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Abstract. In this paper, convex continuous-time programming problem with inequality type of constraints
is considered. We derive new saddle point optimality conditions and classical duality results such as weak
and strong duality properties, under additional regularity assumption. A fundamental tool, employed
in the derivation of the necessary saddle point optimality criteria and strong duality result for convex
continuous-time programming, is a new version of a theorem of the alternative in infinite-dimensional
spaces.

1. Introduction

Continuous-time programming problems originated from a class of production-inventory “bottleneck”
problems studied by Bellman [3]. His work was expended and built upon by Tyndall [25], who gave
mathematical rigorous treatment of duality to the problems in the linear case and since then the theory was
intensively developed.

In [11], the authors generalized these duality theorems to the case where the objective functional is
concave and derived the complementary slackness principle and Kuhn-Tucker necessary and sufficient
conditions. They considered a generalization of the linear constrained nonlinear continuous-time program
by replacing the constant matrices B and K by time-dependent matrices B(t) and K(t, s) with piecewise
continuous elements. Their proof of the duality theorem was based on extending some results from [14].
However, their proof was invalid which was later indicated and corrected in [26]. Afterwards, Hanson
[12] obtained duality results for the linear continuous-time programming problem with differentiability
assumptions. He established the duality relationship for this problem by a method originally utilized by
Dorn [8] in expanding the duality theorem of linear programming to convex nonlinear programming. Farr
and Hanson [9] further generalized the continuous-time programming problem by introducing nonlinear
smooth constraints and establishing the complementary slackness theorem and Kuhn-Tucker theorem in
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their setup. Thereafter, in [24], the authors considered the continuous-time programming problem

F(x(·)) =
∫ T

0
f (x(t))dt→ sup;

subject to h(x(t)) ≤ c(t) +
∫ t

0
l(s, t, x(s))ds, a.e. in [0,T],

x(t) ≥ 0, a.e. in [0,T],

(P0)

where f (·) is a real-valued function defined on L∞([0,T];Rn), x(·) is an n× 1 vector-valued function defined
on [0,T], h(·) is an k × 1 vector-valued function defined on the space L∞([0,T];Rn), l(·, ·, ·) is an k × 1 vector-
valued function defined on [0, t] × [0,T] × L∞([0,T];Rn) for each t ∈ [0,T], c(·) is an k × 1 vector-valued
function defined on [0,T], and all the integrals are given in the Lebesgue sense. They established optimality
criteria of Kuhn-Tucker and Fritz-John type for (P0) without assuming the differentiability of the functions
involved. However, all authors assumed that the functions are convex or concave. It should be noted that
the main results in that paper are based on the theorem of the alternative (Theorem 7 [24]). However, the
proof of their main theorem of the alternative needed for obtaining necessary optimality criteria is incorrect
because in their proof the authors invoke a separation theorem to separate the origin {(0, 0)} from a subset
of R × L1([0,T];Rm) which may not have an interior point. It is well known that a separation theorem and
theorem od the alternative cannot be applied if the cone has a empty interior.

Having in mind all of the above, we conclude that valid results without differentiability do not appear
in the literature. Also, it should be highlighted that in the aforementioned papers, the nonegativity of
the function x(·) on the interval [0,T] is required. Also the function f (·) depends only on x(·), while
this is not required in our paper. We will give more detailed explanations in the following paragraphs.
However, our aim in this paper is to establish new saddle point optimality conditions and duality results
for nonsmooth convex continuous-time programming problems, using a new tool under more general
assumptions compared to existing problems in literature.

In 1980, the articles [22, 23] were published by Reiland generalizing previous results encountered in the
literature until then. However, in Reiland’s work, to apply a generalized Farkas lemma [7], he had assumed
that the kernel of a given operator, between infinite dimensional spaces, has finite dimension and the image
of that operator is a closed subspace. In that work, a generalized Slater regularity qualification was also
required. We conclude that author had to make very restrictive assumptions of the problem, which are very
difficult to verify. After Reiland’s papers, in 1985, Zalmai published a series of articles on smooth nonlinear
continuous-time programming. See [27–30], for example. Necessary and sufficient conditions for smooth
nonlinear continuous-time programming can be found in [28, 30]. Zalmai made assumptions which are
less restrictive than Reiland’s ones. One of the fundamental tools used by Zalmai was a generalization of
the Gordan Transposition Theorem in the continuous-time context [27]. Also, in many later articles, after
Zalmai’s work, the main tool was the aforementioned theorem. However, in [1], the authors point out that
such a result is not valid. In [29], the author established the Kuhn-Tucker saddle point optimality criteria
and Lagrangian duality for nonlinear convex continuous-time programming problem, using a perturbation
approach in infinite dimensional spaces. (The interested reader is referred to [2] for the use of perturbation
approach within the scope of duality theory.) The aforementioned results were obtained in the concept of
stable problem. More precisely, the assumption of stability is essential for obtaining the Kuhn-Tucker saddle
point theorem. (The hypothesis of stability is not required in our work.) This was achieved by generalizing
some of the Geoffrion’s results [10] to a certain infinite-dimensional setting. Zalmai highlighted that, using
Mclinden’s logical equivalence [16] of duality and the theorem of the alternative, his main duality results
can be used to derive an important generalization of Gordan’s Transposition Theorem [27] which will lead
to obtaining further optimality conditions and duality results in continuous time programming in a manner
analogous to the finite-dimensional case. However, in [1], it was proved that this is not possible under
these assumptions.

In [5, 6], the authors have established optimality conditions for nonsmooth continuous-time program-
ming. One of the fundamental tools used in [5, 28, 30] was a generalization of the Gordan Transposition
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Theorem in infinite-dimensional spaces [27]. It can be concluded, that many of the results, that have been
using the Gordan Transposition Theorem and its consequences, have now come into question. Therefore,
the work by Reiland became one of the main references in the fields of smooth continuous-time program-
ming and linear continuous-time programming, but assumptions and qualification given in Reiland’s work
is, in general, difficult to verify. Therefore, the alternative theorem stated in [1] has now become one of the
main tools for solving continuous-time programming problems.

In [17] the authors provided new first-order Karush-Kuhn-Tucker necessary optimality conditions for
smooth continuous-time problems, with both equality and inequality constraints, under Mangasarian-
Fromovitz constraint qualification, using new Theorem of the alternative presented in [1] and uniform
implicit theorem [21]. In [18, 19], the authors derived new first-and second order necessary optimality
conditions for smooth continuous-time problems, with both equality and inequality constraints, under a
full and constant rank type constraint qualification, respectively, using the aforementioned uniform implicit
theorem. However, it should be noted that these are the first improvements of Zalmai’s results under
differentiability hypotheses. Oliveira and Monte [17–19] have resolved the smooth nonlinear continuous-
time problem successfully and with excellence.

In [22], the author established duality theorems for linear continuous-time programming problems under
some constraint qualifications. He also presented an example showing that constraint qualifications are
essential on obtaining such results. In 2020, Oliveira [20] obtained classical duality results (weak and strong)
for linear continuous-time problems with inequality constraints. He also established the complementary
slackness theorem under a new regularity qualification which is simpler to be verified in comparison with
the one used in [22].

Recently, in [13], the authors derived new optimality conditions for convex multiobjective continuous-
time problem, using results presented in [1].

It is known, sadlle point optimality criteria and duality are well studied in finite dimensional space. For
example, see [4, 15]. Based on the aforementioned, we conclude that valid results for convex and nonsmooth
continuous-time programming problems without stability hypothesis under more general assumptions, do
not appear in the literature. Having in mind all of the above, the alternative theorem for convex inequality
systems [1] has now become one of the fundamental tools for solving convex continuous-time programming
problems. Our aim in this paper is to provide saddle point optimality criteria and duality results for this
type of problem under certain regularity qualification.

The paper is organized in the following way. Some preliminaries about the problem are given in Section
2. In Section 3, we formulate and discuss Lagrangian type function for a convex continuous-time problem
and establish necessary and sufficient saddle point optimality conditions. We propose a new regularity
qualification which is simple to be verified and essential for obtaining the main results. We also derive new
saddle point optimality conditions for a special case of convex continuous-time programming, when the
objective function is linear in the second argument. Also, illustrative examples are provided to demonstrate
the usefulness of this optimality criteria. In Section 4, we prove the weak and strong duality theorems.

2. Preliminaries

In this work, we consider the following continuous-time problem:

J0(x(·)) =
∫ T

0
f0(t, x(t))dt→ inf;

subject to fi(t, x(t)) ≤ 0, i ∈ I = {1, . . . ,m}, a.e. in [0,T],
x(·) ∈ L∞([0,T];Rn),

(CTP)

where fi : [0,T] × Rn
→ R, i = 0, 1, . . . ,m, are given functions. Here for each t ∈ [0,T], xi(t) is the ith

component of x(t) ∈ Rn and all integrals are in the Lebesgue sense. LetΩP be the set of all feasible solutions
of the problem (CTP) i.e.,

ΩP =
{
x(·) ∈ L∞([0,T];Rn) : fi(t, x(t)) ≤ 0, i ∈ I, a.e. in [0,T]

}
.
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For each i = 0, . . . ,m function fi(t, ·) is convex and continuous on Rn, for a.e. t ∈ [0,T]. For each i = 0, . . . ,m
function fi(·, x) is Lebesgue measurable for all x ∈ Rn and for each K ≥ 0 there exist M =M(K) ≥ 0 such that

∥x∥ ≤ K⇒ | fi(t, x)| ≤M a.a. t ∈ [0,T], ∀x ∈ Rn, ∀ i = 0, . . . ,m.

Also, all vectors in our paper are column vectors. Inequality signs between vectors should be read compo-
nentwise. The minimization in the initial problem is in the sense of the global minimum.

Definition 2.1. A point x̂(·) ∈ ΩP is said to be an optimal solution for (CTP) if J0(x̂(·)) ≤ J0(x(·)), ∀x(·) ∈ ΩP.

3. Saddle point optimality criteria

For mathematical programming the relationships between the solutions of a constrained programming
problem and the points which fulfill certain conditions known as the saddle point optimality criteria, are
well known. In this section we extend these results to continuous-time programming problems under
convexity assumptions. To do this we begin by giving new definitions of saddle points in continuous-time
context.

We define the Lagrange-type function L : L∞([0,T];Rn
×Rm)→ R with respect to Problem (CTP) as

L(x(·), λ(·)) =
∫ T

0

 f0(t, x(t)) +
∑
i∈I

λi(t) fi(t, x(t))

 dt.

Definition 3.1. A point (x̂(·), λ̂(·)) ∈ L∞([0,T];Rn
×Rm) is said to be a Karush-Kuhn-Tucker saddle point for (CTP)

if λ̂(t) ≥ 0 a.e. in [0,T] and

L(x̂(·), λ(·)) ≤ L(x̂(·), λ̂(·)) ≤ L(x(·), λ̂(·)), (1)

for all x(·) ∈ L∞([0,T];Rn) and all λ(·) ∈ L∞([0,T];Rm), λ(t) ≥ 0 a.e. in [0,T].

Theorems of the alternative, also referred to as transposition theorems, are fundamental tools for establishing
optimality conditions and duality results in a wide class of optimization problems. A transposition theorem
is an assertion about the solvability of two alternative systems, say I and II, of inequalities and/or equalities,
and may be stated as follows:

Either system I has a solution, or system II has a solution, but never both.
Aryutunov et al. in [1] presented an alternative theorem for convex inequality systems which are related

to the existence of multipliers. The aforementioned theorem will be needed in this section. To the best of
our knowledge, all alternative theorems in infinite-dimensional spaces require some regularity condition.

We say that Slater’s constraint qualification (SQ) is satisfied, if there exists y(·) ∈ L∞([0,T];Rn) such that
fi(t, y(t)) < 0, i ∈ I a.e. in [0,T]. Let x̃(·) ∈ ΩP be an optimal solution for (CTP). The system below will be
referred to in the next theorem:

χ0(t, x) :=
∫ T

0

(
f0(t, x) − f0(t, x̃(t))

)
dt < 0,

χi(t, x) := fi(t, x) ≤ 0, i ∈ I,
x ∈ Rn.

(2)

Let I0 = {0} ∪ I and

I(t, x) =
{
j ∈ I0 : χ j(t, x) = max {χ0(t, x), χ1(t, x), . . . , χm(t, x)}

}
, t ∈ [0,T], x ∈ Rn.

Definition 3.2. We say that the regularity condition (RC) holds, if there exist a function x̄(·) ∈ L∞([0,T];Rn),
real numbers R ≥ 0 and α > 0 such that for a.e. t ∈ [0, 1] and for all x ∈ Rn with ∥x − x̄(t)∥ ≥ R, there exists
e = e(t, x) ∈ Rn with ∥e∥ = 1, satisfying

⟨∂xχ j(t, x), e⟩ ≥ α ∀ j ∈ I(t, x),

where ∂xχ j(t, x) denotes the partial subdifferential of χ j at (t, x) in the sense of convex analysis.
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Below, we state Karush-Kuhn-Tucker saddle-point necessary optimality theorem.

Theorem 3.3. Let x̂(·) be an optimal solution of the problem (CTP). Assume that the problem (CTP) satisfies (RC)
and Slater’s constraint qualification (SQ). Then there exist the multipliers λ̂i(·) ∈ L∞([0,T];R), i ∈ I, such that
λ̂i(t) fi(t, x̂(t)) = 0, i ∈ I, a.e. in [0,T] and (x̂(·), λ̂(·)) is a Karush-Kuhn-Tucker saddle point for (CTP).

Proof. Since x̂(·) solves (CTP), we have that there is no x(·) ∈ L∞([0,T];Rn) such that the following system is
consistent∫ T

0

(
f0(t, x(t)) − f0(t, x̂(t))

)
dt < 0,

fi(t, x(t)) ≤ 0, i ∈ I, a.e. in [0,T].
(3)

It is clear that all assumptions of the alternative theorem (Theorem 1 [1]) are satisfied. It follows that there
exists a nonzero function (v̂0(·), v̂1(·), . . . , v̂m(·)) ∈ L∞([0,T];Rm+1), with v̂0(t) ≥ 0, v̂i(t) ≥ 0, i ∈ I, t ∈ [0,T], and
v̂0(t) . 0, such that

v̂0(t)
∫ T

0
f0(t, x(t))dt +

m∑
i=1

v̂i(t) fi(t, x(t)) ≥ v̂0(t)
∫ T

0
f0(t, x̂(t)) dt, ∀x(·) ∈ L∞([0,T];Rn) a.e. in [0,T]. (4)

By letting x(·) = x̂(·) in the above, we have

m∑
i=1

v̂i(t) fi(t, x̂(t)) ≥ 0 a.e. in [0,T].

But since v̂i(t) ≥ 0, i ∈ I, a.e. in [0,T] and x̂(·) ∈ ΩP, so that we get the opposite inequality above. Then

v̂i(t) fi(t, x̂(t)) = 0, i ∈ I, a.e. in [0,T]. (5)

Integrating (4) from 0 to T, we have

w
∫ T

0
f0(t, x(t))dt +

∫ T

0

m∑
i=1

v̂i(t) fi(t, x(t)) dt ≥ w
∫ T

0
f0(t, x̂(t)) dt, ∀x(·) ∈ L∞([0,T];Rn), (6)

where

w =
∫ T

0
v̂0(t) dt > 0.

Setting

λ̂i(t) =
v̂i(t)

w
≥ 0, i ∈ I, a.e. in [0,T],

from (5) and (6) we have∫ T

0

 f0(t, x(t)) +
m∑

i=1

λ̂i(t) fi(t, x(t))

 dt ≥
∫ T

0

 f0(t, x̂(t)) +
m∑

i=1

λ̂i(t) fi(t, x̂(t))

 dt =
∫ T

0
f0(t, x̂(t)) dt (7)

≥

∫ T

0

 f0(t, x̂(t)) +
m∑

i=1

λi(t) fi(t, x̂(t))

 dt, ∀x(·) ∈ (L∞[0,T];Rn), ∀λ(·) ∈ (L∞[0,T];Rm), λ(t) ≥ 0 a.e. in [0,T].

Therefore, (x̂(·), λ̂(·)) ∈ L∞([0,T];Rn
×Rm) is a Karush-Kuhn-Tucker saddle point of (CTP) with λ̂i(t) fi(t, x̂(t)) =

0, i ∈ I a.e. in [0,T].

Now, we give sufficient Karush-Kuhn-Tucker optimality criteria for (CTP). The assertions of Theorem 3.3
are also sufficient for the optimality of the point x̂(·).
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Theorem 3.4. If (x̂(·), λ̂(·)) is a Karush-Kuhn-Tucker saddle point, then x̂(·) is an optimal solution for (CTP).

Proof. If λi ≡ 0, i ∈ I, (1) can be written as∫ T

0
f0(t, x̂(t)) dt ≤

∫ T

0

 f0(t, x(t)) +
m∑

i=1

λ̂i(t) fi(t, x(t))

 dt, ∀x(·) ∈ L∞([0,T];Rn).

For the all admissible point x(·) holds∫ T

0
f0(t, x(t))dt ≥

∫ T

0

 f0(t, x(t)) +
m∑

i=1

λ̂i(t) fi(t, x(t))

 dt

≥

∫ T

0
f0(t, x̂(t)) dt,

so that ∫ T

0
f0(t, x̂(t)) dt ≤

∫ T

0
f0(t, x(t)) dt, ∀x(·) ∈ ΩP.

Therefore, x̂(·) is an optimal solution of (CTP).

As an illustration, we will consider the following example:

Example 3.5. ∫ 1

0

(
|x(t) − t| + x2(t) − 2tx(t) + t2 + 1

)
dt→ inf;

−x(t) ≤ 0 a.e. in [0, 1],

ex(t)−t
− 1 ≤ 0 a.e. in [0, 1],

x(·) ∈ L∞([0, 1];R),

(P)

where f0(t, x(t)) := |x(t) − t| + x2(t) − 2tx(t) + t2 + 1, f1(t, x(t)) := −x(t), f2(t, x(t)) := ex(t)−t
− 1. It can be easily

verified that x̂(t) = t a.e. t in [0, 1], is an optimal solution of preceding problem. We have that Slater’s
condition (SQ) is satisfied for y(t) = t

2 .
Given x ∈ R, for almost everywhere in [0, 1], χ1(t, x) = −x, χ2(t, x) = ex−t

− 1 and

χ0(t, x) =


x2
− 2x + 5

6 , x ≤ 0,
2x2
− 2x + 5

6 , x ∈ (0, 1),
x2
−

1
6 , x ≥ 1.

Take x̄(·) ≡ 2, R = 3 and α = 1
2 . It is clear,

I(t, x) =

{0}, for x ≤ −1, t ∈ [0, 1],
{2}, for x ≥ 5, t ∈ [0, 1].

The regularity condition (RC) is verified with e = e(t, x) = 1, for almost every t ∈ [0, 1], for x ≥ 5, i.e.,

⟨∂xχ2(t, x), e⟩ ≥ α.

Similarly, the regularity condition (RC) is verified with e = (t, x) = −1, for almost every t ∈ [0, 1], for x ≤ −1,
i.e.,

⟨∂xχ0(t, x), e⟩ = 1 ≥ α.

Indeed, for x ∈ R \ (−1, 5), we have
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• ⟨∂xχ0, e⟩ = ⟨2x − 2,−1⟩ ≥ α, for x ≤ −1, e = −1 and t ∈ [0, 1],

• ⟨∂xχ2, e⟩ = ⟨ex−t, 1⟩ ≥ α, for x ≥ 5, e = 1 and t ∈ [0, 1].

In the sequel, from inequalities

L(x(·), λ̂(·)) =
∫ 1

0

(
|x(t) − t| + x2(t) − 2tx(t) + t2 + ex(t)−t

)
dt

≥

∫ 1

0

(
|x(t) − t| + (x(t) − t)2 + 1 + x(t) − t

)
dt

≥L(x̂(·), λ̂(·))
=1

≥L(x̂(·), λ(·)), ∀x(·) ∈ L∞([0, 1];R), λ(·) = (λ1(·), λ2(·)) ∈ L∞([0, 1];R2), λ(t) ≥ 0 a.e in [0, 1],

it can be easily verified that (x̂(t), λ̂1(t), λ̂2(t)) = (t, 0, 1) a.e. in [0, 1] is a Karush-Kuhn-Tucker saddle point
of the problem (P) and complementary slackness condition holds. Indeed, λ̂i(t) fi(t, x̂(t)) = 0, i = 1, 2 a.e. in
[0, 1].

Definition 3.6. We say a function f : [0,T] ×Rn
→ R is linear if for any vectors x, y ∈ Rn and t ∈ [0,T],

f (t, x + y) = f (t, x) + f (t, y) and f (t, αx) = α f (t, x), ∀α ∈ R.

Let L be the subset of indices from the set I for which the function fi, i ∈ I is linear in second argument and
let N be the subset of indices from the set I for which the function fi, i ∈ I is nonlinear in second argument.
It is clear that I = L ⊔ N. For all i ∈ I, note that by λi(t) we denote the multiplier that corresponds to the
constraint function fi.

Using the same approach, with an additional regularity assumption we can obtain new saddle point
optimality criteria for the initial problem, where is at least one of the multipliers to the correspond to the
nonlinear constraint functions is nonzero.

Theorem 3.7. Let the function f0(t, ·) be linear and let x̂(·) be an optimal solution of the problem (CTP). Assume
that the problem (CTP) satisfies (RC) and Slater’s constraint qualification(SQ). Further, assume that there exists
z(·) ∈ L∞([0,T];Rn) such that f0(t, z(t)) < 0 and fi(t, z(t)) ≤ 0 for i ∈ L a.e. in [0,T]. Then there exist the multipliers
λ̂i(·) ∈ L∞([0,T];R), i ∈ I such that λ̂i(t) fi(t, x̂(t)) = 0, i ∈ I a.e. in [0,T] and (x̂(·), λ̂(·)) is a Karush-Kuhn-Tucker
saddle point for (CTP), where λ̂i(t) . 0 for some i ∈ N, t ∈ [0,T],

Proof. As in the proof Theorem 3.3, (x̂(·), λ̂(·)) is a Karush-Kuhn-Tucker saddle point for (CTP) and λ̂i(t) fi(t, x̂(t)) =
0, i ∈ I a.e. in [0,T]. Now, we shall prove that there exists i ∈ N such that λ̂i(t) . 0 a.e. in [0,T]. We will
suppose that is not true. Let λ̂i ≡ 0, ∀i ∈ N. Define the function Φ : L∞([0,T];Rn)→ R by

Φ(x(·)) =
∫ T

0

 f0(t, x(t)) +
∑
i∈L

λ̂i(t) fi(t, x(t)) − f0(t, x̂(t))

 dt.

Since (x̂(·), λ̂(·)) is a Karush-Kuhn-Tucker saddle point, we obtain

Φ(x(·)) ≥ 0, ∀x(·) ∈ L∞([0,T];Rn).

For the admissible point x(·) = x̂(·), and from slackness condition λ̂i(t) fi(t, x̂(t)) = 0, i ∈ I a.e. in [0,T], we
have that Φ(x̂(·)) = 0 holds. Since the function Φ(x(·)) is linear in x, nonnegative and vanishes at the point
x̂(·), we can conclude that the preceding function vanishes on whole space L∞([0,T];Rn). Also, we have
that

Φ(x̂(t) + z(t)) =
∫ T

0

 f0(t, z(t)) +
∑
i∈L

λ̂i(t) fi(t, z(t))

 dt = 0,

holds, which is a contradiction with assumptions fi(t, z(t)) ≤ 0 for i ∈ L and f0(t, z(t)) < 0 a.e. in [0,T].
Indeed, from that and from the fact that λ̂(t) ≥ 0 a.e. in [0,T], we obtain Φ(x̂(t) + z(t)) < 0.
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As an illustration, we will consider the following simple example:

Example 3.8. ∫ 1

0
(x1(t) − x2(t)) dt→ inf;

−x1(t) − 1 ≤ 0 a.e. in [0, 1],
3x1(t) + 2x2(t) ≤ 0 a.e. in [0, 1],

xi(·) ∈ L∞([0, 1];R), i = 1, 2.

It is obvious that x̂(t) = (x̂1(t), x̂2(t)) = (−1, 3
2 ) a.e. in [0, 1] is an optimal solution of preceding problem, where

f0(t, x(t)) = x1(t) − x2(t), f1(t, x(t)) = −x1(t) − 1 and f2(t, x(t)) = 3x1(t) + 2x2(t). Further, we have that (SQ) is
satisfied for y(t) = ( t

3 ,−
t+1

2 ) a.e. in [0, 1] and there exists point z(t) = (−t− 1, t) a.e. in [0, 1], such that f0(t, z(t)) < 0
and f2(t, z(t)) ≤ 0 a.e. in [0, 1].

Given x = (x1, x2) ∈ R2, for almost every t in [0, 1], χ0(t, x) = x1−x2+
5
2 , χ1(t, x) = −x1−1, χ2(t, x) = 3x1+2x2.

Define

A = {(x1, x2) ∈ R2 :
2
3

x1 + x2 −
5
6
≥ 0, 2x1 + x2 +

1
2
≥ 0},

B = {(x1, x2) ∈ R2 : 2x1 + x2 +
1
2
≤ 0, −2x1 + x2 −

7
2
≥ 0},

C = {(x1, x2) ∈ R2 : −2x1 + x2 −
7
2
≤ 0,

2
3

x1 + x2 −
5
6
≤ 0}.

It is obvious that ∂xχ0(t, x) = (1,−1), ∂xχ1(t, x) = (−1, 0) and ∂xχ2(t, x) = (3, 2). It can be easily verified that
A ∩ B ∩ C = {(−1, 3

2 )}, A ∪ B ∪ C = R2 and

I(t, x) = {2} in int(A),
I(t, x) = {1} in int(B),
I(t, x) = {0} in int(C),
I(t, x) = {1, 2} in (A ∩ B) \ (A ∩ B ∩ C),
I(t, x) = {0, 2} in (A ∩ C) \ (A ∩ B ∩ C),
I(t, x) = {0, 1} in (B ∩ C) \ (A ∩ B ∩ C),
I(t, x) = {0, 1, 2} in A ∩ B ∩ C.

The regularity of the system

χ0(t, x) = x1 − x2 +
5
2
< 0,

χ1(t, x) = −x1 − 1 ≤ 0,
χ2(t, x) = 3x1 + 2x2 ≤ 0,

x = (x1, x2) ∈ R2,

is verified with x̄(·) ≡ (−1, 3
2 ), R = 2, α = 1

10 and for almost every t ∈ [0, 1], e(t, x) = (1, 0) for x ∈ int(A) or
x ∈ int(C). Also, for almost every t ∈ [0, 1], e(t, x) = (1, 0) for x ∈ (A ∩ C) \ (A ∩ B ∩ C), e(t, x) = (− 3

5 ,−
4
5 ) for

x ∈ int(B) or x ∈ (B∩C) \ (A∩B∩C) and e(t, x) = (− 1
3 ,

2
√

2
3 ) for x ∈ (A∩B) \ (A∩B∩C). Consequently, regularity

condition (RC) is satisfied.
Therefore, it can be easily verified that (x̂1(t), x̂2(t), λ̂1(t), λ̂2(t)) = (−1, 3

2 ,
5
2 ,

1
2 ) a.e. in [0, 1] is a Karush-Kuhn-

Tucker saddle point and the complementary slackness condition holds. Indeed, we have λ̂i(t) fi(t, x̂(t)) = 0, i = 1, 2
a.e. in [0, 1]. Also, from Theorem 3.7 immediately follows that the multiplier λ̂1(·) ∈ L∞([0,T];R) must be nonzero
in [0, 1].



A. Jović, B. Marinković / Filomat 36:11 (2022), 3797–3808 3805

4. Duality theorems

A duality theorem in continuous-time programming is, generally speaking, the statement of a relation-
ship of a certain kind between two continuous-time programming problems. In this section we will focus
our attention on developing some duality relationships between problems (CTP) and (DCTP). We define
the dual problem for (CTP) as

F(λ(·))→ sup;
subject to λ(t) ≥ 0, a.e. in [0,T],

λ(·) ∈ L∞([0,T];Rm),
(DCTP)

where
F(λ(·)) = inf

x(·)∈L∞([0,T];Rn)
L(x(·), λ(·)).

Here, ΩD denotes the set of all feasible solutions of the problem (DCTP) i.e.,

ΩD = {λ(·) ∈ L∞([0,T];Rm) : λ(t) ≥ 0, a.e. in [0,T]} .

In the sequel, the duality results are stated. The first result, called the weak duality theorem, is a simple
consequence of the definition of (DCTP). However, it has some important corollaries.

Theorem 4.1. (Weak duality theorem) Let x(·) ∈ L∞([0,T];Rn) and λ(·) ∈ L∞([0,T];Rm) be feasible solutions of
(CTP) and (DCTP), respectively. Then

F(λ(·)) ≤ J0(x(·)).

Proof. From definition of F, we obtain

F(λ(·)) = inf
x̃(·)∈L∞([0,T];Rn)

∫ T

0

 f0(t, x̃(t)) +
∑
i∈I

λ(t) fi(t, x̃(t))

 dt

≤

∫ T

0
f0(t, x(t))dt +

∫ T

0

∑
i∈I

λi(t) fi(t, x(t))dt.

Since λ(·) ∈ ΩD and x(·) ∈ ΩP, i.e., λ(t) ≥ 0 and fi(t, x(t)) ≤ 0, i ∈ I a.e. in [0,T], we have∫ T

0

∑
i∈I

λi(t) fi(t, x(t))dt ≤ 0.

Hence

F(λ(·)) ≤
∫ T

0
f0(t, x(t))dt +

∫ T

0

∑
i∈I

λi(t) fi(t, x(t))dt ≤
∫ T

0
f0(t, x(t))dt = J0(x(·)),

and the result follows.

We then have, as a corollaries of the previous theorem, the following results.

Corollary 4.2.
sup
λ(·)∈ΩD

F(λ(·)) ≤ inf
x(·)∈ΩP

J0(x(·)).

Note from the previous theorem that the optimal objective value of the primal problem is greater than or
equal to the optimal objective value of the dual problem.
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Corollary 4.3. If
F(λ(·)) ≥ J0(x(·))

for any feasible solution x(·) for (CTP) and any feasible solution λ(·) for (DCTP), then x(·) and λ(·) are optimal
solutions of (CTP) and (DCTP), respectively.

Proof. From Theorem 4.1, we have that for all (CTP) feasible points x̃(·), F(λ(·)) ≤ J0(x̃(·)) holds. If in addition
F(λ(·)) ≥ J0(x(·)) then J0(x̃(·)) ≥ J0(x(·)) ∀x̃(·) ∈ ΩP. Therefore, this guarantees that x(·) is an optimal solution
of (CTP).

On the other hand, F(λ(·)) ≥ J0(x(·)) ≥ F(λ̃(·)) ∀λ̃(·) ∈ ΩD. Then λ(·) is an optimal solution of (DCTP).

Corollary 4.4. If solution of (DCTP) is∞ then solution of (CTP) is∞.

Proof. For all x(·) ∈ ΩP, λ(·) ∈ ΩD, it is verified that J0(x(·)) ≥ F(λ(·)) and then

J0(x(·)) ≥ sup
λ(·)∈ΩD

F(λ(·)) = ∞.

This implies that J0(x(·)) = ∞, ∀x(·) ∈ ΩP. Therefore (CTP) is infeasible.

Corollary 4.5. If solution of (CTP) is −∞ then solution of (DCTP) is −∞.

The following result, known as the strong duality theorem, shows that, under convexity assumptions,
suitable regularity condition and Slater’s constraint qualification, there is no duality gap between primal
(CTP) and dual (DCTP).

Theorem 4.6. (Strong duality theorem) Let x̂(·) be an optimal solution of the problem (CTP). Assume that the
problem (CTP) satisfies (RC) and Slater’s constraint qualification (SQ). Then there exists λ̂(·) ∈ L∞([0,T];Rm),
λ̂(t) ≥ 0 a.e. in [0,T], such that λ̂(·) is an optimal solution of (DCTP) and we have strong duality, i.e.,

F(λ̂(·)) = sup
λ(·)∈ΩD

F(λ(·)) = inf
x(·)∈ΩP

J0(x(·)) = J0(x̂(·)). (8)

Proof. Let

Ĵ0 = inf
{ ∫ T

0
f0(t, x(t))dt : x(·) ∈ L∞([0,T]; Rn), fi(t, x(t)) ≤ 0, i ∈ I, a.e. in [0,T]

}
.

If Ĵ0 = −∞we then conclude from the Corollary 4.5 of the Weak Duality Theorem that

sup
{
F(λ(·)) : λ(t) ≥ 0, a.e. in [0,T]

}
= −∞,

and, hence (8) is satisfied. Thus, suppose that Ĵ0 is finite. Since x̂(·) solves (CTP), from Theorem 3.3 we have
that there exist the multipliers λ̂i ∈ L∞([0,T];R), i ∈ I, such that λ̂i(t) fi(t, x̂(t)) = 0, i ∈ I, a.e. in [0,T] and
(x̂(·), λ̂(·)) is a Karush-Kuhn-Tucker saddle point for (CTP), i.e.,

L(x̂(·), λ(·)) ≤ L(x̂(·), λ̂(·)) ≤ L(x(·), λ̂(·)), (9)

for all x(·) ∈ L∞([0,T];Rn) and all λ(·) ∈ L∞([0,T];Rm), λ(t) ≥ 0 a.e. in [0,T]. Let λ(·) be a feasible solution
for (DCTP). We have that

F(λ(·)) = inf
x(·)∈L∞([0,T];Rn)

∫ T

0

 f0(t, x(t)) +
∑
i∈I

λi(t) fi(t, x(t))

 dt

≤

∫ T

0

 f0(t, x̂(t)) +
∑
i∈I

λi(t) fi(t, x̂(t))

 dt

≤

∫ T

0

 f0(t, x̂(t)) +
∑
i∈I

λ̂i(t) fi(t, x̂(t))

 dt

=L(x̂(·), λ̂(·)).

(10)
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From (9) we have that L(x̂(·), λ̂(·)) ≤ L(x(·), λ̂(·)), ∀x(·) ∈ L∞([0,T];Rn). Therefore, since x̂(·) ∈ L∞([0,T];Rn),
F(λ̂(·)) = L(x̂(·), λ̂(·)) holds. Hence,

F(λ(·)) ≤ F(λ̂(·)) ∀λ(·) ∈ ΩD.

Thus, λ̂(·) is an optimal solution for (DCTP). Since λ̂i(t) fi(t, x̂(t)) = 0, i ∈ I, a.e. in [0,T], we obtain

F(λ̂(·)) =
∫ T

0

 f0(t, x̂(t)) +
∑
i∈I

λ̂i(t) fi(t, x̂(t))

 dt = J0(x̂(·)).

Thus, the proof is complete.

As an illustration, we will consider the following simple example of strong duality.

Example 4.7. Consider the following primal problem (P) from Example 3.5 and the corresponding dual problem (D):

F(λ(·))→ sup;
λ1(t) ≥ 0 a.e. in [0, 1],
λ2(t) ≥ 0 a.e. in [0, 1],

λi(·) ∈ L∞([0, 1];R), i = 1, 2,

(D)

where

F(λ(·)) = inf
x(·)∈L∞([0,1];R)

∫ 1

0

(
|x(t) − t| + x2(t) − 2tx(t) − λ1(t)x(t) + λ2(t)(ex(t)−t

− 1) + t2 + 1
)
dt.

It can be verified easily that x̂(t) = t a.e. in [0, 1] is an optimal solution of the problem (P) and there exists
the multiplier λ̂(·) ∈ L∞([0, 1];R2), λ̂(t) = (λ̂1(t), λ̂2(t)) = (0, 1) a.e. in [0, 1], such that (x̂(·), λ̂1(·), λ̂2(·)) is a
Karush-Kuhn-Tucker saddle point for (P) and λ̂i(t) fi(t, x̂(t)) = 0, i = 1, 2, a.e. in [0, 1]. Also (SQ) and (RC)
qaulifications are satisfied. Hence, λ̂(t) = (0, 1) a.e. in [0, 1] is an optimal solution of the problem (D) and
F(λ̂(·)) = 1. It is obvious that optimal values of dual problem (D) and primal problem (P) are equal. Thus,
there is no duality gap.

5. Conclusion

This paper addressed the convex continuous-time programming problem. The results were formu-
lated without using differentiability. Saddle point type necessary optimality conditions were presented
under Slater constraint qualification, using a new theorem of the alternative with the additional regularity
assumption. Sufficient saddle point optimality conditions were given and the weak and strong duality
theorems were stated. It would be of interest to see how the similar approach can be extended to exam-
ine optimality conditions for nonsmooth fractional continuous-time programming and smooth quadratic
continuous-time programming, where the objective function is symmetric positive definite matrix which
elements are measurable functions on [0,T].
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