Filomat 36:11 (2022), 3809–3818 https://doi.org/10.2298/FIL2211809Z

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Classes of Operators Related to 2-Isometric Operators

Fei Zuo^a, Junli Shen^b, Alatancang Chen^c

^a College of Mathematics and Information Science, Henan Normal University, Xinxiang 453007, China. ^bCollege of Computer and Information Technology, Henan Normal University, Xinxiang 453007, China. ^cSchool of Mathematical Science, Inner Mongolia Normal University, Hohhot 010022, China.

Abstract. We introduce the class of quasi-square-2-isometric operators on a complex separable Hilbert space. This class extends the class of 2-isometric operators due to Agler and Stankus. An operator *T* is said to be quasi-square-2-isometric if $T^{*5}T^5 - 2T^{*3}T^3 + T^*T = 0$. In this paper, we give operator matrix representation of quasi-square-2-isometric operator in order to obtain spectral properties of this operator. In particular, we show that the function σ is continuous on the class of all quasi-square-2-isometric operators. Under the hypothesis $\sigma(T) \cap (-\sigma(T)) = \emptyset$, we also prove that if $E_T(\{\lambda\})$ is the Riesz idempotent for an isolated point of the spectrum of quasi-square-2-isometric operator, then $E_T(\{\lambda\})$ is self-adjoint.

1. Introduction

Let B(H) denote the algebra of all bounded linear operators on an infinite dimensional complex separable Hilbert space H. If $T \in B(H)$, we shall write N(T) and R(T) for the null space and the range space of T, and also, write $\sigma(T)$, $\sigma_a(T)$, and iso $\sigma(T)$ for the spectrum, the approximate point spectrum and the isolated point of the spectrum of T, respectively. In [3] Agler derived certain disconjugacy and Sturm-Lioville results for a subclass of the Toeplitz operators. These results were suggested by the study of operators $T \in B(H)$ which satisfy the equation,

$$T^{*2}T^2 - 2T^*T + I = 0.$$

Such *T* are called 2-isometric operators, which are natural generalizations of isometric operators ($T^*T = I$). It is known that an isometric operator is a 2-isometric operator. 2-isometric operators have been studied by many authors and they have many interesting properties (see [3, 4, 6, 8, 9, 11, 14, 17, 21]), for example, if $T \in B(H)$ is a 2-isometric operator, then T^n is also a 2-isometric operator for any positive integer n, $\sigma_p(T)$ for the point spectrum of T is a subset of the boundary $\partial \mathbb{D}$ of the unit disc \mathbb{D} (in the complex plane \mathbb{C}), $\sigma(T) \subseteq \partial \mathbb{D}$ whenever T is invertible, $\sigma(T)$ is the closure \mathbb{D} of \mathbb{D} whenever T is not invertible.

Definition 1.1. An operator *T* is said to be square-2-isometric if $T^{*4}T^4 - 2T^{*2}T^2 + I = 0$, and quasi-square-2-isometric if $T^{*5}T^5 - 2T^{*3}T^3 + T^*T = 0$.

Received: 15 December 2020; Accepted: 04 June 2022

²⁰²⁰ Mathematics Subject Classification. Primary 47B20; Secondary 47A10

Keywords. Square-2-isometric operator, Quasi-square-2-isometric operator, Spectral continuity, Invariant subspace, Riesz idempotent

Communicated by Dragan S. Djordjević

Research supported by the National Research Project Cultivation Foundation of Henan Normal University (20210372).

Email addresses: zuofei2008@sina.com (Fei Zuo), zuoyawen1215@126.com (Junli Shen), alatanca@imu.edu.cn (Alatancang Chen)

It is clear that the class of 2-isometric operators \subseteq the class of square-2-isometric operators \subseteq the class of quasi-square-2-isometric operators.

Example 1.2. Let $\{e_n\}_{n=0}^{\infty}$ be a canonical orthogonal basis for l_2 and $\alpha = (\alpha_n)_{n \in \mathbb{N}}$ be a bounded sequence of nonnegative numbers. The corresponding unilateral weighted shift operator on l_2 is defined by $T_{\alpha}e_n = \alpha_ne_{n+1}$ for all $n \ge 0$. Straightforward calculations show that the following statements hold:

(1) T_{α} is a 2-isometric operator $\iff \alpha_n^2 \alpha_{n+1}^2 - 2\alpha_n^2 + 1 = 0$ $(n = 0, 1, 2, 3, \cdots);$ (2) T_{α} is a square-2-isometric operator $\iff \alpha_n^2 \alpha_{n+1}^2 \alpha_{n+2}^2 \alpha_{n+3}^2 - 2\alpha_n^2 \alpha_{n+1}^2 + 1 = 0$ $(n = 0, 1, 2, 3, \cdots);$ (3) T_{α} is a quasi-square-2-isometric operator $\iff \alpha_n^2 \alpha_{n+1}^2 \alpha_{n+2}^2 \alpha_{n+3}^2 - 2\alpha_n^2 \alpha_{n+1}^2 + 1 = 0$ $(n = 1, 2, 3, \cdots).$

If $\sqrt{3} = \alpha_0 = \alpha_2 = \alpha_4 = \alpha_6 = \cdots$ and $\frac{\sqrt{3}}{3} = \alpha_1 = \alpha_3 = \alpha_5 = \cdots$, then T_α is a square-2-isometric operator but not a 2-isometric operator.

If $2 = \alpha_0$, $1 = \alpha_1 = \alpha_2 = \alpha_3 = \cdots$, then T_{α} is a quasi-square-2-isometric operator but not a square-2-isometric operator.

For every $T \in B(H)$, the function $\sigma : T \mapsto \sigma(T)$ is upper semi-continuous, but fails to be continuous in general. Conway and Morrel [10] made a detailed study of spectral continuity in B(H). Duggal, Jeon and Kim [12] proved that the spectrum is continuous on the classes of *-paranormal and paranormal operators. We obtain an analogous result for quasi-square-2-isometric operators. A subspace M is called an invariant subspace for the operator $T \in B(H)$ if $TM \subseteq M$. It is not known that whether or not every operator has a nontrivial invariant subspace (i.e., other than the zero subspace and the entire space). Brown [7] proved that subnormal operators do have nontrivial invariant subspace. In this paper, we show that every quasi-square-2-isometric operator has a nontrivial invariant subspace. Let $\lambda \in iso\sigma(T)$. Then the Riesz idempotent of T with respect to λ is defined by $E_T(\{\lambda\}) = \frac{1}{2\pi i} \int_{\partial D} (\mu I - T)^{-1} d\mu$, where D is a closed disk centered at λ which contains no other points of the spectrum of T. Stampfli [19] showed that if T is hyponormal, then $E_T(\{\lambda\})$ is self-adjoint and $R(E_T(\{\lambda\})) = N(T - \lambda I) = N(T - \lambda I)^*$. Recently, Mecheri [16] obtained Stampfli's result for 2-isometric operator.

2. Preliminaries

An operator $T \in B(H)$ is said to have the single valued extension property at $\lambda_0 \in \mathbb{C}$ (abbrev. SVEP at λ_0), if for every open neighborhood G of λ_0 , the only analytic function $f : G \to H$ which satisfies the equation $(\lambda I - T)f(\lambda) = 0$ for all $\lambda \in G$ is the function $f \equiv 0$. An operator T is said to have SVEP if T has SVEP at every point $\lambda \in \mathbb{C}$. For $T \in B(H)$ and $x \in H$, the set $\rho_T(x)$ is defined to consist of elements $z_0 \in \mathbb{C}$ such that there exists an analytic function f(z) defined in a neighborhood of z_0 , with values in H, which verifies (T - z)f(z) = x, and it is called the local resolvent set of T at x. We denote the complement of $\rho_T(x)$ by $\sigma_T(x)$, called the local spectrum of T at x, and define the local spectral subspace of T, $H_T(F) = \{x \in H : \sigma_T(x) \subset F\}$ for each subset F of \mathbb{C} . An operator $T \in B(H)$ is said to have Bishop's property (β) if for every open subset G of \mathbb{C} and every sequence $f_n : G \to H$ of H-valued analytic functions such that $(T - z)f_n(z)$ converges uniformly to 0 in norm on compact subsets of G, $f_n(z)$ converges uniformly to 0 in norm on compact subsets of G. An operator $T \in B(H)$ is said to have property (C) if $H_T(F)$ is closed for each closed subset F of \mathbb{C} . An operator $T \in B(H)$ is said to have property (δ) if for every open covering (U, V) of \mathbb{C} , we have $H = H_T(\overline{U}) + H_T(\overline{V})$. An operator $T \in B(H)$ is said to be decomposable if T has both Dunford's property (C) and property (δ). It is well known that

decomposable \Rightarrow Bishop's property (β) \Rightarrow SVEP.

An important subspace in local spectral theory is $H_T(\{\lambda\})$ associated with the singleton set $\{\lambda\}$. We have $H_T(\{\lambda\})$ coincides with the quasi-nilpotent part $H_0(T - \lambda I)$ of $T - \lambda I$, defined as

$$H_0(T - \lambda I) := \{ x \in H : \lim_{n \to \infty} ||(T - \lambda I)^n x||^{\frac{1}{n}} = 0 \}.$$

3. square-2-isometric operator

Lemma 3.1. A power of a square-2-isometric operator is again a square-2-isometric operator.

Proof. Let *T* be a square-2-isometric operator. Then $T^{*4}T^4 - T^{*2}T^2 = T^{*2}T^2 - I$. This, in turn, shows that $T^{*6}T^6 - T^{*4}T^4 = T^{*2}T^2 - I$ and more generally,

$$T^{*2n+2}T^{2n+2} - T^{*2n}T^{2n} = T^{*2}T^2 - I$$

for all positive integers *n*. Now we prove the assertion by using the mathematical induction. Since *T* is a square-2-isometric operator, the result is true for n = 1. Now assume that the result is true for n = k, i.e.,

$$T^{*4k}T^{4k} - 2T^{*2k}T^{2k} + I = 0.$$

Then

$$\begin{split} T^{*4(k+1)}T^{4(k+1)} &- 2T^{*2(k+1)}T^{2(k+1)} + I \\ &= T^{*4}T^{*4k}T^{4k}T^4 - 2T^{*2}T^{*2k}T^{2k}T^2 + I \\ &= T^{*4}(2T^{*2k}T^{2k} - I)T^4 - 2T^{*2}T^{*2k}T^{2k}T^2 + I \\ &= 2T^{*4}T^{*2k}T^{2k}T^2 - T^{*2}T^{*2k}T^{2k}T^2 - T^{*4}T^4 + I \\ &= 2T^{*2k}(T^{*4}T^4 - T^{*2}T^2)T^{2k} - T^{*4}T^4 + I \\ &= 2T^{*2k}(T^{*2}T^2 - I)T^{2k} - T^{*4}T^4 + I \\ &= 2T^{*2k+2}T^{2k+2} - 2T^{*2k}T^{2k} - T^{*4}T^4 + I \\ &= 2(T^{*2}T^2 - I) - T^{*4}T^4 + I \\ &= -(T^{*4}T^4 - 2T^{*2}T^2 + I) \\ &= 0. \end{split}$$

This shows that T^{k+1} is also a square-2-isometric operator, completing the argument. \Box

Lemma 3.2. Let T be a square-2-isometric operator and M be an invariant subspace for T. Then the restriction $T|_M$ is also a square-2-isometric operator.

Proof. Since *M* is an invariant subspace for *T*, we observe that

$$T = \begin{pmatrix} T_1 & T_2 \\ 0 & T_3 \end{pmatrix} : \begin{pmatrix} M \\ M^{\perp} \end{pmatrix} \to \begin{pmatrix} M \\ M^{\perp} \end{pmatrix}.$$

Let $D = T_1T_2 + T_2T_3$, $F = T_1^2D + DT_3^2$. Then

$$T^{2} = \begin{pmatrix} T_{1}^{2} & D\\ 0 & T_{3}^{2} \end{pmatrix}$$
 and $T^{4} = \begin{pmatrix} T_{1}^{4} & F\\ 0 & T_{3}^{4} \end{pmatrix}$,

we have

$$T^{*4}T^{4} - 2T^{*2}T^{2} + I$$

$$= \begin{pmatrix} T_{1}^{*4}T_{1}^{4} - 2T_{1}^{*2}T_{1}^{2} + I & T_{1}^{*4}F - 2T_{1}^{*2}D \\ F^{*}T_{1}^{4} - 2D^{*}T_{1}^{2} & F^{*}F + T_{3}^{*4}T_{3}^{4} - 2D^{*}D - 2T_{3}^{*2}T_{3}^{2} + I \end{pmatrix}$$

$$= 0,$$

i.e., $T_1^{*4}T_1^4 - 2T_1^{*2}T_1^2 + I = 0$. Hence $T|_M$ is a square-2-isometric operator. \Box

Lemma 3.3. Let T be a square-2-isometric operator. Then it has Bishop's property (β) and SVEP.

Proof. It suffices to prove that *T* has Bishop's property (β). 2-isometric operator has Bishop's property (β) by [20, Lemma 2.6]. If *T* is a square-2-isometric operator, then T^2 is a 2-isometric operator, hence *T* has Bishop's property (β) by [15, Theorem 3.3.9]. \Box

Lemma 3.4. Let T be a square-2-isometric operator. Then $\sigma_a(T) \subseteq \partial \mathbb{D}$. Thus, $\sigma(T) = \overline{\mathbb{D}}$ or $\sigma(T) \subseteq \partial \mathbb{D}$.

Proof. If $\lambda \in \sigma_a(T)$, then there exists a sequence of unit vectors $\{x_n\}_{n=1}^{\infty}$ such that $\lim_{n \to \infty} ||Tx_n - \lambda x_n|| = 0$. Since $\lim_{n \to \infty} ||T^jx_n - \lambda^j x_n|| = 0$ for j = 1, 2, 3, 4, we have

$$|||T^{j}x_{n}|| - ||\lambda^{j}x_{n}||| \le ||T^{j}x_{n} - \lambda^{j}x_{n}|| \to 0 \text{ as } n \to \infty$$

for j = 1, 2, 3, 4, which implies that

$$(|\lambda|^2 - 1)^2 = \lim_{n \to \infty} (||T^4 x_n|| - 2||T^2 x_n|| + ||x_n||) = 0$$

Hence $|\lambda| = 1$. Since $\partial \sigma(T) \subseteq \sigma_a(T)$, we conclude that $\sigma(T) = \overline{\mathbb{D}}$ or $\sigma(T) \subseteq \partial \mathbb{D}$. \Box

Lemma 3.5. Let T be a square-2-isometric operator and $N(T^*) = \{0\}$. Then T^2 is unitary.

Proof. The assumption $N(T^*) = \{0\}$ means that $R(T^2)$ is dense, T^2 is a 2-isometric operator, $||T^2x|| \ge ||x||(x \in H)$ by [18, Lemma 1]. This implies that T^2 is invertible and T^{-2} is also a 2-isometric operator, and hence $||T^{-2}x|| \ge ||x||(x \in H)$. Combined with the property that $||T^2x|| \ge ||x||(x \in H)$ we conclude that T^2 is unitary. \Box

Lemma 3.6. Let *T* be a square-2-isometric operator and $\sigma(T) = \{\lambda\}$. Then $T = \lambda I$.

Proof. $\sigma(T^2) = \{\lambda^2\}$ by spectral mapping theorem and T^2 is a 2-isometric operator, hence T^2 is unitary by Lemma 3.4 and Lemma 3.5, we get $T^2 = \lambda^2 I$, thus $T = \lambda I$.

4. quasi-square-2-isometric operator

We begin with the following theorem which is a structure theorem for quasi-square-2-isometric operators.

Theorem 4.1. Suppose that $T \neq 0$ does not have a dense range. Then the following statements are equivalent: (1) *T* is a quasi-square-2-isometric operator;

(2) $T = \begin{pmatrix} T_1 & T_2 \\ 0 & 0 \end{pmatrix}$ on $H = \overline{R(T)} \oplus N(T^*)$, where T_1 is a square-2-isometric operator. Furthermore, $\sigma(T) = \sigma(T_1) \cup \{0\}$.

Proof. (1) \Rightarrow (2) Consider the matrix representation of *T* with respect to the decomposition $H = \overline{R(T)} \oplus N(T^*)$:

$$T = \begin{pmatrix} T_1 & T_2 \\ 0 & 0 \end{pmatrix}.$$

Let *P* be the projection onto $\overline{R(T)}$. Since *T* is a quasi-square-2-isometric operator, we have

$$P(T^{*4}T^4 - 2T^{*2}T^2 + I)P = 0.$$

Therefore

$$T_1^{*4}T_1^4 - 2T_1^{*2}T_1^2 + I = 0.$$

3813

Since $\sigma(T_1) \cap \{0\}$ has no interior point, we have $\sigma(T) = \sigma(T_1) \cup \{0\}$.

(2) \Rightarrow (1) Suppose that $T = \begin{pmatrix} T_1 & T_2 \\ 0 & 0 \end{pmatrix}$ on $H = \overline{R(T)} \oplus N(T^*)$, where T_1 is a square-2-isometric operator. Then we have

$$\begin{split} & T^*(T^{*4}T^4 - 2T^{*2}T^2 + I)T \\ = \begin{pmatrix} T_1 & T_2 \\ 0 & 0 \end{pmatrix}^* \\ & \times \left(\begin{pmatrix} T_1 & T_2 \\ 0 & 0 \end{pmatrix}^{*4} \begin{pmatrix} T_1 & T_2 \\ 0 & 0 \end{pmatrix}^4 - 2 \begin{pmatrix} T_1 & T_2 \\ 0 & 0 \end{pmatrix}^{*2} \begin{pmatrix} T_1 & T_2 \\ 0 & 0 \end{pmatrix}^2 + I \right) \\ & \times \begin{pmatrix} T_1 & T_2 \\ 0 & 0 \end{pmatrix} \\ = \begin{pmatrix} T_1 & T_2 \\ 0 & 0 \end{pmatrix}^* \begin{pmatrix} T_1^{*4}T_1^4 - 2T_1^{*2}T_1^2 + I & T_1^{*4}T_1^3T_2 - 2T_1^{*2}T_1T_2 \\ T_2^*T_1^{*3}T_1^4 - 2T_2^*T_1^*T_1^2 & T_2^*T_1^{*3}T_1^3T_2 - 2T_2^*T_1^*T_1T_2 + I \end{pmatrix} \begin{pmatrix} T_1 & T_2 \\ 0 & 0 \end{pmatrix} \\ = \begin{pmatrix} T_1(T_1^{*4}T_1^4 - 2T_1^{*2}T_1^2 + I)T_1 & T_1^*(T_1^{*4}T_1^4 - 2T_1^{*2}T_1^2 + I)T_2 \\ T_2^*(T_1^{*4}T_1^4 - 2T_1^{*2}T_1^2 + I)T_1 & T_2^*(T_1^{*4}T_1^4 - 2T_1^{*2}T_1^2 + I)T_2 \end{pmatrix} \\ = 0. \end{split}$$

Hence *T* is a quasi-square-2-isometric operator. \Box

Corollary 4.2. Suppose that T is a quasi-square-2-isometric operator and R(T) is dense. Then T is a square-2-isometric operator.

Proof. The conclusion is evident by Definition 1.1. \Box

Corollary 4.3. Suppose that T is a quasi-square-2-isometric operator. Then so is T^n for all positive integers n.

Proof. If R(T) is dense, then T is a square-2-isometric operator and so is T^n by Lemma 3.1. Now, assume that R(T) is not dense and $T \neq 0$, we decompose T as

$$T = \begin{pmatrix} T_1 & T_2 \\ 0 & 0 \end{pmatrix}$$
 on $H = \overline{R(T)} \oplus N(T^*)$.

Then by Theorem 4.1, $T_1^{*4}T_1^4 - 2T_1^{*2}T_1^2 + I = 0$. Hence T_1 is a square-2-isometric operator, by Lemma 3.1, T_1^n is a square-2-isometric operator. Since

$$T^{n} = \begin{pmatrix} T_{1}^{n} & T_{1}^{n-1}T_{2} \\ 0 & 0 \end{pmatrix} \text{ on } H = \overline{R(T)} \oplus N(T^{*}),$$

 T^n is a quasi-square-2-isometric operator for all positive integers *n* by Theorem 4.1. \Box

Corollary 4.4. Suppose that T is a quasi-nilpotent quasi-square-2-isometric operator. Then T = 0.

Proof. Suppose *T* is a quasi-nilpotent quasi-square-2-isometric operator. If *R*(*T*) is dense, then *T* is a square-2-isometric operator. By Lemma 3.5 T^2 is unitary, hence $\sigma(T) \subseteq \partial \mathbb{D}$, where \mathbb{D} denotes the open unit disc, this is a contradiction. If *R*(*T*) is not dense and $T \neq 0$, then $T = \begin{pmatrix} T_1 & T_2 \\ 0 & 0 \end{pmatrix}$ on $H = \overline{R(T)} \oplus N(T^*)$, where T_1 is a square-2-isometric operator and $\sigma(T_1) = \{0\}$, this is a contradiction. Thus T = 0. \Box

Lemma 4.5. Let *T* be a quasi-square-2-isometric operator and *M* be an invariant subspace for *T*. Then the restriction $T|_M$ is also a quasi-square-2-isometric operator.

Proof. Since *T* is a quasi-square-2-isometric operator, $T^{*5}T^5 - 2T^{*3}T^3 + T^*T = 0$, hence

$$||T^5x||^2 + ||Tx||^2 = 2||T^3x||^2$$

for every $x \in H$. For $x \in M$, we have

$$2||(T|_M)^3 x||^2 = 2||T^3 x||^2 = ||T^5 x||^2 + ||T x||^2 = ||(T|_M)^5 x||^2 + ||(T|_M) x||^2.$$

Thus $T|_M$ is a quasi-square-2-isometric operator. \Box

Lemma 4.6. Let *T* be a quasi-square-2-isometric operator. Then $\sigma_p(T) \subseteq \partial \mathbb{D} \cup \{0\}$.

Proof. Since $\sigma_a(T) \subseteq \partial \mathbb{D} \cup \{0\}$, the conclusion is evident. \Box

The following example provides an operator *T* which is a quasi-square-2-isometric operator, however, the relation $N(T - \lambda I) \subseteq N(T - \lambda I)^*$ does not hold.

Example 4.7. Let $T = \begin{pmatrix} I & 2I \\ 0 & -I \end{pmatrix} \in B(H \oplus H)$. Then *T* is a quasi-square-2-isometric operator, but $N(T - I) \subseteq N(T - I)^*$ does not hold.

Proof. Straightforward calculations show that *T* is a quasi-square-2-isometric operator, however, for every nonzero vector $x \in H$, $(T - I)(x \oplus 0) = 0$, while $(T - I)^*(x \oplus 0) \neq 0$. Therefore, the relation $N(T - I) \subseteq N(T - I)^*$ does not hold. \Box

But the following result holds.

Lemma 4.8. Let *T* be a quasi-square-2-isometric operator, $0 \neq \lambda \in \sigma_p(T)$ and

$$T = \begin{pmatrix} \lambda I & T_{12} \\ 0 & T_{22} \end{pmatrix} \quad on \ H = N(T - \lambda I) \oplus N(T - \lambda I)^{\perp}.$$

Then

$$2\|\lambda T_{12}T_{22}^2x + T_{12}T_{22}^3x\|^2 + \|T_{22}^6x\|^2 + \|T_{22}^2x\|^2 = 2\|T_{22}^4x\|^2$$

for any $x \in N(T - \lambda I)^{\perp}$.

Proof. Let

$$T = \begin{pmatrix} \lambda I & T_{12} \\ 0 & T_{22} \end{pmatrix}.$$

Then

$$T^{k} = \begin{pmatrix} \lambda^{k}I & \sum_{j=0}^{k-1} \lambda^{j}T_{12}T_{22}^{k-1-j} \\ 0 & T_{22}^{k} \end{pmatrix}.$$

Suppose $0 \neq \lambda \in \sigma_p(T)$, by Lemma 4.6, $\overline{\lambda}\lambda = 1$, where $\overline{\lambda}$ is the conjugate of λ . Since *T* is a quasi-square-2-isometric operator, *T* satisfies

$$T^{*6}T^6 - 2T^{*4}T^4 + T^{*2}T^2 = 0.$$

Then

$$T^{*6}T^6 - 2T^{*4}T^4 + T^{*2}T^2 = \begin{pmatrix} 0 & E \\ E^* & F \end{pmatrix} = 0,$$

where

$$\begin{split} E &= \overline{\lambda}^6 T_{12} T_{22}^5 + \overline{\lambda}^5 T_{12} T_{22}^4 - \overline{\lambda}^4 T_{12} T_{22}^3 - \overline{\lambda}^3 T_{12} T_{22}^2, \\ F &= |T_{12} (\lambda^5 I + \lambda^4 T_{22} + \lambda^3 T_{22}^2 + \lambda^2 T_{22}^3 + \lambda T_{22}^4 + T_{22}^5)|^2 + |T_{22}^6|^2 \\ &- 2|T_{12} (\lambda^3 I + \lambda^2 T_{22} + \lambda T_{22}^2 + T_{22}^3)|^2 - 2|T_{22}^4|^2 + |T_{12} (\lambda I + T_{22})|^2 + |T_{22}^2|^2, \\ |T|^2 &= T^* T. \end{split}$$

Since E = 0, $T_{12}T_{22}^5 + \lambda T_{12}T_{22}^4 = \lambda^2 T_{12}T_{22}^3 + \lambda^3 T_{12}T_{22}^2$, we have $F = |T_{12}(\lambda^5 I + \lambda^4 T_{22} + \lambda^3 T_{22}^2 + \lambda^2 T_{22}^3 + \lambda T_{22}^4 + T_{22}^5)|^2 + |T_{22}^6|^2$ $- 2|T_{12}(\lambda^3 I + \lambda^2 T_{22} + \lambda T_{22}^2 + T_{32}^3)|^2 - 2|T_{22}^4|^2 + |T_{12}(\lambda I + T_{22})|^2 + |T_{22}^2|^2$ $= 2|\lambda T_{12}T_{22}^2 + T_{12}T_{32}^3|^2 + |T_{22}^6|^2 - 2|T_{22}^4|^2 + |T_{22}^2|^2$ $= 2(T_{22}^{3*} + \overline{\lambda}T_{22}^2)T_{12}^*T_{12}(\lambda T_{22}^2 + T_{32}^3) + T_{22}^{6*}T_{22}^6 - 2T_{22}^{4*}T_{22}^4 + T_{22}^{*2}T_{22}^2$ = 0.

This is equivalent to

$$\|\lambda T_{12}T_{22}^2x + T_{12}T_{22}^3x\|^2 + \|T_{22}^6x\|^2 + \|T_{22}^2x\|^2 = 2\|T_{22}^4x\|^2$$

for any $x \in N(T - \lambda I)^{\perp}$. This completes the proof. \Box

2

Lemma 4.9. Suppose that T is a quasi-square-2-isometric operator, $0 \neq \lambda \in \sigma_p(T)$ and

$$T = \begin{pmatrix} \lambda I & T_{12} \\ 0 & T_{22} \end{pmatrix} \quad on \ H = N(T - \lambda I) \oplus N(T - \lambda I)^{\perp}.$$

Then $N(T_{22} - \lambda I) = \{0\}.$

Proof. Suppose $x \in N(T - \lambda I)^{\perp}$ and $(T_{22} - \lambda I)x = 0$. If $\lambda \neq 0$, then by Lemma 4.8

$$2\|\lambda T_{12}T_{22}^2x + T_{12}T_{22}^3x\|^2 + \|T_{22}^6x\|^2 + \|T_{22}^2x\|^2 = 2\|T_{22}^4x\|^2$$

for any $x \in N(T - \lambda I)^{\perp}$, hence

$$2||(T - \lambda I) \begin{pmatrix} 0 \\ x \end{pmatrix}||^2 = 2||T_{12}x||^2 = 0,$$

thus $\begin{pmatrix} 0 \\ x \end{pmatrix} \in N(T - \lambda I)$ and x = 0.

The Berberian extension theorem shows that given an operator $T \in B(H)$, there exists a Hilbert space $K \supseteq H$ and an isometric *-isomorphism $T \to T^{\circ} \in B(K)$ preserving order such that $\sigma(T) = \sigma(T^{\circ})$ and $\sigma_p(T^{\circ}) = \sigma_a(T)$. For details see the following Lemma.

Lemma 4.10. [5] Let *H* be a complex Hilbert space. Then there exists a Hilbert space *K* such that $H \subset K$ and a map $\varphi : B(H) \rightarrow B(K)$ such that

(1) φ is a faithful *-representation of the algebra B(H) on K, i.e., $\varphi(T + S) = \varphi(T) + \varphi(S)$, $\varphi(\lambda T) = \lambda \varphi(T)$, $\varphi(TS) = \varphi(T)\varphi(S)$, $\varphi(T^*) = (\varphi(T))^*$, $\varphi(I) = I$ and $||\varphi(T)|| = ||T||$ for any $T, S \in B(H)$; (2) $\varphi(A) \ge 0$ for any $A \ge 0$ in B(H);

(3) $\sigma_a(T) = \sigma_a(\varphi(T)) = \sigma_v(\varphi(T))$ for any $T \in B(H)$.

Definition 4.11. [12] The set C(i) consists of (all) the operators $T \in B(H)$ for which $\sigma(T) = \{0\}$ implies T is nilpotent (possibly, the 0 operator) and T° (the Berberian extension of T) satisfies the property:

$$T^{\circ} = \begin{pmatrix} \lambda I & T_{12} \\ 0 & T_{22} \end{pmatrix} \quad on \ H = N(T^{\circ} - \lambda I) \oplus N(T^{\circ} - \lambda I)^{\perp}$$

at every nonzero $\lambda \in \sigma_p(T^\circ)$ for some operators T_{12} and T_{22} such that $\lambda \notin \sigma_p(T_{22})$ and $\sigma(T^\circ) = \sigma(T_{22}) \cup \{\lambda\}$.

Proof. Suppose *T* is a quasi-square-2-isometric operator. Let φ : $B(H) \rightarrow B(K)$ be Berberian's faithful *representation of Lemma 4.10. In the following, we shall show that $\varphi(T)$ is also a quasi-square-2-isometric operator. In fact, since *T* is a quasi-square-2-isometric operator, we have

$$T^{*5}T^5 - 2T^{*3}T^3 + T^*T = 0.$$

Hence we have

$$\varphi(T)^{*5}\varphi(T)^5 - 2\varphi(T)^{*3}\varphi(T)^3 + \varphi(T)^*\varphi(T)$$

= $\varphi(T^{*5}T^5 - 2T^{*3}T^3 + T^*T) = 0$ by Lemma 4.10,

so $\varphi(T)$ is also a quasi-square-2-isometric operator. By Corollary 4.4 and Lemma 4.9, we have *T* belongs to the set *C*(*i*). Therefore, we have that the function σ is continuous on the set of quasi-square-2-isometric operators by [12, Theorem 1.1]. \Box

Proposition 4.13. Suppose that $T \in B(H)$ is a quasi-square-2-isometric operator. Then it has a nontrivial invariant subspace.

Proof. We consider the following three cases:

Case I: if $\overline{R(T)} = H$, then *T* is a square-2-isometric operator. If *T* is not an invertible square-2-isometric operator, then $\sigma(T) = \overline{\mathbb{D}}$, hence $\sigma(T)$ has nonempty interior. Since *T* has Bishop's property (β) by Lemma 3.3, it has a nontrivial invariant subspace from [13]. If *T* is an invertible square-2-isometric operator and $\sigma(T)$ is a singleton { λ }, then $T = \lambda I$ by Lemma 3.6, hence *T* has a nontrivial invariant subspace. Next, we show that if $\sigma(T)$ contains at least two points, then *T* has a nontrivial invariant subspace. Let $\lambda \in \sigma(T)$. Then, by [15, Proposition 1.2.20], the space $H_T(\{\lambda\})$ is a closed invariant subspace of *T* and $\sigma(T|H_T(\{\lambda\})) \subseteq \{\lambda\}$. Let *U* be an arbitrary open neighborhood of λ in \mathbb{C} . We choose another open set $V \subseteq \mathbb{C}$ such that $\lambda \notin V$ and $\{U, V\}$ is an open covering of \mathbb{C} . Since T^2 is unitary by Lemma 3.5, *T* is decomposable by [15, Theorem 3.3.9], $\sigma(T|H_T(\{\lambda\})) \subseteq U, \sigma(T|H_T(V)) \subseteq V$, and $H = H_T(\{\lambda\}) + H_T(V)$. If $H_T(\{\lambda\}) = \{0\}$, then $\sigma(T) = \sigma(T|H_T(\{\lambda\})) \subseteq V$, which contradicts $\lambda \notin V$. If $H_T(\{\lambda\}) = H$, then $\sigma(T) = \sigma(T|H_T(\{\lambda\})) \subseteq \{\lambda\}$, which contradicts that $\sigma(T)$ contains at least two points. This contradiction shows that $H_T(\{\lambda\})$ is a nontrivial invariant closed linear subspace. Case II: if $\overline{R(T)} = \{0\}$ and $\overline{R(T)} \neq H$, then $\overline{R(T)}$ is a nontrivial invariant subspace of *T*. \Box

Since a square-2-isometric operator is a quasi-square-2-isometric operator, as a consequence we obtain the following corollary.

Corollary 4.14. *Every square-2-isometric operator has a nontrivial invariant subspace.*

Lemma 4.15. Let *T* be a quasi-square-2-isometric operator and $\sigma(T) = \{\lambda\}$. Then $T = \lambda I$.

Proof. We consider the following two cases:

Case I: if $\lambda = 0$, then T = 0 by Corollary 4.4.

Case II: if $\lambda \neq 0$, then *T* is a square-2-isometric operator, hence $T = \lambda I$ by Lemma 3.6. \Box

Lemma 4.16. Let *T* be a quasi-square-2-isometric operator and $\lambda \in iso_{\sigma}(T)$. Then the Riesz idempotent $E_{T}(\{\lambda\})$ of *T* with respect to λ satisfies

$$R(E_T(\{\lambda\})) = N(T - \lambda I).$$

Proof. The Riesz idempotent $E_T(\{\lambda\})$ satisfies $\sigma(T|_{R(I-E_T(\{\lambda\}))}) = \sigma(T)\setminus\{\lambda\}$ and $\sigma(T|_{R(E_T(\{\lambda\}))}) = \{\lambda\}$. Since $T|_{R(E_T(\{\lambda\}))}$ is also a quasi-square-2-isometric operator, it follows that $(T - \lambda I)E_T(\{\lambda\}) = (T|_{R(E_T(\{\lambda\}))} - \lambda I)E_T(\{\lambda\}) = 0$ by Lemma 4.15, hence $R(E_T(\{\lambda\})) \subseteq N(T - \lambda I)$. Conversely, let $x \in N(T - \lambda I)$. Then

$$E_T(\{\lambda\})x = \frac{1}{2\pi i}\int_{\partial D}(\mu I - T)^{-1}xd\mu = (\frac{1}{2\pi i}\int_{\partial D}\frac{1}{\mu - \lambda}d\mu)x = x,$$

thus $x \in R(E_T(\{\lambda\}))$. This completes the proof of $R(E_T(\{\lambda\})) = N(T - \lambda I)$. \Box

An operator $T \in B(H)$ is said to be polaroid if every $\lambda \in iso\sigma(T)$ is a pole of the resolvent of T. The condition of being polaroid may be characterized by means of the quasi-nilpotent part $H_0(T - \lambda I)$ of $T - \lambda I$.

Lemma 4.17. [2] An operator $T \in B(H)$ is polaroid if and only if there exists $p := p(T - \lambda) \in \mathbb{N}$ such that

 $H_0(T - \lambda I) = N(T - \lambda I)^p$ for all $\lambda \in iso\sigma(T)$.

For p = 1, this operator is called simple polaroid.

It is known that $R(E_T(\{\lambda\})) = H_0(T - \lambda I)$ [1, p.157]. As a consequence we obtain the following corollary.

Corollary 4.18. *Let T* be a quasi-square-2-isometric operator and $\lambda \in iso\sigma(T)$ *. Then* λ *is a simple pole of the resolvent of T.*

Proof. The conclusion is evident by Lemma 4.16 and Lemma 4.17. \Box

In 2012, Yuan and Ji [22, Lemma 5.2] proved following Lemma.

Lemma 4.19. [22] Let $T \in B(H)$, *m* be a positive integer and $\lambda \in iso\sigma(T)$. (1) The following assertions are equivalent: (a) $R(E_T(\{\lambda\})) = N(T - \lambda I)^m$. (b) $N(E_T(\{\lambda\})) = R(T - \lambda I)^m$. In this case, λ is a pole of the resolvent of T and the order of λ is not greater than *m*. (2) If λ is a pole of the resolvent of T and the order of λ is *m*, then the following assertions are equivalent: (a) $E_T(\{\lambda\})$ is self-adjoint. (b) $N(T - \lambda I)^m \subseteq N(T - \lambda I)^{*m}$. (c) $N(T - \lambda I)^m = N(T - \lambda I)^{*m}$.

Remark In general, $E_T(\{\lambda\})$ is not self-adjoint for a quasi-square-2-isometric operator. Let $T = \begin{pmatrix} I & 2I \\ 0 & -I \end{pmatrix} \in B(H \oplus H)$. Example 4.7 shows that *T* is a quasi-square-2-isometric operator, however $N(T - I) \subseteq N(T - I)^*$

does not hold, Hence $E_T(\{1\})$ is not self-adjoint from Corollary 4.18 and Lemma 4.19. Next for $T \in B(H)$, we set the following property:

$$\sigma(T) \cap (-\sigma(T)) = \emptyset. \tag{(*)}$$

Then we begin with the following result.

Lemma 4.20. Let $T \in B(H)$ be a quasi-square-2-isometric operator and satisfy (*). If λ is an eigen-value of T, then $N(T - \lambda I) = N(T^2 - \lambda^2 I) \subseteq N(T^{*2} - \overline{\lambda}^2 I) = N(T^* - \overline{\lambda}I)$ and hence $N(T - \lambda I)$ is a reducing subspace for T.

Proof. Firstly, we show that $N(T - \lambda I) = N(T^2 - \lambda^2 I)$. Because it is clear that $N(T - \lambda I) \subseteq N(T^2 - \lambda^2 I)$, we will verify that $N(T^2 - \lambda^2 I) \subseteq N(T - \lambda I)$. Let $x \in N(T^2 - \lambda^2 I)$, i.e., $(T^2 - \lambda^2 I)x = 0$. Then $(T + \lambda I)(T - \lambda I)x = 0$. Since $\lambda \neq 0$, by the assumption (*), we have $-\lambda \notin \sigma(T)$. Hence, it follows $(T - \lambda I)x = 0$ and $x \in N(T - \lambda I)$. Therefore, $N(T^2 - \lambda^2 I) \subseteq N(T - \lambda I)$ and $N(T^2 - \lambda^2 I) = N(T - \lambda I)$. Because *T* is a quasi-square-2-isometric and satisfy (*), T^2 is 2-isometric, by [20, Corollary 2.5], $N(T^2 - \lambda^2 I) \subseteq N(T^{2*} - \overline{\lambda}^2 I)$. Evidently, $N(T^* - \overline{\lambda} I) \subseteq N(T^{*2} - \overline{\lambda}^2 I)$. Let $x \in N(T^{*2} - \overline{\lambda}^2 I)$. Because $(T^* + \overline{\lambda} I)(T^* - \overline{\lambda} I)x = 0$ and $T^* + \overline{\lambda} I$ is invertible by the assumption (*), we obtain that $x \in N(T^* - \overline{\lambda} I)$. Hence, $N(T^{2*} - \overline{\lambda}^2 I) = N(T^* - \overline{\lambda} I)$. Finally, by the above results, it is clear that $N(T - \lambda I)$ is a reducing subspace for *T*. \Box

Theorem 4.21. Let $T \in B(H)$ be a quasi-square-2-isometric operator and satisfy (*), λ be an isolated point of $\sigma(T)$ and $E_T(\{\lambda\})$ be the Riesz idempotent with respect to λ . Then $E_T(\{\lambda\})$ is self-adjoint and $R(E_T(\{\lambda\})) = N(T - \lambda I) = N(T - \lambda I)^*$.

Proof. First we note that $R(E_T(\{\lambda\})) = N(T - \lambda I)$ and $N(T - \lambda I) \subseteq N(T - \lambda I)^*$. It is obvious from Corollary 4.18, Lemma 4.19 and Lemma 4.20. \Box

References

- [1] P. Aiena, Fredholm and Local Spectral Theory with Applications to Multipliers, Kluwer Academic Publishers, London, 2004.
- [2] P. Aiena, M. Chō, M. González, Polaroid type operators under quasi-affinities, J. Math. Anal. Appl. 371(2)(2010) 485-495.
- J. Agler, A disconjugacy theorem for Toeplitz operators, Amer. J. Math. 112(1)(1990) 1-14. [3]
- [4] J. Agler, M. Stankus, m-isometric transformations of Hilbert space. I, Integral Equ. Oper. Theory 21(4)(1995) 383-429.
- [5] S.K. Berberian, Approximate proper vectors, Proc. Amer. Math. Soc. 13(1962) 111-114.
- [6] T. Bermudez, I. Marrero, A. Martinon, On the orbit of an *m*-isometry, Integral Equ. Oper. Theory 64(2009) 487–494.
- [7] S. Brown, Some invariant subspaces for subnormal operators, Integral Equ. Oper. Theory 1(1978) 310-333.
- [8] M. Chō, S. Ôta, K. Tanahashi, Invertible weighted shift operators which are m-isometries, Proc. Amer. Math. Soc. 141(12)(2013) 4241-4247.
- [9] M. Chō, S. Ôta, K. Tanahashi, A. Uchiyama, Spectral properties of *m*-isometric operators, Funct. Anal. Approx. Comput. 4(2012) 33-39.
- [10] J.B. Conway, B.B. Morrel, Operators that are points of spectral continuity, Integral Equ. Oper. Theory 2(1979) 174–198.
- [11] B.P. Duggal, Tensor product of *n*-isometries, Linear Algebra Appl. 437(2012) 307–318.
- [12] B.P. Duggal, I.H. Jeon, I.H. Kim, Continuity of the spectrum on a class of upper triangular operator matrices, J. Math. Anal. Appl. 370(2010) 584-587.
- [13] J. Eschmeier, B. Prunaru, Invariant subspaces for operators with Bishop's property (β) and thick spectrum, J. Funct. Anal. 94(1990) 196-222.
- [14] S. Jung, Y. Kim, E. Ko, J.E. Lee, On (A, m)-expansive operators, Studia Math. 231(1)(2012) 3–23.
- [15] K.B. Laursen, M.M. Neumann, Introduction to Local Spectral Theory, Clarendon Press, Oxford, 2000.
- [16] S. Mecheri, S.M. Patel, On quasi-2-isometric operators, Linear and Multilinear Algebra 66(5)(2018) 1019–1025.
- [17] S.M. Patel, 2-isometry operators, Glasnik Mat. 37(57)(2002) 143-147.
- [18] S. Richter, Invariant subspaces of the Dirichlet shift, J. Reine Angew. Math. 386(1988) 205–220.
- [19] J. Stampfli, Hyponormal operators and spectral density, Trans. Amer. Math. Soc. 117(1965) 469-476.
- [20] J.L. Shen, G.X. Ji, On an elementary operator with 2-isometric operator entries, Filomat 32(14)(2018) 5083-5088.
- [21] J.L. Shen, G.X. Ji, Spectral properties and the dynamics of quasi-2-expansive operators, J. Spectr. Theory 10(1)(2020) 323–335.
 [22] J.T. Yuan, G.X. Ji, On (n; k)-quasiparanormal operators, Studia Math. 209(3)(2012) 289–301.