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Abstract. We introduce the class of quasi-square-2-isometric operators on a complex separable Hilbert
space. This class extends the class of 2-isometric operators due to Agler and Stankus. An operator T
is said to be quasi-square-2-isometric if T∗5T5

− 2T∗3T3 + T∗T = 0. In this paper, we give operator matrix
representation of quasi-square-2-isometric operator in order to obtain spectral properties of this operator. In
particular, we show that the function σ is continuous on the class of all quasi-square-2-isometric operators.
Under the hypothesis σ(T)∩ (−σ(T)) = ∅, we also prove that if ET({λ}) is the Riesz idempotent for an isolated
point of the spectrum of quasi-square-2-isometric operator, then ET({λ}) is self-adjoint.

1. Introduction

Let B(H) denote the algebra of all bounded linear operators on an infinite dimensional complex separable
Hilbert space H. If T ∈ B(H), we shall write N(T) and R(T) for the null space and the range space of T, and
also, write σ(T), σa(T), and isoσ(T) for the spectrum, the approximate point spectrum and the isolated point
of the spectrum of T, respectively. In [3] Agler derived certain disconjugacy and Sturm-Lioville results for
a subclass of the Toeplitz operators. These results were suggested by the study of operators T ∈ B(H) which
satisfy the equation,

T∗2T2
− 2T∗T + I = 0.

Such T are called 2-isometric operators, which are natural generalizations of isometric operators (T∗T = I).
It is known that an isometric operator is a 2-isometric operator. 2-isometric operators have been studied
by many authors and they have many interesting properties (see [3, 4, 6, 8, 9, 11, 14, 17, 21]), for example,
if T ∈ B(H) is a 2-isometric operator, then Tn is also a 2-isometric operator for any positive integer n, σp(T)
for the point spectrum of T is a subset of the boundary ∂D of the unit disc D (in the complex plane C),
σ(T) ⊆ ∂Dwhenever T is invertible, σ(T) is the closureD ofDwhenever T is not invertible.

Definition 1.1. An operator T is said to be square-2-isometric if T∗4T4
−2T∗2T2+I = 0, and quasi-square-2-isometric

if T∗5T5
− 2T∗3T3 + T∗T = 0.
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It is clear that the class of 2-isometric operators ⊆ the class of square-2-isometric operators ⊆ the class of
quasi-square-2-isometric operators.

Example 1.2. Let {en}
∞

n=0 be a canonical orthogonal basis for l2 and α = (αn)n∈N be a bounded sequence of nonnegative
numbers. The corresponding unilateral weighted shift operator on l2 is defined by Tαen = αnen+1 for all n ≥ 0.
Straightforward calculations show that the following statements hold:
(1) Tα is a 2-isometric operator⇐⇒ α2

nα
2
n+1 − 2α2

n + 1 = 0 (n = 0, 1, 2, 3, · · · );
(2) Tα is a square-2-isometric operator⇐⇒ α2

nα
2
n+1α

2
n+2α

2
n+3 − 2α2

nα
2
n+1 + 1 = 0 (n = 0, 1, 2, 3, · · · );

(3) Tα is a quasi-square-2-isometric operator⇐⇒ α2
nα

2
n+1α

2
n+2α

2
n+3 − 2α2

nα
2
n+1 + 1 = 0 (n = 1, 2, 3, · · · ).

If
√

3 = α0 = α2 = α4 = α6 = · · · and
√

3
3 = α1 = α3 = α5 = · · · , then Tα is a square-2-isometric operator

but not a 2-isometric operator.
If 2 = α0, 1 = α1 = α2 = α3 = · · · , then Tα is a quasi-square-2-isometric operator but not a square-2-

isometric operator.
For every T ∈ B(H), the function σ : T 7−→ σ(T) is upper semi-continuous, but fails to be continuous in

general. Conway and Morrel [10] made a detailed study of spectral continuity in B(H). Duggal, Jeon and
Kim [12] proved that the spectrum is continuous on the classes of ∗-paranormal and paranormal operators.
We obtain an analogous result for quasi-square-2-isometric operators. A subspace M is called an invariant
subspace for the operator T ∈ B(H) if TM ⊆ M. It is not known that whether or not every operator has a
nontrivial invariant subspace (i.e., other than the zero subspace and the entire space). Brown [7] proved
that subnormal operators do have nontrivial invariant subspaces. In this paper, we show that every quasi-
square-2-isometric operator has a nontrivial invariant subspace. Letλ ∈ isoσ(T). Then the Riesz idempotent
of T with respect to λ is defined by ET({λ}) = 1

2πi

∫
∂D(µI − T)−1dµ, where D is a closed disk centered at λ

which contains no other points of the spectrum of T. Stampfli [19] showed that if T is hyponormal, then
ET({λ}) is self-adjoint and R(ET({λ})) = N(T − λI) = N(T − λI)∗. Recently, Mecheri [16] obtained Stampfli’s
result for 2-isometric operator. Under the hypothesis σ(T) ∩ (−σ(T)) = ∅, we extend Stampfli’s result to
quasi-square-2-isometric operator.

2. Preliminaries

An operator T ∈ B(H) is said to have the single valued extension property at λ0 ∈ C (abbrev. SVEP at λ0),
if for every open neighborhood G of λ0, the only analytic function f : G → H which satisfies the equation
(λI − T) f (λ) = 0 for all λ ∈ G is the function f ≡ 0. An operator T is said to have SVEP if T has SVEP at
every point λ ∈ C. For T ∈ B(H) and x ∈ H, the set ρT(x) is defined to consist of elements z0 ∈ C such
that there exists an analytic function f (z) defined in a neighborhood of z0, with values in H, which verifies
(T − z) f (z) = x, and it is called the local resolvent set of T at x. We denote the complement of ρT(x) by σT(x),
called the local spectrum of T at x, and define the local spectral subspace of T, HT(F) = {x ∈ H : σT(x) ⊂ F}
for each subset F of C. An operator T ∈ B(H) is said to have Bishop’s property (β) if for every open subset
G of C and every sequence fn : G → H of H-valued analytic functions such that (T − z) fn(z) converges
uniformly to 0 in norm on compact subsets of G, fn(z) converges uniformly to 0 in norm on compact subsets
of G. An operator T ∈ B(H) is said to have Dunford’s property (C) if HT(F) is closed for each closed subset
F of C. An operator T ∈ B(H) is said to have property (δ) if for every open covering (U,V) of C, we have
H = HT(U) +HT(V). An operator T ∈ B(H) is said to be decomposable if T has both Dunford’s property (C)
and property (δ). It is well known that

decomposable ⇒ Bishop’s property (β)⇒ SVEP.

An important subspace in local spectral theory is HT({λ}) associated with the singleton set {λ}. We have
HT({λ}) coincides with the quasi-nilpotent part H0(T − λI) of T − λI, defined as

H0(T − λI) := {x ∈ H : lim
n→∞
||(T − λI)nx||

1
n = 0}.
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3. square-2-isometric operator

Lemma 3.1. A power of a square-2-isometric operator is again a square-2-isometric operator.

Proof. Let T be a square-2-isometric operator. Then T∗4T4
− T∗2T2 = T∗2T2

− I. This, in turn, shows that
T∗6T6

− T∗4T4 = T∗2T2
− I and more generally,

T∗2n+2T2n+2
− T∗2nT2n = T∗2T2

− I

for all positive integers n. Now we prove the assertion by using the mathematical induction. Since T is a
square-2-isometric operator, the result is true for n = 1. Now assume that the result is true for n = k, i.e.,

T∗4kT4k
− 2T∗2kT2k + I = 0.

Then

T∗4(k+1)T4(k+1)
− 2T∗2(k+1)T2(k+1) + I

= T∗4T∗4kT4kT4
− 2T∗2T∗2kT2kT2 + I

= T∗4(2T∗2kT2k
− I)T4

− 2T∗2T∗2kT2kT2 + I

= 2T∗4T∗2kT2kT4
− 2T∗2T∗2kT2kT2

− T∗4T4 + I

= 2T∗2k(T∗4T4
− T∗2T2)T2k

− T∗4T4 + I

= 2T∗2k(T∗2T2
− I)T2k

− T∗4T4 + I

= 2T∗2k+2T2k+2
− 2T∗2kT2k

− T∗4T4 + I

= 2(T∗2T2
− I) − T∗4T4 + I

= −(T∗4T4
− 2T∗2T2 + I)

= 0.

This shows that Tk+1 is also a square-2-isometric operator, completing the argument.

Lemma 3.2. Let T be a square-2-isometric operator and M be an invariant subspace for T. Then the restriction T|M
is also a square-2-isometric operator.

Proof. Since M is an invariant subspace for T, we observe that

T =
(
T1 T2
0 T3

)
:
(

M
M⊥

)
→

(
M

M⊥

)
.

Let D = T1T2 + T2T3,F = T2
1D +DT2

3. Then

T2 =

(
T2

1 D
0 T2

3

)
and T4 =

(
T4

1 F
0 T4

3

)
,

we have

T∗4T4
− 2T∗2T2 + I

=

(
T∗41 T4

1 − 2T∗21 T2
1 + I T∗41 F − 2T∗21 D

F∗T4
1 − 2D∗T2

1 F∗F + T∗43 T4
3 − 2D∗D − 2T∗23 T2

3 + I

)
= 0,

i.e., T∗41 T4
1 − 2T∗21 T2

1 + I = 0. Hence T|M is a square-2-isometric operator.
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Lemma 3.3. Let T be a square-2-isometric operator. Then it has Bishop’s property (β) and SVEP.

Proof. It suffices to prove that T has Bishop’s property (β). 2-isometric operator has Bishop’s property (β)
by [20, Lemma 2.6]. If T is a square-2-isometric operator, then T2 is a 2-isometric operator, hence T has
Bishop’s property (β) by [15, Theorem 3.3.9].

Lemma 3.4. Let T be a square-2-isometric operator. Then σa(T) ⊆ ∂D. Thus, σ(T) =D or σ(T) ⊆ ∂D.

Proof. If λ ∈ σa(T), then there exists a sequence of unit vectors {xn}
∞

n=1 such that lim
n→∞
||Txn − λxn|| = 0. Since

lim
n→∞
||T jxn − λ jxn|| = 0 for j = 1, 2, 3, 4,we have

| ||T jxn|| − ||λ
jxn|| |≤ ||T jxn − λ

jxn|| → 0 as n→∞

for j = 1, 2, 3, 4,which implies that

(|λ|2 − 1)2 = lim
n→∞

(||T4xn|| − 2||T2xn|| + ||xn||) = 0.

Hence |λ| = 1. Since ∂σ(T) ⊆ σa(T), we conclude that σ(T) =D or σ(T) ⊆ ∂D.

Lemma 3.5. Let T be a square-2-isometric operator and N(T∗) = {0}. Then T2 is unitary.

Proof. The assumption N(T∗) = {0}means that R(T2) is dense, T2 is a 2-isometric operator, ||T2x|| ≥ ||x||(x ∈ H)
by [18, Lemma 1]. This implies that T2 is invertible and T−2 is also a 2-isometric operator, and hence
||T−2x|| ≥ ||x||(x ∈ H). Combined with the property that ||T2x|| ≥ ||x||(x ∈ H) we conclude that T2 is
unitary.

Lemma 3.6. Let T be a square-2-isometric operator and σ(T) = {λ}. Then T = λI.

Proof. σ(T2) = {λ2
} by spectral mapping theorem and T2 is a 2-isometric operator, hence T2 is unitary by

Lemma 3.4 and Lemma 3.5, we get T2 = λ2I, thus T = λI.

4. quasi-square-2-isometric operator

We begin with the following theorem which is a structure theorem for quasi-square-2-isometric opera-
tors.

Theorem 4.1. Suppose that T , 0 does not have a dense range. Then the following statements are equivalent:
(1) T is a quasi-square-2-isometric operator;

(2) T =
(
T1 T2
0 0

)
on H = R(T)⊕N(T∗), where T1 is a square-2-isometric operator. Furthermore, σ(T) = σ(T1)∪ {0}.

Proof. (1)⇒ (2) Consider the matrix representation of T with respect to the decomposition H = R(T)⊕N(T∗) :

T =
(
T1 T2
0 0

)
.

Let P be the projection onto R(T). Since T is a quasi-square-2-isometric operator, we have

P(T∗4T4
− 2T∗2T2 + I)P = 0.

Therefore
T∗41 T4

1 − 2T∗21 T2
1 + I = 0.
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Since σ(T1) ∩ {0} has no interior point, we have σ(T) = σ(T1) ∪ {0}.

(2)⇒ (1) Suppose that T =
(
T1 T2
0 0

)
on H = R(T) ⊕N(T∗), where T1 is a square-2-isometric operator. Then

we have

T∗(T∗4T4
− 2T∗2T2 + I)T

=

(
T1 T2
0 0

)∗
×

( ( T1 T2
0 0

)∗4 (
T1 T2
0 0

)4

− 2
(

T1 T2
0 0

)∗2 (
T1 T2
0 0

)2

+ I
)

×

(
T1 T2
0 0

)
=

(
T1 T2
0 0

)∗ (
T∗41 T4

1 − 2T∗21 T2
1 + I T∗41 T3

1T2 − 2T∗21 T1T2

T∗2T∗31 T4
1 − 2T∗2T∗1T2

1 T∗2T∗31 T3
1T2 − 2T∗2T∗1T1T2 + I

) (
T1 T2
0 0

)
=

(
T∗1(T∗41 T4

1 − 2T∗21 T2
1 + I)T1 T∗1(T∗41 T4

1 − 2T∗21 T2
1 + I)T2

T∗2(T∗41 T4
1 − 2T∗21 T2

1 + I)T1 T∗2(T∗41 T4
1 − 2T∗21 T2

1 + I)T2

)
=0.

Hence T is a quasi-square-2-isometric operator.

Corollary 4.2. Suppose that T is a quasi-square-2-isometric operator and R(T) is dense. Then T is a square-2-
isometric operator.

Proof. The conclusion is evident by Definition 1.1.

Corollary 4.3. Suppose that T is a quasi-square-2-isometric operator. Then so is Tn for all positive integers n.

Proof. If R(T) is dense, then T is a square-2-isometric operator and so is Tn by Lemma 3.1. Now, assume
that R(T) is not dense and T , 0, we decompose T as

T =
(
T1 T2
0 0

)
on H = R(T) ⊕N(T∗).

Then by Theorem 4.1, T∗41 T4
1 − 2T∗21 T2

1 + I = 0. Hence T1 is a square-2-isometric operator, by Lemma 3.1, Tn
1

is a square-2-isometric operator. Since

Tn =

(
Tn

1 Tn−1
1 T2

0 0

)
on H = R(T) ⊕N(T∗),

Tn is a quasi-square-2-isometric operator for all positive integers n by Theorem 4.1.

Corollary 4.4. Suppose that T is a quasi-nilpotent quasi-square-2-isometric operator. Then T = 0.

Proof. Suppose T is a quasi-nilpotent quasi-square-2-isometric operator. If R(T) is dense, then T is a square-
2-isometric operator. By Lemma 3.5 T2 is unitary, hence σ(T) ⊆ ∂D, where D denotes the open unit disc,

this is a contradiction. If R(T) is not dense and T , 0, then T =
(
T1 T2
0 0

)
on H = R(T) ⊕N(T∗),where T1 is a

square-2-isometric operator and σ(T1) = {0}, this is a contradiction. Thus T = 0.

Lemma 4.5. Let T be a quasi-square-2-isometric operator and M be an invariant subspace for T. Then the restriction
T|M is also a quasi-square-2-isometric operator.
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Proof. Since T is a quasi-square-2-isometric operator, T∗5T5
− 2T∗3T3 + T∗T = 0, hence

||T5x||2 + ||Tx||2 = 2||T3x||2

for every x ∈ H. For x ∈M, we have

2||(T|M)3x||2 =2||T3x||2 = ||T5x||2 + ||Tx||2 = ||(T|M)5x||2 + ||(T|M)x||2.

Thus T|M is a quasi-square-2-isometric operator.

Lemma 4.6. Let T be a quasi-square-2-isometric operator. Then σp(T) ⊆ ∂D ∪ {0}.

Proof. Since σa(T) ⊆ ∂D ∪ {0}, the conclusion is evident.

The following example provides an operator T which is a quasi-square-2-isometric operator, however,
the relation N(T − λI) ⊆ N(T − λI)∗ does not hold.

Example 4.7. Let T =
(
I 2I
0 −I

)
∈ B(H⊕H). Then T is a quasi-square-2-isometric operator, but N(T− I) ⊆ N(T− I)∗

does not hold.

Proof. Straightforward calculations show that T is a quasi-square-2-isometric operator, however, for every
nonzero vector x ∈ H, (T − I)(x⊕ 0) = 0, while (T − I)∗(x⊕ 0) , 0. Therefore, the relation N(T − I) ⊆ N(T − I)∗

does not hold.

But the following result holds.

Lemma 4.8. Let T be a quasi-square-2-isometric operator, 0 , λ ∈ σp(T) and

T =
(
λI T12
0 T22

)
on H = N(T − λI) ⊕N(T − λI)⊥.

Then
2||λT12T2

22x + T12T3
22x||2 + ||T6

22x||2 + ||T2
22x||2 = 2||T4

22x||2

for any x ∈ N(T − λI)⊥.

Proof. Let

T =
(
λI T12
0 T22

)
.

Then

Tk =

λkI
k−1∑
j=0
λ jT12Tk−1− j

22

0 Tk
22

 .
Suppose 0 , λ ∈ σp(T), by Lemma 4.6, λλ = 1, where λ is the conjugate of λ. Since T is a quasi-square-2-
isometric operator, T satisfies

T∗6T6
− 2T∗4T4 + T∗2T2 = 0.

Then

T∗6T6
− 2T∗4T4 + T∗2T2 =

(
0 E
E∗ F

)
= 0,
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where

E = λ
6
T12T5

22 + λ
5
T12T4

22 − λ
4
T12T3

22 − λ
3
T12T2

22,

F = |T12(λ5I + λ4T22 + λ
3T2

22 + λ
2T3

22 + λT4
22 + T5

22)|2 + |T6
22|

2

− 2|T12(λ3I + λ2T22 + λT2
22 + T3

22)|2 − 2|T4
22|

2 + |T12(λI + T22)|2 + |T2
22|

2,

|T|2 = T∗T.

Since E = 0, T12T5
22 + λT12T4

22 = λ
2T12T3

22 + λ
3T12T2

22,we have

F = |T12(λ5I + λ4T22 + λ
3T2

22 + λ
2T3

22 + λT4
22 + T5

22)|2 + |T6
22|

2

− 2|T12(λ3I + λ2T22 + λT2
22 + T3

22)|2 − 2|T4
22|

2 + |T12(λI + T22)|2 + |T2
22|

2

= 2|λT12T2
22 + T12T3

22|
2 + |T6

22|
2
− 2|T4

22|
2 + |T2

22|
2

= 2(T3∗
22 + λT2∗

22)T∗12T12(λT2
22 + T3

22) + T6∗
22T6

22 − 2T4∗
22T4

22 + T∗222T2
22

= 0 .

This is equivalent to
2||λT12T2

22x + T12T3
22x||2 + ||T6

22x||2 + ||T2
22x||2 = 2||T4

22x||2

for any x ∈ N(T − λI)⊥. This completes the proof.

Lemma 4.9. Suppose that T is a quasi-square-2-isometric operator, 0 , λ ∈ σp(T) and

T =
(
λI T12
0 T22

)
on H = N(T − λI) ⊕N(T − λI)⊥.

Then N(T22 − λI) = {0}.

Proof. Suppose x ∈ N(T − λI)⊥ and (T22 − λI)x = 0. If λ , 0, then by Lemma 4.8

2||λT12T2
22x + T12T3

22x||2 + ||T6
22x||2 + ||T2

22x||2 = 2||T4
22x||2

for any x ∈ N(T − λI)⊥, hence

2||(T − λI)
(

0
x

)
||

2 = 2||T12x||2 = 0,

thus
(

0
x

)
∈ N(T − λI) and x = 0.

The Berberian extension theorem shows that given an operator T ∈ B(H), there exists a Hilbert space
K ⊇ H and an isometric ∗-isomorphism T → T◦ ∈ B(K) preserving order such that σ(T) = σ(T◦) and
σp(T◦) = σa(T◦) = σa(T). For details see the following Lemma.

Lemma 4.10. [5] Let H be a complex Hilbert space. Then there exists a Hilbert space K such that H ⊂ K and a map
φ : B(H)→ B(K) such that
(1) φ is a faithful ∗-representation of the algebra B(H) on K, i.e., φ(T + S) = φ(T) + φ(S), φ(λT) = λφ(T),
φ(TS) = φ(T)φ(S), φ(T∗) = (φ(T))∗, φ(I) = I and ||φ(T)|| = ||T|| for any T,S ∈ B(H);
(2) φ(A) ≥ 0 for any A ≥ 0 in B(H);
(3) σa(T) = σa(φ(T)) = σp(φ(T)) for any T ∈ B(H).

Definition 4.11. [12] The set C(i) consists of (all) the operators T ∈ B(H) for which σ(T) = {0} implies T is nilpotent
(possibly, the 0 operator) and T◦ (the Berberian extension of T ) satisfies the property:

T◦ =
(
λI T12
0 T22

)
on H = N(T◦ − λI) ⊕N(T◦ − λI)⊥

at every nonzero λ ∈ σp(T◦) for some operators T12 and T22 such that λ < σp(T22) and σ(T◦) = σ(T22) ∪ {λ}.
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Theorem 4.12. The function σ is continuous on the set of quasi-square-2-isometric operators.

Proof. Suppose T is a quasi-square-2-isometric operator. Let φ: B(H) → B(K) be Berberian’s faithful ∗-
representation of Lemma 4.10. In the following, we shall show that φ(T) is also a quasi-square-2-isometric
operator. In fact, since T is a quasi-square-2-isometric operator, we have

T∗5T5
− 2T∗3T3 + T∗T = 0.

Hence we have

φ(T)∗5φ(T)5
− 2φ(T)∗3φ(T)3 + φ(T)∗φ(T)

= φ(T∗5T5
− 2T∗3T3 + T∗T) = 0 by Lemma 4.10,

so φ(T) is also a quasi-square-2-isometric operator. By Corollary 4.4 and Lemma 4.9, we have T belongs
to the set C(i). Therefore, we have that the function σ is continuous on the set of quasi-square-2-isometric
operators by [12, Theorem 1.1].

Proposition 4.13. Suppose that T ∈ B(H) is a quasi-square-2-isometric operator. Then it has a nontrivial invariant
subspace.

Proof. We consider the following three cases:
Case I: if R(T) = H, then T is a square-2-isometric operator. If T is not an invertible square-2-isometric
operator, then σ(T) = D, hence σ(T) has nonempty interior. Since T has Bishop’s property (β) by Lemma 3.3,
it has a nontrivial invariant subspace from [13]. If T is an invertible square-2-isometric operator and σ(T)
is a singleton {λ}, then T = λI by Lemma 3.6, hence T has a nontrivial invariant subspace. Next, we show
that if σ(T) contains at least two points, then T has a nontrivial invariant subspace. Let λ ∈ σ(T). Then, by
[15, Proposition 1.2.20], the space HT({λ}) is a closed invariant subspace of T and σ(T|HT({λ})) ⊆ {λ}. Let
U be an arbitrary open neighborhood of λ in C. We choose another open set V ⊆ C such that λ < V and
{U,V} is an open covering ofC. Since T2 is unitary by Lemma 3.5, T is decomposable by [15, Theorem 3.3.9],
σ(T|HT({λ})) ⊆ U, σ(T|HT(V)) ⊆ V, and H = HT({λ}) + HT(V). If HT({λ}) = {0}, then σ(T) = σ(T|HT(V)) ⊆ V,
which contradicts λ < V. If HT({λ}) = H, then σ(T) = σ(T|HT({λ})) ⊆ {λ}, which contradicts that σ(T) contains
at least two points. This contradiction shows that HT({λ}) is a nontrivial invariant closed linear subspace.
Case II: if R(T) = {0}, then T = 0, clearly it has a nontrivial invariant subspace.
Case III: if R(T) , {0} and R(T) , H, then R(T) is a nontrivial invariant subspace of T.

Since a square-2-isometric operator is a quasi-square-2-isometric operator, as a consequence we obtain
the following corollary.

Corollary 4.14. Every square-2-isometric operator has a nontrivial invariant subspace.

Lemma 4.15. Let T be a quasi-square-2-isometric operator and σ(T) = {λ}. Then T = λI.

Proof. We consider the following two cases:
Case I: if λ = 0, then T = 0 by Corollary 4.4.
Case II: if λ , 0, then T is a square-2-isometric operator, hence T = λI by Lemma 3.6.

Lemma 4.16. Let T be a quasi-square-2-isometric operator and λ ∈ isoσ(T). Then the Riesz idempotent ET({λ}) of T
with respect to λ satisfies

R(ET({λ})) = N(T − λI).

Proof. The Riesz idempotent ET({λ}) satisfies σ(T|R(I−ET({λ}))) = σ(T)\{λ} and σ(T|R(ET({λ}))) = {λ}. Since
T|R(ET({λ})) is also a quasi-square-2-isometric operator, it follows that (T−λI)ET({λ}) = (T|R(ET({λ}))−λI)ET({λ}) =
0 by Lemma 4.15, hence R(ET({λ})) ⊆ N(T − λI). Conversely, let x ∈ N(T − λI). Then

ET({λ})x =
1

2πi

∫
∂D

(µI − T)−1xdµ = (
1

2πi

∫
∂D

1
µ − λ

dµ)x = x,

thus x ∈ R(ET({λ})). This completes the proof of R(ET({λ})) = N(T − λI).
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An operator T ∈ B(H) is said to be polaroid if every λ ∈ isoσ(T) is a pole of the resolvent of T. The
condition of being polaroid may be characterized by means of the quasi-nilpotent part H0(T −λI) of T −λI.

Lemma 4.17. [2] An operator T ∈ B(H) is polaroid if and only if there exists p := p(T − λ) ∈N such that

H0(T − λI) = N(T − λI)p for all λ ∈ isoσ(T).

For p = 1, this operator is called simple polaroid.

It is known that R(ET({λ})) = H0(T − λI) [1, p.157]. As a consequence we obtain the following corollary.

Corollary 4.18. Let T be a quasi-square-2-isometric operator and λ ∈ isoσ(T). Then λ is a simple pole of the resolvent
of T.

Proof. The conclusion is evident by Lemma 4.16 and Lemma 4.17.

In 2012, Yuan and Ji [22, Lemma 5.2] proved following Lemma.

Lemma 4.19. [22] Let T ∈ B(H), m be a positive integer and λ ∈ isoσ(T).
(1) The following assertions are equivalent:
(a)R(ET({λ})) = N(T − λI)m.
(b)N(ET({λ})) = R(T − λI)m.

In this case, λ is a pole of the resolvent of T and the order of λ is not greater than m.
(2) If λ is a pole of the resolvent of T and the order of λ is m, then the following assertions are equivalent:
(a)ET({λ}) is self-adjoint.
(b)N(T − λI)m

⊆ N(T − λI)∗m.
(c)N(T − λI)m = N(T − λI)∗m.

Remark In general, ET({λ}) is not self-adjoint for a quasi-square-2-isometric operator. Let T =
(
I 2I
0 −I

)
∈

B(H ⊕ H). Example 4.7 shows that T is a quasi-square-2-isometric operator, however N(T − I) ⊆ N(T − I)∗

does not hold, Hence ET({1}) is not self-adjoint from Corollary 4.18 and Lemma 4.19.
Next for T ∈ B(H), we set the following property:

σ(T) ∩ (−σ(T)) = ∅. (∗)

Then we begin with the following result.

Lemma 4.20. Let T ∈ B(H) be a quasi-square-2-isometric operator and satisfy (∗). If λ is an eigen-value of T, then

N(T − λI) = N(T2
− λ2I) ⊆ N(T∗2 − λ

2
I) = N(T∗ − λI) and hence N(T − λI) is a reducing subspace for T.

Proof. Firstly, we show that N(T−λI) = N(T2
−λ2I). Because it is clear that N(T−λI) ⊆ N(T2

−λ2I), we will
verify that N(T2

−λ2I) ⊆ N(T−λI). Let x ∈ N(T2
−λ2I), i.e., (T2

−λ2I)x = 0. Then (T+λI)(T−λI)x = 0. Since
λ , 0, by the assumption (∗), we have−λ < σ(T). Hence, it follows (T−λI)x = 0 and x ∈ N(T−λI). Therefore,
N(T2

−λ2I) ⊆ N(T−λI) and N(T2
−λ2I) = N(T−λI). Because T is a quasi-square-2-isometric and satisfy (∗),

T2 is 2-isometric, by [20, Corollary 2.5], N(T2
− λ2I) ⊆ N(T2∗

− λ
2
I). Evidently, N(T∗ − λI) ⊆ N(T∗2 − λ

2
I). Let

x ∈ N(T∗2 − λ
2
I). Because (T∗ + λI)(T∗ − λI)x = 0 and T∗ + λI is invertible by the assumption (∗), we obtain

that x ∈ N(T∗ − λI). Hence, N(T2∗
− λ

2
I) = N(T∗ − λI). Finally, by the above results, it is clear that N(T − λI)

is a reducing subspace for T.

Theorem 4.21. Let T ∈ B(H) be a quasi-square-2-isometric operator and satisfy (∗), λ be an isolated point of σ(T)
and ET({λ}) be the Riesz idempotent with respect to λ. Then ET({λ}) is self-adjoint and R(ET({λ})) = N(T − λI) =
N(T − λI)∗.

Proof. First we note that R(ET({λ})) = N(T − λI) and N(T − λI) ⊆ N(T − λI)∗. It is obvious from Corollary
4.18, Lemma 4.19 and Lemma 4.20.
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