\log r+1\right)
$$

3. Proof of Theorem 1.8

Clearly, every nontrivial entire solution f of Eq.(2) is transcendental. Suppose on the contary that $\operatorname{mes} E(f)<\sigma:=\min \left\{2 \pi, \pi / \mu\left(A_{0}\right\}\right.$. Then $t:=\sigma-\operatorname{mes} E(f)>0$. For every $i \in L$ and $k \in \mathbb{Z}, \Delta\left(f^{(k)}\left(z+\eta_{i}\right)\right)$ is closed, and so $E(f)$ is a closed set. Denoted by $S:=(0,2 \pi) \backslash E(f)$ the complement of $E(f)$. Then S is open and contains at most countably many open intervals. Thus, we can choose finitely many open intervals $I_{i}=\left(\alpha_{i}, \beta_{i}\right)(i=1,2, \ldots, m)$ in S such that

$$
\begin{equation*}
\operatorname{mes}\left(S \backslash \bigcup_{i=1}^{m} I_{i}\right)<\frac{t}{4} \tag{6}
\end{equation*}
$$

For every $\theta_{i} \in I_{i}, \arg z=\theta_{i}$ is not a limiting direction of some $f^{(k)}\left(z+\eta_{m_{\theta_{i}}}\right)$, where $m_{\theta_{i}} \in L$ only depends on θ_{i}. Then there exists an angular domain $\Omega\left(\theta_{i}-\xi_{\theta_{i}}, \theta_{i}+\xi_{\theta_{i}}\right)$ such that

$$
\begin{equation*}
\left(\theta_{i}-\xi_{\theta_{i}}, \theta_{i}+\xi_{\theta_{i}}\right) \subset I_{i} \quad \text { and } \quad \Omega\left(r, \theta_{i}-\xi_{\theta_{i}}, \theta_{i}+\xi_{\theta_{i}}\right) \cap \mathcal{J}\left(f^{(k)}\left(z+\eta_{m_{\theta_{i}}}\right)\right)=\emptyset \tag{7}
\end{equation*}
$$

for sufficiently large r, where $\xi_{\theta_{i}}$ is a constant depending on θ_{i}. Hence, $\bigcup_{\theta_{i} \in I_{i}}$ is an open covering of $\left[\alpha_{i}+\varepsilon, \beta_{i}-\varepsilon\right]$ wiht $0<\varepsilon<\min \left\{\left(\beta_{i}-\alpha_{i}\right) / 6, i=1,2, \ldots, m\right\}$. By Heine-Borel theorem, we can choose finitely many $\theta_{i j}$, such that

$$
\left[\alpha_{i}+\varepsilon, \beta_{i}-\varepsilon\right] \subset \bigcup_{j=1}^{s_{i}}\left(\theta_{i j}-\xi_{\theta_{i j}}, \theta_{i j}+\xi_{\theta_{i j}}\right)
$$

From (7) and Lemma 2.1, there exist a related $r_{i j}$ and an unbounded Fatou component $U_{i j}$ of $\mathcal{F}\left(f^{(k)}(z+\right.$ $\left.\eta_{m_{\theta_{i j}}}\right)$) such that $\Omega\left(r_{i j}, \theta_{i j}-\xi_{\theta_{i j}}, \theta_{i j}+\xi_{\theta_{i j}}\right) \subset U_{i j}$, see [4]. We take an unbounded and connected closed section $\Gamma_{i j}$ on boundary $\partial U_{i j}$ such that $\mathbb{C} \backslash \Gamma_{i j}$ is simply connected. Clearly, $\mathbb{C} \backslash \Gamma_{i j}$ is hyperbolic and open. By remark 2.3, there exists a $a \in \mathbb{C} \backslash \Gamma_{i j}$ such that $C_{\mathbb{C} \backslash \Gamma_{i j}}(a) \geq 1 / 2$. Since the mapping $f^{(k)}\left(z+\eta_{m_{\theta_{i}}}\right): \Omega\left(r_{i j}, \theta_{i j}-\xi_{\theta_{i j}}, \theta_{i j}+\xi_{\theta_{i j}}\right) \rightarrow$ $\mathbb{C} \backslash \Gamma_{i j}$ is analytic, it follows from Lemma 2.2 that there exists a positive constant d such that

$$
\begin{equation*}
\left|f^{(k)}\left(z+\eta_{m_{\theta_{i j}}}\right)\right|=O\left(|z|^{d}\right) \quad \text { as } \quad|z| \rightarrow \infty \tag{8}
\end{equation*}
$$

for $z \in \Omega\left(r_{i j}, \theta_{i j}-\xi_{\theta_{i j}}+\varepsilon, \theta_{i j}+\xi_{\theta_{i j}}-\varepsilon\right)$. Selecting $r_{i j}^{*}>r_{i j}$ such that $z+c_{q}-\eta_{m_{\theta_{i}}} \in \Omega\left(r_{i j}, \theta_{i j}-\xi_{\theta_{i j}}+\varepsilon, \theta_{i j}+\xi_{\theta_{i j}}-\varepsilon\right)(q=$ $1, \ldots, m)$, when $z \in \Omega\left(r_{i j}^{*}, \theta_{i j}-\xi_{\theta_{i j}}+2 \varepsilon, \theta_{i j}+\xi_{\theta_{i j}}-2 \varepsilon\right)$. Thus,

$$
\begin{equation*}
\left|f^{(k)}\left(z+c_{q}\right)\right|=O\left(\left|z+c_{q}-\eta_{m_{i j}}\right|^{d}\right)=O\left(|z|^{d}\right) \quad \text { as } \quad|z| \rightarrow \infty \tag{9}
\end{equation*}
$$

holds for $z \in \Omega\left(r_{i j}^{*}, \theta_{i j}-\xi_{\theta_{i j}}+2 \varepsilon, \theta_{i j}+\xi_{\theta_{i j}}-2 \varepsilon\right)$.
Case 1. Suppose that $k \geq 0$. We note the fact that

$$
f^{(k-1)}(z)=\int_{0}^{z} f^{(k)}(\zeta) d \zeta+c
$$

where c is is a constant, and the integral path is the segment of a straight line from 0 to z. From this and (9), we can deduce $f^{(k-1)}\left(z+c_{q}\right)=O\left(|z|^{d+1}\right)$ for $z \in \Omega\left(r_{i j}^{*} \theta_{i j}-\xi_{\theta_{i j}}+2 \varepsilon, \theta_{i j}+\xi_{\theta_{i j}}-2 \varepsilon\right)$. Repeating the discussion k times, we can obtain

$$
\begin{equation*}
f\left(z+c_{q}\right)=O\left(|z|^{d+k}\right), \quad z \in \Omega\left(r_{i j}^{*}, \theta_{i j}-\xi_{\theta_{i j}}+2 \varepsilon, \theta_{i j}+\xi_{\theta_{i j}}-2 \varepsilon\right) . \tag{10}
\end{equation*}
$$

Case 2. Suppose that $k<0$. For any angular domain $\Omega\left(\theta_{i j}-\xi_{\theta_{i j}}+2 \varepsilon, \theta_{i j}+\xi_{\theta_{i j}}-2 \varepsilon\right)$, we set $\alpha_{i j}^{*}=\theta_{i j}-\xi_{\theta_{i j}}+2 \varepsilon$ and $\beta_{i j}^{*}=\theta_{i j}-\xi_{\theta_{i j}}-2 \varepsilon$. Then we have

$$
\begin{equation*}
S_{\alpha_{i j}^{*}+\varepsilon^{\prime}, \beta_{i j}^{*}-\varepsilon^{\prime}}\left(r, f^{(k+1)}\left(z+c_{q}\right)\right) \leq S_{\alpha_{i j}^{* i}+\varepsilon^{\prime}, \beta_{i j}^{*}-\varepsilon^{\prime}}\left(r, \frac{f^{(k+1)}\left(z+c_{q}\right)}{f^{(k)}\left(z+c_{q}\right)}\right)+S_{\alpha_{i j}^{*}+\varepsilon^{\prime}, \beta_{i j}^{*}-\varepsilon^{\prime}}\left(r, f^{(k)}\left(z+c_{q}\right)\right) \tag{11}
\end{equation*}
$$

for $|k| \varepsilon^{\prime}=\varepsilon$. By (9) and Lemma 2.5, we can obtain

$$
\begin{equation*}
S_{\alpha_{i j}^{*}+\varepsilon^{\prime}, \beta_{i j}^{*}-\varepsilon^{\prime}}\left(r, f^{(k+1)}\left(z+c_{q}\right)\right)=O(\log r) \tag{12}
\end{equation*}
$$

Using the discussion $|k|$ times, we have

$$
\begin{equation*}
S_{\alpha_{i j}^{*}+\varepsilon, \beta_{i j}^{*}-\varepsilon}\left(r, f\left(z+c_{q}\right)\right)=O(\log r) \tag{13}
\end{equation*}
$$

It means that

$$
\begin{equation*}
f\left(z+c_{q}\right)=O\left(|z|^{d^{\prime}}\right), \quad z \in \Omega\left(r_{i j}^{*}, \theta_{i j}-\xi_{\theta_{i j}}+3 \varepsilon, \theta_{i j}+\xi_{\theta_{i j}}-3 \varepsilon\right) \tag{14}
\end{equation*}
$$

where d^{\prime} is a positive constants.
Substituting (10) or (14) into (3), whatever k is positive or not, one can see that there exist positive constants M and d_{0}, such that for sufficiently large $z \in \bigcup_{i=1}^{m} \bigcup_{j=1}^{s_{i}} \Omega\left(r_{i j}^{*}, \theta_{i j}-\xi_{\theta_{i j}}+3 \varepsilon, \theta_{i j}+\xi_{\theta_{i j}}-3 \varepsilon\right)$, we have

$$
\begin{equation*}
\left|P_{l}\left(f\left(z+c_{1}\right), \ldots, f\left(z+c_{m}\right)\right)\right|<M|z|^{d_{0}}, \quad l=1, \ldots, n \tag{15}
\end{equation*}
$$

Next, we define

$$
\begin{equation*}
\Lambda(r)=\max \left\{\sqrt{\log r}, \sqrt{T\left(r, A_{1}\right)}, \ldots, \sqrt{T\left(r, A_{n}\right)}\right\} \sqrt{T\left(r, A_{0}\right)} . \tag{16}
\end{equation*}
$$

It is clear that $\Lambda(r)=o\left(T\left(r, A_{0}\right)\right)$ and $T\left(r, A_{i}\right)=o(\Lambda(r)), i=1,2, \ldots, n$. Since A_{0} is entire, ∞ is a deficient value of A_{0} and $\delta\left(\infty, A_{0}\right)=1$. By Lemma 2.4, there exists an increasing and unbounded sequence $\left\{r_{k}\right\}$ such that

$$
\begin{equation*}
\operatorname{mes} D_{\Lambda}\left(r_{k}\right) \geq \sigma-t / 4 \tag{17}
\end{equation*}
$$

where

$$
\begin{equation*}
D_{\Lambda}(r):=D_{\Lambda}(r, \infty)=\left\{\theta \in[-\pi, \pi): \log \left|A_{0}\left(r \mathrm{e}^{\mathrm{i} \theta}\right)\right|>\Lambda(r)\right\} \tag{18}
\end{equation*}
$$

Clearly,

$$
\begin{aligned}
\operatorname{mes}\left(\left(\bigcup_{i=1}^{m} I_{i}\right) \cap D_{\Lambda}\left(r_{k}\right)\right) & =\operatorname{mes}\left(S \cap D_{\Lambda}\left(r_{k}\right)\right)-\operatorname{mes}\left(\left(S \backslash \bigcup_{i=1}^{m} I_{i}\right) \cap D_{\Lambda}\left(r_{k}\right)\right) \\
& \geq \operatorname{mes}\left(D_{\Lambda}\left(r_{k}\right)\right)-\operatorname{mes} E(f)-\operatorname{mes}\left(S \backslash \bigcup_{i=1}^{m} I_{i}\right) \\
& \geq \sigma-\frac{t}{4}-\operatorname{mes} E(f)-\frac{t}{4}=\frac{t}{2}
\end{aligned}
$$

Let $J_{i j}=\left(\theta_{i j}-\xi_{\theta_{i j}}+3 \varepsilon, \theta_{i j}+\xi_{\theta_{i j}}-3 \varepsilon\right)$. Then

$$
\operatorname{mes}\left(\bigcup_{i=1}^{m} \bigcup_{j=1}^{s_{i}} J_{i j}\right) \geq \operatorname{mes}\left(\bigcup_{i=1}^{m} I_{i}\right)-(3 m+6 \zeta) \varepsilon
$$

where $\zeta=\sum_{i=1}^{m} s_{i}$. Choosing ε small enough, we can deduce

$$
\operatorname{mes}\left(\left(\bigcup_{i=1}^{m} \bigcup_{j=1}^{s_{i}} J_{i j}\right) \cap D_{\Lambda}\left(r_{k}\right)\right) \geq \frac{t}{4}
$$

Thus there exists an open interval $J_{i_{0} j_{0}}$ of all $J_{i j}$ such that for infinitely many k,

$$
\begin{equation*}
\operatorname{mes}\left(J_{i_{0} j_{0}} \cap D_{\Lambda}\left(r_{k}\right)\right)>\frac{t}{4_{\zeta}}>0 \tag{20}
\end{equation*}
$$

Let $F=J_{i_{0} j_{0}} \cap D_{\Lambda}\left(r_{k}\right)$. Then by (18), we have

$$
\begin{equation*}
\int_{F} \log ^{+}\left|A_{0}\left(r_{k} \mathrm{e}^{\mathrm{i} \theta}\right)\right| \mathrm{d} \theta \geq \frac{t}{4 \zeta} \Lambda\left(r_{k}\right) \tag{21}
\end{equation*}
$$

On the other hand, substituting (15) into Eq.(2), we obtain

$$
\begin{align*}
\int_{F} \log ^{+}\left|A_{0}\left(r_{k} e^{i \theta}\right)\right| d \theta & \leq \int_{F}\left(\sum_{i=1}^{n} \log ^{+}\left|A_{i}\left(r_{k} e^{i \theta}\right)\right|\right) d \theta+O\left(\log r_{k}\right) \\
& \leq \sum_{i=1}^{n} m\left(r_{k}, A_{i}\right)+O\left(\log r_{k}\right) \tag{22}\\
& =\sum_{i=1}^{n} T\left(r_{k}, A_{i}\right)+O\left(\log r_{k}\right)
\end{align*}
$$

(21) and (22) gives out

$$
\frac{t}{4 \zeta} \Lambda\left(r_{j}\right) \leq \sum_{i=1}^{n} T\left(r_{j}, A_{i}\right)+O\left(\log r_{j}\right)
$$

which is impossible since $T\left(r, A_{i}\right)=o(\Lambda(r))(i=1, \ldots, n)$ as $r \rightarrow \infty$. Hence, we get mes $E(f) \geq \sigma$.

4. Proof of Theorem 1.9

Suppose on the contrary that

$$
\begin{equation*}
\operatorname{mes}(\Delta(f) \cap E(f))<\sigma:=\min \left\{2 \pi, \pi / \mu\left(A_{0}\right\}\right. \tag{23}
\end{equation*}
$$

Then

$$
\begin{equation*}
t:=\sigma-\operatorname{mes}(\Delta(f) \cap E(f))>0 \tag{24}
\end{equation*}
$$

Define

$$
\begin{equation*}
\Lambda(r)=\max \left\{\sqrt{\log r}, \sqrt{T\left(r, A_{1}\right)}, \ldots, \sqrt{T\left(r, A_{n}\right)}\right\} \sqrt{T\left(r, A_{0}\right)} . \tag{25}
\end{equation*}
$$

It is clear that $\Lambda(r)=o\left(T\left(r, A_{0}\right)\right)$ and $T\left(r, A_{i}\right)=o(\Lambda(r)), i=1,2, \ldots, n$. Since A_{0} is entire, ∞ is a deficient value of A_{0} and $\delta\left(\infty, A_{0}\right)=1$. By Lemma 2.4, there exists an increasing and unbounded sequence $\left\{r_{k}\right\}$ such that

$$
\begin{equation*}
\operatorname{mes} D_{\Lambda}\left(r_{k}\right) \geq \sigma-t / 4 \tag{26}
\end{equation*}
$$

where

$$
\begin{equation*}
D_{\Lambda}(r):=D_{\Lambda}(r, \infty)=\left\{\theta \in[-\pi, \pi): \log \left|A_{0}\left(r \mathrm{e}^{\mathrm{i} \theta}\right)\right|>\Lambda(r)\right\} \tag{27}
\end{equation*}
$$

and all $r_{k} \notin\{|z|: z \in H\}$.
The next, we will prove that there exists an open interval

$$
\begin{equation*}
I=(\alpha, \beta) \subset(E(f))^{c} \tag{28}
\end{equation*}
$$

such that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \operatorname{mes}\left(\Delta(f) \cap D_{\Lambda}\left(r_{k}\right) \cap I\right)>0 \tag{29}
\end{equation*}
$$

where $(E(f))^{c}:=(0,2 \pi) \backslash E(f)$. Firstly, we prove

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \operatorname{mes}\left(D_{\Lambda}\left(r_{k}\right) \backslash \Delta(f)\right)=0 \tag{30}
\end{equation*}
$$

Suppose there exists a subsequence $\left\{r_{k_{j}}\right\}$ such that

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \operatorname{mes}\left(D_{\Lambda}\left(r_{k_{j}}\right) \backslash \Delta(f)\right)>0 \tag{31}
\end{equation*}
$$

Then there exist $\theta_{0} \in(\Delta(f))^{c}$ and $\xi_{\theta_{0}}>0$ such that

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \operatorname{mes}\left(\left(\theta_{0}-\xi_{\theta_{0}}, \theta_{0}+\xi_{\theta_{0}}\right) \cap\left(D_{\Lambda}\left(r_{k_{j}}\right) \backslash \Delta(f)\right)\right)>0, \tag{32}
\end{equation*}
$$

where $\xi_{\theta_{0}}$ is a constant only depending on θ_{0}. Since $\arg z=\theta_{0}$ is not a limiting direction of f, there exists $r_{0}>0$ such that

$$
\begin{equation*}
\Omega\left(r_{0}, \theta_{0}-\xi_{\theta_{0}}, \theta_{0}+\xi_{\theta_{0}}\right) \cap \mathcal{J}(f)=\emptyset . \tag{33}
\end{equation*}
$$

By Lemma 2.1, there exists an unbounded Fatou component U_{0} of $\mathcal{F}(f)$ such that $\Omega\left(r_{0}, \theta_{0}-\xi_{\theta_{0}}, \theta_{0}+\xi_{\theta_{0}}\right) \subset$ U_{0}, see [4]. We take a unbounded and connected closed section Γ_{0} on boundary ∂U_{0} such that $\mathbb{C} \backslash \Gamma_{0}$ is simply connected. Clearly, $\mathbb{C} \backslash \Gamma_{0}$ is hyperbolic and open. By remark 2.3 , there exists a $a \in \mathbb{C} \backslash \Gamma_{0}$ such that $C_{\mathbb{C} \backslash \Gamma_{0}}(a) \geq 1 / 2$. Since the mapping $f: \Omega\left(r_{0}, \theta_{0}-\xi_{\theta_{0}}, \theta_{0}+\xi_{\theta_{0}}\right) \rightarrow \mathbb{C} \backslash \Gamma_{0}$ is analytic, it follows from Lemma 2.2 that there exists a positive constant d and $0<\varepsilon<\frac{\xi_{\theta_{0}}}{2}$ such that

$$
\begin{equation*}
|f(z)|=O\left(|z|^{d}\right) \text { as } \quad|z| \rightarrow \infty \tag{34}
\end{equation*}
$$

for $z \in \Omega\left(r_{0}, \theta_{0}-\xi_{\theta_{0}}+\varepsilon, \theta_{0}+\xi_{\theta_{0}}-\varepsilon\right)$. Selecting $r_{0}^{*}>r_{0}$ such that $z+c_{q} \in \Omega\left(r_{0}, \theta_{0}-\xi_{\theta_{0}}+\varepsilon, \theta_{0}+\xi_{\theta_{0}}-\varepsilon\right)(q=1, \ldots, m)$, when $z \in \Omega\left(r_{0}^{*}, \theta_{0}-\xi_{\theta_{0}}+2 \varepsilon, \theta_{0}+\xi_{\theta_{0}}-2 \varepsilon\right)$. Thus,

$$
\begin{equation*}
\left|f\left(z+c_{q}\right)\right|=O\left(\left|z+c_{q}\right|^{d}\right)=O\left(|z|^{d}\right) \quad \text { as } \quad|z| \rightarrow \infty \tag{35}
\end{equation*}
$$

holds for $z \in \Omega\left(r_{0}^{*}, \theta_{0}-\xi_{\theta_{0}}+2 \varepsilon, \theta_{0}+\xi_{\theta_{0}}-2 \varepsilon\right)$.
Substituting (35) into (3), one can see that there exist positive constants M and d_{0}, such that we have

$$
\begin{equation*}
\left|P_{l}\left(f\left(z+c_{1}\right), \ldots, f\left(z+c_{m}\right)\right)\right|<M|z|^{d_{0}}, \quad l=1, \ldots, n \tag{36}
\end{equation*}
$$

where $z \in \Omega\left(r_{0}^{*}, \theta_{0}-\xi_{\theta_{0}}+2 \varepsilon, \theta_{0}+\xi_{\theta_{0}}-2 \varepsilon\right)$
From (32), we have

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \operatorname{mes}\left(\left(\theta_{0}-\xi_{\theta_{0}}+2 \varepsilon, \theta_{0}+\xi_{\theta_{0}}-2 \varepsilon\right) \cap D_{\Lambda}\left(r_{k_{j}}\right)\right)>0 \tag{37}
\end{equation*}
$$

Thus, we can find an unbounded sequence $\left\{r_{k_{j}} e^{i \theta}\right\}$ such that

$$
\begin{equation*}
\int_{F} \log ^{+}\left|A_{0}\left(r_{k_{j}} e^{i \theta}\right)\right| \mathrm{d} \theta \geq \operatorname{mes}(F) \Lambda\left(r_{k_{j}}\right) \tag{38}
\end{equation*}
$$

for all sufficiently large j, where $\theta \in F:=\left(\theta_{0}-\xi_{\theta_{0}}+2 \varepsilon, \theta_{0}+\xi_{\theta_{0}}-2 \varepsilon\right) \cap D_{\Lambda}\left(r_{k_{j}}\right)$. On the other hand, substituting (36) into Eq.(2), we obtain

$$
\begin{align*}
\int_{F} \log ^{+}\left|A_{0}\left(r_{k_{j}} e^{i \theta}\right)\right| d \theta & \leq \int_{F}\left(\sum_{i=1}^{n} \log ^{+}\left|A_{i}\left(r_{k_{j}} e^{i \theta}\right)\right|\right) d \theta+O\left(\log r_{k_{j}}\right) \\
& \leq \sum_{i=1}^{n} m\left(r_{k_{j}}, A_{i}\right)+O\left(\log r_{k_{j}}\right) \tag{39}\\
& =\sum_{i=1}^{n} T\left(r_{k_{j}}, A_{i}\right)+O\left(\log r_{k_{j}}\right)
\end{align*}
$$

(38) and (39) gives out

$$
\begin{equation*}
\operatorname{mes}(F) \Lambda\left(r_{j}\right) \leq \sum_{i=1}^{n} T\left(r_{j}, A_{i}\right)+O\left(\log r_{j}\right) \tag{40}
\end{equation*}
$$

which is a contradiction since $T\left(r, A_{i}\right)=o(\Lambda(r))(i=1, \ldots, n)$ as $r \rightarrow \infty$. This contradiction means that (30) is true. From Theorem 1.6, taking $\eta_{i}=0$, we have

$$
\begin{equation*}
\operatorname{mes} \Delta(f) \geq \sigma \tag{41}
\end{equation*}
$$

Combining this, (26) with (30), we can deduce

$$
\begin{equation*}
\operatorname{mes}\left(\Delta(f) \cap D_{\Lambda}\left(r_{k}\right)\right) \geq \sigma-\frac{t}{4} \tag{42}
\end{equation*}
$$

for all sufficiently large k.
Since $E(f)$ is closed set, $(E(f))^{c}$ is open and contains at most countably many open intervals. Thus, we can choose finitely many open intervals $I_{i}(i=1, \ldots, m)$ such that

$$
\begin{equation*}
\operatorname{mes}\left((E(f))^{c} \backslash \bigcup_{i=1}^{m} I_{i}\right)<\frac{t}{4} \tag{43}
\end{equation*}
$$

Then we have

$$
\begin{align*}
& \operatorname{mes}\left(\Delta(f) \cap D_{\Lambda}\left(r_{k}\right) \cap\left(\bigcup_{i=1}^{m} I_{i}\right)\right)+\operatorname{mes}\left(\Delta(f) \cap D_{\Lambda}\left(r_{k}\right) \cap E(f)\right) \\
& =\operatorname{mes}\left(\Delta(f) \cap D_{\Lambda}\left(r_{k}\right) \cap\left(E(f) \cup \bigcup_{i=1}^{m} I_{i}\right)\right) \tag{44}\\
& \geq \sigma-\frac{t}{2}
\end{align*}
$$

From (23),

$$
\begin{align*}
\operatorname{mes}\left(\Delta(f) \cap D_{\Lambda}\left(r_{k}\right) \cap\left(\bigcup_{i=1}^{m} I_{i}\right)\right) & \geq \sigma-\frac{t}{2}-\operatorname{mes}\left(\Delta(f) \cap D_{\Lambda}\left(r_{k}\right) \cap E(f)\right) \\
& \geq \sigma-\frac{t}{2}-\operatorname{mes}(\Delta(f) \cap E(f)) \tag{45}\\
& =\frac{t}{2}
\end{align*}
$$

Thus there exists an open intervals $I_{i 0}=(\alpha, \beta) \subset \bigcup_{i=1}^{m} I_{i} \subset E(f)^{c}$ such that

$$
\begin{equation*}
\operatorname{mes}\left(\Delta(f) \cap D_{\Lambda}\left(r_{k}\right) \cap I_{i 0}\right) \geq \frac{t}{2 m}>0 \tag{46}
\end{equation*}
$$

Therefore, (29) holds.
From (29), there exist $\theta_{i 0} \in I_{i 0}$ and $\xi_{\theta_{i 0}}>0$ such that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \operatorname{mes}\left(\left(\theta_{i 0}-\xi_{\theta_{i 0}}, \theta_{i 0}+\xi_{\theta_{i 0}}\right) \cap D_{\Lambda}\left(r_{k}\right) \cap \Delta(f)\right)>0, \tag{47}
\end{equation*}
$$

where $\xi_{\theta_{i 0}}$ is a constant depent of $\theta_{i 0}$. Since $\arg z=\theta_{i 0}$ is not the Julia limiting direction of some $f^{(k)}\left(z+\eta_{m_{\theta_{i 0}}}\right)$,, there exists $r_{i 0}>0$ such that

$$
\begin{equation*}
\Omega\left(r_{i 0}, \theta_{0}-\xi_{\theta_{0}}, \theta_{0}+\xi_{\theta_{0}}\right) \cap \mathcal{J}\left(f^{(k)}\left(z+\eta_{m_{\theta_{i 0}}}\right)\right)=\emptyset . \tag{48}
\end{equation*}
$$

By the similar proof between (7) and (15), there exists $r_{i 0}^{*}>r_{i 0}$ such that

$$
\begin{equation*}
\left|P_{l}\left(f\left(z+c_{1}\right), \ldots, f\left(z+c_{m}\right)\right)\right|<M|z|^{d_{0}}, \quad l=1, \ldots, n \tag{49}
\end{equation*}
$$

where $z \in \Omega\left(r_{i 0^{\prime}}^{*}, \theta_{i 0}-\xi_{\theta_{i 0}}+3 \varepsilon_{i 0}, \theta_{i 0}+\xi_{\theta_{i 0}}-3 \varepsilon_{i 0}\right)$ for $0<\varepsilon_{i 0}<\frac{\xi_{\theta_{i 0}}}{3}$.
From (47), we have

$$
\lim _{k \rightarrow \infty} \operatorname{mes}\left(\left(\theta_{i 0}-\xi_{\theta_{i 0}}+3 \varepsilon_{i 0}, \theta_{i 0}+\xi_{\theta_{i 0}}-3 \varepsilon_{i 0}\right) \cap D_{\Lambda}\left(r_{k}\right) \cap \Delta(f)\right)>0
$$

By the similar proof between (37) and (39), we can obtain (38) and (39). Then we can deduce a contradiction. Therefore, we have

$$
\begin{equation*}
\operatorname{mes}(\Delta(f) \cap E(f)) \geq \min \left\{2 \pi, \frac{\pi}{\mu\left(A_{0}\right)}\right\} \tag{50}
\end{equation*}
$$

References

[1] A. Baernstein, Proof of Edrei's spread conjecture, Proc. Lond. Math. Soc., 26 (1973),418-434.
[2] W. Bergweiler, Iteration of meromorphic functions, Bulletin of the American Mathematical Society, 29 (1993), 151-188.
[3] I.N. Baker, Sets of non-normality in iteration theory, J. London Math. Soc., 40 (1965), 499-502.
[4] I.N. Baker, The domains of normality of an entire function, A. I. Math., 1 (1975), 277-283.
[5] J.C. Chen, Y.Z. Li and C.F.Wu, Radial distribution of Julia Sets of entire solutions to complex difference equation, Mediterr. J. Math., (184)17 (2020),1-12.
[6] Y.M. Chiang and S.J. Feng, On the Nevanlinna characteristic of $f(z+\eta)$ and difference equations in the complex plane, Ramanujan J., 16 (2008) 105-129.
[7] A. Edrei, Sums of deficiencies of meromorphic functions I, J. Anal. Math., 14 (1965), 79-107.
[8] A. Edrei, Sums of deficiencies of meromorphic functions II, J. Anal. Math., 19 (1967), 53-74.
[9] A.E. Eremenko and M.Y. Lyubich, The dynamics of analytic transformations, translation in Leningrad Math. J., 1 (1990), 563-634.
[10] A.A. Goldberg and I.V. Ostrovskii, Value Distribution of Meromorphic Functions, Translations of Mathematical Monographs series, Vol. 2336, American Mathematical Society, Providence, RI, 2008.
[11] R.G. Halburd and R.J. Korhonen, Difference analogue of the lemma on the logarithmic drivative with applications to difference equations, J. Math. Anal. Appl., 314 (2006), 477-487.
[12] W.K. Hayman, Meromorphic Functions, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964.
[13] Z.G. Huang and J. Wang, On limit directions of Julia sets of entire solutions of linear differential euqation, J. Math. Anal. Appl., 409 (2014), 478-484.
[14] Z.G. Huang and J. Wang, On the radial distribution of Julia sets of entire solutions of $f^{(n)}+A(z) f=0$, J. Math. Anal. Appl., 387 (2012), No.2, 1106-1113.
[15] J.Y. Qiao, On limiting directions of Julia sets, Ann. Acad. Sci. Fenn. Math., 26 (2001), 391-399.
[16] J.Y. Qiao, Stable domains in the iteration of entire functions, Acta. Math. Sin., 37(1994), No.5, 702-708, (in Chinese).
[17] L. Qiu and S.J. Wu, Radial distributions of Julia sets of meromorphic functions, J. Aust. Math. Soc., 81 (2006), No.3, 363-368.
[18] L. Qiu, Z.X.Xuan, and Y.Zhao, Radial distribution of Julia sets of some entire functions with infinite lower order, Chinese Ann. Math. Ser. A 40 (2019), no. 3, 325-334.
[19] J. Wang and Z.X. Chen, Limiting directions of julia sets of entire solutions to complex differential equations, Acta. Math. Sci., 37 (2017), 97-107.
[20] G.W. Zhang, J. Ding and L.Z. Yang, Radial distribution of Julia sets of derivetives of solutions to complex linear differential equations, Sci. Sin. Math., 44(2014), 693-700, (in Chinese).
[21] J.H. Zheng, S. Wang and Z.G. Huang, Some properties of Fatou and Julia sets of transcendental meromorphic functions, Bull. Austral. Math. Soc., 66 (2002), no. 1, 1-8.
[22] J.H. Zheng, Value Distribution of Meromorphic Functions, Tsinghua University Press, Springer Press, Beijing, 2010

[^0]: 2020 Mathematics Subject Classification. Primary 34M10; Secondary 30D35, 37F10
 Keywords. limiting direction, Julia sets, entire function, complex difference equation
 Received: 17 November 2020; Accepted: 09 August 2022
 Communicated by Dragan S. Djordjević
 Corresponding author: Zhigang Huang
 The work was supported by NNSF of China (No.11971344), Research and Practice Innovation Program for Postgraduates in Jiangsu Province(KYCX20_2747)

 Email addresses: zane_zh_wang@163.com (Zheng Wang), alexehuang@sina.com (Zhigang Huang)

