Classes of Operators Related to 2-Isometric Operators

Fei Zuo ${ }^{\text {a }}$, Junli Shen ${ }^{\text {b }}$, Alatancang Chen ${ }^{\text {c }}$
${ }^{a}$ College of Mathematics and Information Science, Henan Normal University, Xinxiang 453007, China.
${ }^{b}$ College of Computer and Information Technology, Henan Normal University, Xinxiang 453007, China.
${ }^{\text {c S School of Mathematical Science, Inner Mongolia Normal University, Hohhot 010022, China. }}$

Abstract

We introduce the class of quasi-square-2-isometric operators on a complex separable Hilbert space. This class extends the class of 2 -isometric operators due to Agler and Stankus. An operator T is said to be quasi-square-2-isometric if $T^{* 5} T^{5}-2 T^{* 3} T^{3}+T^{*} T=0$. In this paper, we give operator matrix representation of quasi-square-2-isometric operator in order to obtain spectral properties of this operator. In particular, we show that the function σ is continuous on the class of all quasi-square-2-isometric operators. Under the hypothesis $\sigma(T) \cap(-\sigma(T))=\emptyset$, we also prove that if $E_{T}(\{\lambda\})$ is the Riesz idempotent for an isolated point of the spectrum of quasi-square-2-isometric operator, then $E_{T}(\{\lambda\})$ is self-adjoint.

1. Introduction

Let $B(H)$ denote the algebra of all bounded linear operators on an infinite dimensional complex separable Hilbert space H. If $T \in B(H)$, we shall write $N(T)$ and $R(T)$ for the null space and the range space of T, and also, write $\sigma(T), \sigma_{a}(T)$, and iso $\sigma(T)$ for the spectrum, the approximate point spectrum and the isolated point of the spectrum of T, respectively. In [3] Agler derived certain disconjugacy and Sturm-Lioville results for a subclass of the Toeplitz operators. These results were suggested by the study of operators $T \in B(H)$ which satisfy the equation,

$$
T^{* 2} T^{2}-2 T^{*} T+I=0
$$

Such T are called 2-isometric operators, which are natural generalizations of isometric operators ($T^{*} T=I$). It is known that an isometric operator is a 2-isometric operator. 2-isometric operators have been studied by many authors and they have many interesting properties (see [3, 4, 6, 8, 9, 11, 14, 17, 21]), for example, if $T \in B(H)$ is a 2-isometric operator, then T^{n} is also a 2-isometric operator for any positive integer $n, \sigma_{p}(T)$ for the point spectrum of T is a subset of the boundary $\partial \mathbb{D}$ of the unit disc \mathbb{D} (in the complex plane \mathbb{C}), $\sigma(T) \subseteq \partial \mathbb{D}$ whenever T is invertible, $\sigma(T)$ is the closure $\overline{\mathbb{D}}$ of \mathbb{D} whenever T is not invertible.

Definition 1.1. An operator T is said to be square-2-isometric if $T^{* 4} T^{4}-2 T^{* 2} T^{2}+I=0$, and quasi-square-2-isometric if $T^{* 5} T^{5}-2 T^{* 3} T^{3}+T^{*} T=0$.

[^0]It is clear that the class of 2-isometric operators \subseteq the class of square-2-isometric operators \subseteq the class of quasi-square-2-isometric operators.

Example 1.2. Let $\left\{e_{n}\right\}_{n=0}^{\infty}$ be a canonical orthogonal basis for l_{2} and $\alpha=\left(\alpha_{n}\right)_{n \in \mathbb{N}}$ be a bounded sequence of nonnegative numbers. The corresponding unilateral weighted shift operator on l_{2} is defined by $T_{\alpha} e_{n}=\alpha_{n} e_{n+1}$ for all $n \geq 0$. Straightforward calculations show that the following statements hold:
(1) T_{α} is a 2-isometric operator $\Longleftrightarrow \alpha_{n}^{2} \alpha_{n+1}^{2}-2 \alpha_{n}^{2}+1=0(n=0,1,2,3, \cdots)$;
(2) T_{α} is a square-2-isometric operator $\Longleftrightarrow \alpha_{n}^{2} \alpha_{n+1}^{2} \alpha_{n+2}^{2} \alpha_{n+3}^{2}-2 \alpha_{n}^{2} \alpha_{n+1}^{2}+1=0(n=0,1,2,3, \cdots)$;
(3) T_{α} is a quasi-square-2-isometric operator $\Longleftrightarrow \alpha_{n}^{2} \alpha_{n+1}^{2} \alpha_{n+2}^{2} \alpha_{n+3}^{2}-2 \alpha_{n}^{2} \alpha_{n+1}^{2}+1=0 \quad(n=1,2,3, \cdots)$.

If $\sqrt{3}=\alpha_{0}=\alpha_{2}=\alpha_{4}=\alpha_{6}=\cdots$ and $\frac{\sqrt{3}}{3}=\alpha_{1}=\alpha_{3}=\alpha_{5}=\cdots$, then T_{α} is a square-2-isometric operator but not a 2 -isometric operator.

If $2=\alpha_{0}, 1=\alpha_{1}=\alpha_{2}=\alpha_{3}=\cdots$, then T_{α} is a quasi-square-2-isometric operator but not a square-2isometric operator.

For every $T \in B(H)$, the function $\sigma: T \longmapsto \sigma(T)$ is upper semi-continuous, but fails to be continuous in general. Conway and Morrel [10] made a detailed study of spectral continuity in $B(H)$. Duggal, Jeon and Kim [12] proved that the spectrum is continuous on the classes of *-paranormal and paranormal operators. We obtain an analogous result for quasi-square-2-isometric operators. A subspace M is called an invariant subspace for the operator $T \in B(H)$ if $T M \subseteq M$. It is not known that whether or not every operator has a nontrivial invariant subspace (i.e., other than the zero subspace and the entire space). Brown [7] proved that subnormal operators do have nontrivial invariant subspaces. In this paper, we show that every quasi-square-2-isometric operator has a nontrivial invariant subspace. Let $\lambda \in \operatorname{iso} \sigma(T)$. Then the Riesz idempotent of T with respect to λ is defined by $E_{T}(\{\lambda\})=\frac{1}{2 \pi i} \int_{\partial D}(\mu I-T)^{-1} d \mu$, where D is a closed disk centered at λ which contains no other points of the spectrum of T. Stampfli [19] showed that if T is hyponormal, then $E_{T}(\{\lambda\})$ is self-adjoint and $R\left(E_{T}(\{\lambda\})\right)=N(T-\lambda I)=N(T-\lambda I)^{*}$. Recently, Mecheri [16] obtained Stampfli's result for 2-isometric operator. Under the hypothesis $\sigma(T) \cap(-\sigma(T))=\emptyset$, we extend Stampfli's result to quasi-square-2-isometric operator.

2. Preliminaries

An operator $T \in B(H)$ is said to have the single valued extension property at $\lambda_{0} \in \mathbb{C}$ (abbrev. SVEP at λ_{0}), if for every open neighborhood G of λ_{0}, the only analytic function $f: G \rightarrow H$ which satisfies the equation $(\lambda I-T) f(\lambda)=0$ for all $\lambda \in G$ is the function $f \equiv 0$. An operator T is said to have SVEP if T has SVEP at every point $\lambda \in \mathbb{C}$. For $T \in B(H)$ and $x \in H$, the set $\rho_{T}(x)$ is defined to consist of elements $z_{0} \in \mathbb{C}$ such that there exists an analytic function $f(z)$ defined in a neighborhood of z_{0}, with values in H, which verifies $(T-z) f(z)=x$, and it is called the local resolvent set of T at x. We denote the complement of $\rho_{T}(x)$ by $\sigma_{T}(x)$, called the local spectrum of T at x, and define the local spectral subspace of $T, H_{T}(F)=\left\{x \in H: \sigma_{T}(x) \subset F\right\}$ for each subset F of \mathbb{C}. An operator $T \in B(H)$ is said to have Bishop's property (β) if for every open subset G of \mathbb{C} and every sequence $f_{n}: G \rightarrow H$ of H-valued analytic functions such that $(T-z) f_{n}(z)$ converges uniformly to 0 in norm on compact subsets of $G, f_{n}(z)$ converges uniformly to 0 in norm on compact subsets of G. An operator $T \in B(H)$ is said to have Dunford's property (C) if $H_{T}(F)$ is closed for each closed subset F of \mathbb{C}. An operator $T \in B(H)$ is said to have property (δ) if for every open covering (U, V) of \mathbb{C}, we have $H=H_{T}(\bar{U})+H_{T}(\bar{V})$. An operator $T \in B(H)$ is said to be decomposable if T has both Dunford's property (C) and property (δ). It is well known that

$$
\text { decomposable } \Rightarrow \text { Bishop's property }(\beta) \Rightarrow \text { SVEP. }
$$

An important subspace in local spectral theory is $H_{T}(\{\lambda\})$ associated with the singleton set $\{\lambda\}$. We have $H_{T}(\{\lambda\})$ coincides with the quasi-nilpotent part $H_{0}(T-\lambda I)$ of $T-\lambda I$, defined as

$$
H_{0}(T-\lambda I):=\left\{x \in H: \lim _{n \rightarrow \infty}\left\|(T-\lambda I)^{n} x\right\|^{\frac{1}{n}}=0\right\} .
$$

3. square-2-isometric operator

Lemma 3.1. A power of a square-2-isometric operator is again a square-2-isometric operator.
Proof. Let T be a square-2-isometric operator. Then $T^{* 4} T^{4}-T^{* 2} T^{2}=T^{* 2} T^{2}-I$. This, in turn, shows that $T^{* 6} T^{6}-T^{* 4} T^{4}=T^{* 2} T^{2}-I$ and more generally,

$$
T^{* 2 n+2} T^{2 n+2}-T^{* 2 n} T^{2 n}=T^{* 2} T^{2}-I
$$

for all positive integers n. Now we prove the assertion by using the mathematical induction. Since T is a square- 2 -isometric operator, the result is true for $n=1$. Now assume that the result is true for $n=k$, i.e.,

$$
T^{* 4 k} T^{4 k}-2 T^{* 2 k} T^{2 k}+I=0
$$

Then

$$
\begin{aligned}
& T^{* 4(k+1)} T^{4(k+1)}-2 T^{* 2(k+1)} T^{2(k+1)}+I \\
& =T^{* 4} T^{* 4 k} T^{4 k} T^{4}-2 T^{* 2} T^{* 2 k} T^{2 k} T^{2}+I \\
& =T^{* 4}\left(2 T^{* 2 k} T^{2 k}-I\right) T^{4}-2 T^{* 2} T^{* 2 k} T^{2 k} T^{2}+I \\
& =2 T^{* 4} T^{* 2 k} T^{2 k} T^{4}-2 T^{* 2} T^{* 2 k} T^{2 k} T^{2}-T^{* 4} T^{4}+I \\
& =2 T^{* 2 k}\left(T^{* 4} T^{4}-T^{* 2} T^{2}\right) T^{2 k}-T^{* 4} T^{4}+I \\
& =2 T^{* 2 k}\left(T^{* 2} T^{2}-I\right) T^{2 k}-T^{* 4} T^{4}+I \\
& =2 T^{* 2 k+2} T^{2 k+2}-2 T^{* 2 k} T^{2 k}-T^{* 4} T^{4}+I \\
& =2\left(T^{* 2} T^{2}-I\right)-T^{* 4} T^{4}+I \\
& =-\left(T^{* 4} T^{4}-2 T^{* 2} T^{2}+I\right) \\
& =0 .
\end{aligned}
$$

This shows that T^{k+1} is also a square-2-isometric operator, completing the argument.
Lemma 3.2. Let T be a square-2-isometric operator and M be an invariant subspace for T. Then the restriction $\left.T\right|_{M}$ is also a square-2-isometric operator.

Proof. Since M is an invariant subspace for T, we observe that

$$
T=\left(\begin{array}{cc}
T_{1} & T_{2} \\
0 & T_{3}
\end{array}\right):\binom{M}{M^{\perp}} \rightarrow\binom{M}{M^{\perp}}
$$

Let $D=T_{1} T_{2}+T_{2} T_{3}, F=T_{1}^{2} D+D T_{3}^{2}$. Then

$$
T^{2}=\left(\begin{array}{cc}
T_{1}^{2} & D \\
0 & T_{3}^{2}
\end{array}\right) \text { and } T^{4}=\left(\begin{array}{cc}
T_{1}^{4} & F \\
0 & T_{3}^{4}
\end{array}\right)
$$

we have

$$
\begin{aligned}
& T^{* 4} T^{4}-2 T^{* 2} T^{2}+I \\
& =\left(\begin{array}{cc}
T_{1}^{* 4} T_{1}^{4}-2 T_{1}^{* 2} T_{1}^{2}+I & T_{1}^{* 4} F-2 T_{1}^{* 2} D \\
F^{*} T_{1}^{4}-2 D^{*} T_{1}^{2} & F^{*} F+T_{3}^{* 4} T_{3}^{4}-2 D^{*} D-2 T_{3}^{* 2} T_{3}^{2}+I
\end{array}\right) \\
& =0,
\end{aligned}
$$

i.e., $T_{1}^{* 4} T_{1}^{4}-2 T_{1}^{* 2} T_{1}^{2}+I=0$. Hence $\left.T\right|_{M}$ is a square-2-isometric operator.

Lemma 3.3. Let T be a square-2-isometric operator. Then it has Bishop's property (β) and SVEP.
Proof. It suffices to prove that T has Bishop's property (β). 2-isometric operator has Bishop's property (β) by [20, Lemma 2.6]. If T is a square-2-isometric operator, then T^{2} is a 2-isometric operator, hence T has Bishop's property (β) by [15, Theorem 3.3.9].

Lemma 3.4. Let T be a square-2-isometric operator. Then $\sigma_{a}(T) \subseteq \partial \mathbb{D}$. Thus, $\sigma(T)=\overline{\mathbb{D}}$ or $\sigma(T) \subseteq \partial \mathbb{D}$.
Proof. If $\lambda \in \sigma_{a}(T)$, then there exists a sequence of unit vectors $\left\{x_{n}\right\}_{n=1}^{\infty}$ such that $\lim _{n \rightarrow \infty}\left\|T x_{n}-\lambda x_{n}\right\|=0$. Since $\lim _{n \rightarrow \infty}\left\|T^{j} x_{n}-\lambda^{j} x_{n}\right\|=0$ for $j=1,2,3,4$, we have

$$
\left|\left\|T^{j} x_{n}\right\|-\left\|\lambda^{j} x_{n}\right\|\right| \leq\left\|T^{j} x_{n}-\lambda^{j} x_{n}\right\| \rightarrow 0 \text { as } n \rightarrow \infty
$$

for $j=1,2,3,4$, which implies that

$$
\left(|\lambda|^{2}-1\right)^{2}=\lim _{n \rightarrow \infty}\left(\left\|T^{4} x_{n}\right\|-2\left\|T^{2} x_{n}\right\|+\left\|x_{n}\right\|\right)=0
$$

Hence $|\lambda|=1$. Since $\partial \sigma(T) \subseteq \sigma_{a}(T)$, we conclude that $\sigma(T)=\overline{\mathbb{D}}$ or $\sigma(T) \subseteq \partial \mathbb{D}$.
Lemma 3.5. Let T be a square-2-isometric operator and $N\left(T^{*}\right)=\{0\}$. Then T^{2} is unitary.
Proof. The assumption $N\left(T^{*}\right)=\{0\}$ means that $R\left(T^{2}\right)$ is dense, T^{2} is a 2-isometric operator, $\left\|T^{2} x\right\| \geq\|x\|(x \in H)$ by [18, Lemma 1]. This implies that T^{2} is invertible and T^{-2} is also a 2-isometric operator, and hence $\left\|T^{-2} x\right\| \geq\|x\|(x \in H)$. Combined with the property that $\left\|T^{2} x\right\| \geq\|x\|(x \in H)$ we conclude that T^{2} is unitary.

Lemma 3.6. Let T be a square-2-isometric operator and $\sigma(T)=\{\lambda\}$. Then $T=\lambda I$.
Proof. $\sigma\left(T^{2}\right)=\left\{\lambda^{2}\right\}$ by spectral mapping theorem and T^{2} is a 2-isometric operator, hence T^{2} is unitary by Lemma 3.4 and Lemma 3.5, we get $T^{2}=\lambda^{2} I$, thus $T=\lambda I$.

4. quasi-square-2-isometric operator

We begin with the following theorem which is a structure theorem for quasi-square-2-isometric operators.

Theorem 4.1. Suppose that $T \neq 0$ does not have a dense range. Then the following statements are equivalent:
(1) T is a quasi-square-2-isometric operator;
(2) $T=\left(\begin{array}{cc}T_{1} & T_{2} \\ 0 & 0\end{array}\right)$ on $H=\overline{R(T)} \oplus N\left(T^{*}\right)$, where T_{1} is a square-2-isometric operator. Furthermore, $\sigma(T)=\sigma\left(T_{1}\right) \cup\{0\}$.

Proof. (1) \Rightarrow (2) Consider the matrix representation of T with respect to the decomposition $H=\overline{R(T)} \oplus N\left(T^{*}\right)$:

$$
T=\left(\begin{array}{cc}
T_{1} & T_{2} \\
0 & 0
\end{array}\right)
$$

Let P be the projection onto $\overline{R(T)}$. Since T is a quasi-square-2-isometric operator, we have

$$
P\left(T^{* 4} T^{4}-2 T^{* 2} T^{2}+I\right) P=0
$$

Therefore

$$
T_{1}^{* 4} T_{1}^{4}-2 T_{1}^{* 2} T_{1}^{2}+I=0
$$

Since $\sigma\left(T_{1}\right) \cap\{0\}$ has no interior point, we have $\sigma(T)=\sigma\left(T_{1}\right) \cup\{0\}$.
(2) \Rightarrow (1) Suppose that $T=\left(\begin{array}{cc}T_{1} & T_{2} \\ 0 & 0\end{array}\right)$ on $H=\overline{R(T)} \oplus N\left(T^{*}\right)$, where T_{1} is a square-2-isometric operator. Then we have

$$
\begin{aligned}
& T^{*}\left(T^{* 4} T^{4}-2 T^{* 2} T^{2}+I\right) T \\
= & \left(\begin{array}{cc}
T_{1} & T_{2} \\
0 & 0
\end{array}\right)^{*} \\
& \times\left(\left(\begin{array}{cc}
T_{1} & T_{2} \\
0 & 0
\end{array}\right)^{* 4}\left(\begin{array}{ll}
T_{1} & T_{2} \\
0 & 0
\end{array}\right)^{4}-2\left(\begin{array}{cc}
T_{1} & T_{2} \\
0 & 0
\end{array}\right)^{* 2}\left(\begin{array}{ll}
T_{1} & T_{2} \\
0 & 0
\end{array}\right)^{2}+I\right) \\
& \times\left(\begin{array}{cc}
T_{1} & T_{2} \\
0 & 0
\end{array}\right) \\
= & \left(\begin{array}{cc}
T_{1} & T_{2} \\
0 & 0
\end{array}\right)^{*}\left(\begin{array}{cc}
T_{1}^{* 4} T_{1}^{4}-2 T_{1}^{* 2} T_{1}^{2}+I & T_{1}^{* 4} T_{1}^{3} T_{2}-2 T_{1}^{* 2} T_{1} T_{2} \\
T_{2}^{*} T_{1}^{* 3} T_{1}^{4}-2 T_{2}^{*} T_{1}^{*} T_{1}^{2} & T_{2}^{*} T_{1}^{* 3} T_{1}^{3} T_{2}-2 T_{2}^{*} T_{1}^{*} T_{1} T_{2}+I
\end{array}\right)\left(\begin{array}{cc}
T_{1} & T_{2} \\
0 & 0
\end{array}\right) \\
= & \left(\begin{array}{cc}
T_{1}^{*}\left(T_{1}^{* 4} T_{1}^{4}-2 T_{1}^{* 2} T_{1}^{2}+I\right) T_{1} & T_{1}^{*}\left(T_{1}^{* 4} T_{1}^{4}-2 T_{1}^{* 2} T_{1}^{2}+I\right) T_{2} \\
T_{2}^{*}\left(T_{1}^{* 4} T_{1}^{4}-2 T_{1}^{* 2} T_{1}^{2}+I\right) T_{1} & T_{2}^{*}\left(T_{1}^{* 4} T_{1}^{4}-2 T_{1}^{* 2} T_{1}^{2}+I\right) T_{2}
\end{array}\right) \\
= & 0 .
\end{aligned}
$$

Hence T is a quasi-square-2-isometric operator.
Corollary 4.2. Suppose that T is a quasi-square-2-isometric operator and $R(T)$ is dense. Then T is a square-2isometric operator.

Proof. The conclusion is evident by Definition 1.1.
Corollary 4.3. Suppose that T is a quasi-square-2-isometric operator. Then so is T^{n} for all positive integers n.
Proof. If $R(T)$ is dense, then T is a square-2-isometric operator and so is T^{n} by Lemma 3.1. Now, assume that $R(T)$ is not dense and $T \neq 0$, we decompose T as

$$
T=\left(\begin{array}{cc}
T_{1} & T_{2} \\
0 & 0
\end{array}\right) \text { on } H=\overline{R(T)} \oplus N\left(T^{*}\right)
$$

Then by Theorem 4.1, $T_{1}^{* 4} T_{1}^{4}-2 T_{1}^{* 2} T_{1}^{2}+I=0$. Hence T_{1} is a square-2-isometric operator, by Lemma 3.1, T_{1}^{n} is a square-2-isometric operator. Since

$$
T^{n}=\left(\begin{array}{cc}
T_{1}^{n} & T_{1}^{n-1} T_{2} \\
0 & 0
\end{array}\right) \text { on } H=\overline{R(T)} \oplus N\left(T^{*}\right)
$$

T^{n} is a quasi-square-2-isometric operator for all positive integers n by Theorem 4.1.
Corollary 4.4. Suppose that T is a quasi-nilpotent quasi-square-2-isometric operator. Then $T=0$.
Proof. Suppose T is a quasi-nilpotent quasi-square-2-isometric operator. If $R(T)$ is dense, then T is a square-2-isometric operator. By Lemma $3.5 T^{2}$ is unitary, hence $\sigma(T) \subseteq \partial \mathbb{D}$, where \mathbb{D} denotes the open unit disc, this is a contradiction. If $R(T)$ is not dense and $T \neq 0$, then $T=\left(\begin{array}{cc}T_{1} & T_{2} \\ 0 & 0\end{array}\right)$ on $H=\overline{R(T)} \oplus N\left(T^{*}\right)$, where T_{1} is a square-2-isometric operator and $\sigma\left(T_{1}\right)=\{0\}$, this is a contradiction. Thus $T=0$.

Lemma 4.5. Let T be a quasi-square-2-isometric operator and M be an invariant subspace for T. Then the restriction $\left.T\right|_{M}$ is also a quasi-square-2-isometric operator.

Proof. Since T is a quasi-square-2-isometric operator, $T^{* 5} T^{5}-2 T^{* 3} T^{3}+T^{*} T=0$, hence

$$
\left\|T^{5} x\right\|^{2}+\|T x\|^{2}=2\left\|T^{3} x\right\|^{2}
$$

for every $x \in H$. For $x \in M$, we have

$$
2\left\|\left(\left.T\right|_{M}\right)^{3} x\right\|^{2}=2\left\|T^{3} x\right\|^{2}=\left\|T^{5} x\right\|^{2}+\|T x\|^{2}=\left\|\left(\left.T\right|_{M}\right)^{5} x\right\|^{2}+\left\|\left(\left.T\right|_{M}\right) x\right\|^{2}
$$

Thus $\left.T\right|_{M}$ is a quasi-square-2-isometric operator.
Lemma 4.6. Let T be a quasi-square-2-isometric operator. Then $\sigma_{p}(T) \subseteq \partial \mathbb{D} \cup\{0\}$.
Proof. Since $\sigma_{a}(T) \subseteq \partial \mathbb{D} \cup\{0\}$, the conclusion is evident.
The following example provides an operator T which is a quasi-square-2-isometric operator, however, the relation $N(T-\lambda I) \subseteq N(T-\lambda I)^{*}$ does not hold.

Example 4.7. Let $T=\left(\begin{array}{cc}I & 2 I \\ 0 & -I\end{array}\right) \in B(H \oplus H)$. Then T is a quasi-square-2-isometric operator, but $N(T-I) \subseteq N(T-I)^{*}$ does not hold.

Proof. Straightforward calculations show that T is a quasi-square-2-isometric operator, however, for every nonzero vector $x \in H,(T-I)(x \oplus 0)=0$, while $(T-I)^{*}(x \oplus 0) \neq 0$. Therefore, the relation $N(T-I) \subseteq N(T-I)^{*}$ does not hold.

But the following result holds.
Lemma 4.8. Let T be a quasi-square-2-isometric operator, $0 \neq \lambda \in \sigma_{p}(T)$ and

$$
T=\left(\begin{array}{ll}
\lambda I & T_{12} \\
0 & T_{22}
\end{array}\right) \quad \text { on } H=N(T-\lambda I) \oplus N(T-\lambda I)^{\perp}
$$

Then

$$
2\left\|\lambda T_{12} T_{22}^{2} x+T_{12} T_{22}^{3} x\right\|^{2}+\left\|T_{22}^{6} x\right\|^{2}+\left\|T_{22}^{2} x\right\|^{2}=2\left\|T_{22}^{4} x\right\|^{2}
$$

for any $x \in N(T-\lambda I)^{\perp}$.
Proof. Let

$$
T=\left(\begin{array}{cc}
\lambda I & T_{12} \\
0 & T_{22}
\end{array}\right)
$$

Then

$$
T^{k}=\left(\begin{array}{cc}
\lambda^{k} I & \sum_{j=0}^{k-1} \lambda^{j} T_{12} T_{22}^{k-1-j} \\
0 & T_{22}^{k}
\end{array}\right)
$$

Suppose $0 \neq \lambda \in \sigma_{p}(T)$, by Lemma $4.6, \bar{\lambda} \lambda=1$, where $\bar{\lambda}$ is the conjugate of λ. Since T is a quasi-square-2isometric operator, T satisfies

$$
T^{* 6} T^{6}-2 T^{* 4} T^{4}+T^{* 2} T^{2}=0
$$

Then

$$
T^{* 6} T^{6}-2 T^{* 4} T^{4}+T^{* 2} T^{2}=\left(\begin{array}{cc}
0 & E \\
E^{*} & F
\end{array}\right)=0
$$

where

$$
\begin{aligned}
& E=\bar{\lambda}^{6} T_{12} T_{22}^{5}+\bar{\lambda}^{5} T_{12} T_{22}^{4}-\bar{\lambda}^{4} T_{12} T_{22}^{3}-\bar{\lambda}^{3} T_{12} T_{22}^{2} \\
& F=\left|T_{12}\left(\lambda^{5} I+\lambda^{4} T_{22}+\lambda^{3} T_{22}^{2}+\lambda^{2} T_{22}^{3}+\lambda T_{22}^{4}+T_{22}^{5}\right)\right|^{2}+\left|T_{22}^{6}\right|^{2} \\
& -2\left|T_{12}\left(\lambda^{3} I+\lambda^{2} T_{22}+\lambda T_{22}^{2}+T_{22}^{3}\right)\right|^{2}-2\left|T_{22}^{4}\right|^{2}+\left|T_{12}\left(\lambda I+T_{22}\right)\right|^{2}+\left|T_{22}^{2}\right|^{2}, \\
& |T|^{2}=T^{*} T .
\end{aligned}
$$

Since $E=0, T_{12} T_{22}^{5}+\lambda T_{12} T_{22}^{4}=\lambda^{2} T_{12} T_{22}^{3}+\lambda^{3} T_{12} T_{22}^{2}$, we have

$$
\begin{aligned}
& F=\left|T_{12}\left(\lambda^{5} I+\lambda^{4} T_{22}+\lambda^{3} T_{22}^{2}+\lambda^{2} T_{22}^{3}+\lambda T_{22}^{4}+T_{22}^{5}\right)\right|^{2}+\left|T_{22}^{6}\right|^{2} \\
& -2\left|T_{12}\left(\lambda^{3} I+\lambda^{2} T_{22}+\lambda T_{22}^{2}+T_{22}^{3}\right)\right|^{2}-2\left|T_{22}^{4}\right|^{2}+\left|T_{12}\left(\lambda I+T_{22}\right)\right|^{2}+\left|T_{22}^{2}\right|^{2} \\
& =2\left|\lambda T_{12} T_{22}^{2}+T_{12} T_{22}^{3}\right|^{2}+\left|T_{22}^{6}\right|^{2}-2\left|T_{22}^{4}\right|^{2}+\left|T_{22}^{2}\right|^{2} \\
& =2\left(T_{22}^{3 *}+\bar{\lambda} T_{22}^{2 *}\right) T_{12}^{*} T_{12}\left(\lambda T_{22}^{2}+T_{22}^{3}\right)+T_{22}^{6 *} T_{22}^{6}-2 T_{22}^{4 *} T_{22}^{4}+T_{22}^{* 2} T_{22}^{2} \\
& =0 .
\end{aligned}
$$

This is equivalent to

$$
2\left\|\lambda T_{12} T_{22}^{2} x+T_{12} T_{22}^{3} x\right\|^{2}+\left\|T_{22}^{6} x\right\|^{2}+\left\|T_{22}^{2} x\right\|^{2}=2\left\|T_{22}^{4} x\right\|^{2}
$$

for any $x \in N(T-\lambda I)^{\perp}$. This completes the proof.
Lemma 4.9. Suppose that T is a quasi-square-2-isometric operator, $0 \neq \lambda \in \sigma_{p}(T)$ and

$$
T=\left(\begin{array}{ll}
\lambda I & T_{12} \\
0 & T_{22}
\end{array}\right) \quad \text { on } H=N(T-\lambda I) \oplus N(T-\lambda I)^{\perp}
$$

Then $N\left(T_{22}-\lambda I\right)=\{0\}$.
Proof. Suppose $x \in N(T-\lambda I)^{\perp}$ and $\left(T_{22}-\lambda I\right) x=0$. If $\lambda \neq 0$, then by Lemma 4.8

$$
2\left\|\lambda T_{12} T_{22}^{2} x+T_{12} T_{22}^{3} x\right\|^{2}+\left\|T_{22}^{6} x\right\|^{2}+\left\|T_{22}^{2} x\right\|^{2}=2\left\|T_{22}^{4} x\right\|^{2}
$$

for any $x \in N(T-\lambda I)^{\perp}$, hence

$$
2\left\|(T-\lambda I)\binom{0}{x}\right\|^{2}=2\left\|T_{12} x\right\|^{2}=0
$$

thus $\binom{0}{x} \in N(T-\lambda I)$ and $x=0$.
The Berberian extension theorem shows that given an operator $T \in B(H)$, there exists a Hilbert space $K \supseteq H$ and an isometric $*$-isomorphism $T \rightarrow T^{\circ} \in B(K)$ preserving order such that $\sigma(T)=\sigma\left(T^{\circ}\right)$ and $\sigma_{p}\left(T^{\circ}\right)=\sigma_{a}\left(T^{\circ}\right)=\sigma_{a}(T)$. For details see the following Lemma.
Lemma 4.10. [5] Let H be a complex Hilbert space. Then there exists a Hilbert space K such that $H \subset K$ and a map $\varphi: B(H) \rightarrow B(K)$ such that
(1) φ is a faithful *-representation of the algebra $B(H)$ on K, i.e., $\varphi(T+S)=\varphi(T)+\varphi(S), \varphi(\lambda T)=\lambda \varphi(T)$, $\varphi(T S)=\varphi(T) \varphi(S), \varphi\left(T^{*}\right)=(\varphi(T))^{*}, \varphi(I)=I$ and $\|\varphi(T)\|=\|T\|$ for any $T, S \in B(H)$;
(2) $\varphi(A) \geq 0$ for any $A \geq 0$ in $B(H)$;
(3) $\sigma_{a}(T)=\sigma_{a}(\varphi(T))=\sigma_{p}(\varphi(T))$ for any $T \in B(H)$.

Definition 4.11. [12] The set $C(i)$ consists of (all) the operators $T \in B(H)$ for which $\sigma(T)=\{0\}$ implies T is nilpotent (possibly, the 0 operator) and T° (the Berberian extension of T) satisfies the property:

$$
T^{\circ}=\left(\begin{array}{ll}
\lambda I & T_{12} \\
0 & T_{22}
\end{array}\right) \quad \text { on } H=N\left(T^{\circ}-\lambda I\right) \oplus N\left(T^{\circ}-\lambda I\right)^{\perp}
$$

at every nonzero $\lambda \in \sigma_{p}\left(T^{\circ}\right)$ for some operators T_{12} and T_{22} such that $\lambda \notin \sigma_{p}\left(T_{22}\right)$ and $\sigma\left(T^{\circ}\right)=\sigma\left(T_{22}\right) \cup\{\lambda\}$.

Theorem 4.12. The function σ is continuous on the set of quasi-square-2-isometric operators.
Proof. Suppose T is a quasi-square-2-isometric operator. Let $\varphi: B(H) \rightarrow B(K)$ be Berberian's faithful *representation of Lemma 4.10. In the following, we shall show that $\varphi(T)$ is also a quasi-square-2-isometric operator. In fact, since T is a quasi-square-2-isometric operator, we have

$$
T^{* 5} T^{5}-2 T^{* 3} T^{3}+T^{*} T=0
$$

Hence we have

$$
\begin{aligned}
& \varphi(T)^{* 5} \varphi(T)^{5}-2 \varphi(T)^{* 3} \varphi(T)^{3}+\varphi(T)^{*} \varphi(T) \\
= & \varphi\left(T^{* 5} T^{5}-2 T^{* 3} T^{3}+T^{*} T\right)=0 \text { by Lemma 4.10, }
\end{aligned}
$$

so $\varphi(T)$ is also a quasi-square-2-isometric operator. By Corollary 4.4 and Lemma 4.9, we have T belongs to the set $C(i)$. Therefore, we have that the function σ is continuous on the set of quasi-square- 2 -isometric operators by [12, Theorem 1.1].
Proposition 4.13. Suppose that $T \in B(H)$ is a quasi-square-2-isometric operator. Then it has a nontrivial invariant subspace.

Proof. We consider the following three cases:
Case I: if $\overline{R(T)}=H$, then T is a square-2-isometric operator. If T is not an invertible square-2-isometric operator, then $\sigma(T)=\overline{\mathbb{D}}$, hence $\sigma(T)$ has nonempty interior. Since T has Bishop's property (β) by Lemma 3.3, it has a nontrivial invariant subspace from [13]. If T is an invertible square-2-isometric operator and $\sigma(T)$ is a singleton $\{\lambda\}$, then $T=\lambda I$ by Lemma 3.6, hence T has a nontrivial invariant subspace. Next, we show that if $\sigma(T)$ contains at least two points, then T has a nontrivial invariant subspace. Let $\lambda \in \sigma(T)$. Then, by [15, Proposition 1.2.20], the space $H_{T}(\{\lambda\})$ is a closed invariant subspace of T and $\sigma\left(T \mid H_{T}(\{\lambda\})\right) \subseteq\{\lambda\}$. Let U be an arbitrary open neighborhood of λ in \mathbb{C}. We choose another open set $V \subseteq \mathbb{C}$ such that $\lambda \notin V$ and $\{U, V\}$ is an open covering of \mathbb{C}. Since T^{2} is unitary by Lemma 3.5, T is decomposable by [15, Theorem 3.3.9], $\sigma\left(T \mid H_{T}(\{\lambda\})\right) \subseteq U, \sigma\left(T \mid H_{T}(V)\right) \subseteq V$, and $H=H_{T}(\{\lambda\})+H_{T}(V)$. If $H_{T}(\{\lambda\})=\{0\}$, then $\sigma(T)=\sigma\left(T \mid H_{T}(V)\right) \subseteq V$, which contradicts $\lambda \notin V$. If $H_{T}(\{\lambda\})=H$, then $\sigma(T)=\sigma\left(T \mid H_{T}(\{\lambda\})\right) \subseteq\{\lambda\}$, which contradicts that $\sigma(T)$ contains at least two points. This contradiction shows that $H_{T}(\{\lambda\})$ is a nontrivial invariant closed linear subspace. Case II: if $\overline{R(T)}=\{0\}$, then $T=0$, clearly it has a nontrivial invariant subspace.
Case III: if $\overline{R(T)} \neq\{0\}$ and $\overline{R(T)} \neq H$, then $\overline{R(T)}$ is a nontrivial invariant subspace of T.
Since a square-2-isometric operator is a quasi-square-2-isometric operator, as a consequence we obtain the following corollary.
Corollary 4.14. Every square-2-isometric operator has a nontrivial invariant subspace.
Lemma 4.15. Let T be a quasi-square-2-isometric operator and $\sigma(T)=\{\lambda\}$. Then $T=\lambda I$.
Proof. We consider the following two cases:
Case I: if $\lambda=0$, then $T=0$ by Corollary 4.4.
Case II: if $\lambda \neq 0$, then T is a square-2-isometric operator, hence $T=\lambda I$ by Lemma 3.6.
Lemma 4.16. Let T be a quasi-square-2-isometric operator and $\lambda \in \operatorname{iso\sigma }(T)$. Then the Riesz idempotent $E_{T}(\{\lambda\})$ of T with respect to λ satisfies

$$
R\left(E_{T}(\{\lambda\})\right)=N(T-\lambda I)
$$

Proof. The Riesz idempotent $E_{T}(\{\lambda\})$ satisfies $\sigma\left(\left.T\right|_{R\left(I-E_{T}(\{\lambda\})\right)}\right)=\sigma(T) \backslash\{\lambda\}$ and $\sigma\left(\left.T\right|_{R\left(E_{T}(\{\lambda\})\right)}\right)=\{\lambda\}$. Since $\left.T\right|_{R\left(E_{T}(\{\lambda\})\right)}$ is also a quasi-square-2-isometric operator, it follows that $(T-\lambda I) E_{T}(\{\lambda\})=\left(\left.T\right|_{R\left(E_{T}(\{\lambda\})\right)}-\lambda I\right) E_{T}(\{\lambda\})=$ 0 by Lemma 4.15 , hence $R\left(E_{T}(\{\lambda\})\right) \subseteq N(T-\lambda I)$. Conversely, let $x \in N(T-\lambda I)$. Then

$$
E_{T}(\{\lambda\}) x=\frac{1}{2 \pi i} \int_{\partial D}(\mu I-T)^{-1} x d \mu=\left(\frac{1}{2 \pi i} \int_{\partial D} \frac{1}{\mu-\lambda} d \mu\right) x=x
$$

thus $x \in R\left(E_{T}(\{\lambda\})\right)$. This completes the proof of $R\left(E_{T}(\{\lambda\})\right)=N(T-\lambda I)$.

An operator $T \in B(H)$ is said to be polaroid if every $\lambda \in \operatorname{iso} \sigma(T)$ is a pole of the resolvent of T. The condition of being polaroid may be characterized by means of the quasi-nilpotent part $H_{0}(T-\lambda I)$ of $T-\lambda I$.
Lemma 4.17. [2] An operator $T \in B(H)$ is polaroid if and only if there exists $p:=p(T-\lambda) \in \mathbb{N}$ such that

$$
H_{0}(T-\lambda I)=N(T-\lambda I)^{p} \text { for all } \lambda \in \operatorname{iso\sigma }(T)
$$

For $p=1$, this operator is called simple polaroid.
It is known that $R\left(E_{T}(\{\lambda\})\right)=H_{0}(T-\lambda I)$ [1, p.157]. As a consequence we obtain the following corollary.
Corollary 4.18. Let T be a quasi-square-2-isometric operator and $\lambda \in \operatorname{iso\sigma }(T)$. Then λ is a simple pole of the resolvent of T.
Proof. The conclusion is evident by Lemma 4.16 and Lemma 4.17.
In 2012, Yuan and Ji [22, Lemma 5.2] proved following Lemma.
Lemma 4.19. [22] Let $T \in B(H), m$ be a positive integer and $\lambda \in \operatorname{iso\sigma (T).}$
(1) The following assertions are equivalent:
(a) $R\left(E_{T}(\{\lambda\})\right)=N(T-\lambda I)^{m}$.
(b) $N\left(E_{T}(\{\lambda\})\right)=R(T-\lambda I)^{m}$.

In this case, λ is a pole of the resolvent of T and the order of λ is not greater than m.
(2) If λ is a pole of the resolvent of T and the order of λ is m, then the following assertions are equivalent:
(a) $E_{T}(\{\lambda\})$ is self-adjoint.
(b) $N(T-\lambda I)^{m} \subseteq N(T-\lambda I)^{* m}$.
(c) $N(T-\lambda I)^{m}=N(T-\lambda I)^{* m}$.

Remark In general, $E_{T}(\{\lambda\})$ is not self-adjoint for a quasi-square-2-isometric operator. Let $T=\left(\begin{array}{cc}I & 2 I \\ 0 & -I\end{array}\right) \in$ $B(H \oplus H)$. Example 4.7 shows that T is a quasi-square-2-isometric operator, however $N(T-I) \subseteq N(T-I)^{*}$ does not hold, Hence $E_{T}(\{1\})$ is not self-adjoint from Corollary 4.18 and Lemma 4.19.

Next for $T \in B(H)$, we set the following property:

$$
\begin{equation*}
\sigma(T) \cap(-\sigma(T))=\emptyset \tag{*}
\end{equation*}
$$

Then we begin with the following result.
Lemma 4.20. Let $T \in B(H)$ be a quasi-square-2-isometric operator and satisfy (*). If λ is an eigen-value of T, then $N(T-\lambda I)=N\left(T^{2}-\lambda^{2} I\right) \subseteq N\left(T^{* 2}-\bar{\lambda}^{2} I\right)=N\left(T^{*}-\bar{\lambda} I\right)$ and hence $N(T-\lambda I)$ is a reducing subspace for T.
Proof. Firstly, we show that $N(T-\lambda I)=N\left(T^{2}-\lambda^{2} I\right)$. Because it is clear that $N(T-\lambda I) \subseteq N\left(T^{2}-\lambda^{2} I\right)$, we will verify that $N\left(T^{2}-\lambda^{2} I\right) \subseteq N(T-\lambda I)$. Let $x \in N\left(T^{2}-\lambda^{2} I\right)$, i.e., $\left(T^{2}-\lambda^{2} I\right) x=0$. Then $(T+\lambda I)(T-\lambda I) x=0$. Since $\lambda \neq 0$, by the assumption (*), we have $-\lambda \notin \sigma(T)$. Hence, it follows $(T-\lambda I) x=0$ and $x \in N(T-\lambda I)$. Therefore, $N\left(T^{2}-\lambda^{2} I\right) \subseteq N(T-\lambda I)$ and $N\left(T^{2}-\lambda^{2} I\right)=N(T-\lambda I)$. Because T is a quasi-square-2-isometric and satisfy (*), T^{2} is 2-isometric, by [20, Corollary 2.5], $N\left(T^{2}-\lambda^{2} I\right) \subseteq N\left(T^{2 *}-\bar{\lambda}^{2} I\right)$. Evidently, $N\left(T^{*}-\bar{\lambda} I\right) \subseteq N\left(T^{* 2}-\bar{\lambda}^{2} I\right)$. Let $x \in N\left(T^{* 2}-\bar{\lambda}^{2} I\right)$. Because $\left(T^{*}+\bar{\lambda} I\right)\left(T^{*}-\bar{\lambda} I\right) x=0$ and $T^{*}+\bar{\lambda} I$ is invertible by the assumption $(*)$, we obtain that $x \in N\left(T^{*}-\overline{\lambda I}\right)$. Hence, $N\left(T^{2 *}-\bar{\lambda}^{2} I\right)=N\left(T^{*}-\bar{\lambda} I\right)$. Finally, by the above results, it is clear that $N(T-\lambda I)$ is a reducing subspace for T.

Theorem 4.21. Let $T \in B(H)$ be a quasi-square-2-isometric operator and satisfy $(*), \lambda$ be an isolated point of $\sigma(T)$ and $E_{T}(\{\lambda\})$ be the Riesz idempotent with respect to λ. Then $E_{T}(\{\lambda\})$ is self-adjoint and $R\left(E_{T}(\{\lambda\})\right)=N(T-\lambda I)=$ $N(T-\lambda I)^{*}$.

Proof. First we note that $R\left(E_{T}(\{\lambda\})\right)=N(T-\lambda I)$ and $N(T-\lambda I) \subseteq N(T-\lambda I)^{*}$. It is obvious from Corollary 4.18, Lemma 4.19 and Lemma 4.20.

References

[1] P. Aiena, Fredholm and Local Spectral Theory with Applications to Multipliers, Kluwer Academic Publishers, London, 2004.
[2] P. Aiena, M. Chō, M. González, Polaroid type operators under quasi-affinities, J. Math. Anal. Appl. 371(2)(2010) 485-495.
[3] J. Agler, A disconjugacy theorem for Toeplitz operators, Amer. J. Math. 112(1)(1990) 1-14.
[4] J. Agler, M. Stankus, m-isometric transformations of Hilbert space. I, Integral Equ. Oper. Theory 21(4)(1995) 383-429.
[5] S.K. Berberian, Approximate proper vectors, Proc. Amer. Math. Soc. 13(1962) 111-114.
[6] T. Bermudez, I. Marrero, A. Martinon, On the orbit of an m-isometry, Integral Equ. Oper. Theory 64(2009) 487-494.
[7] S. Brown, Some invariant subspaces for subnormal operators, Integral Equ. Oper. Theory 1(1978) 310-333.
[8] M. Chō, S. Ôta, K. Tanahashi, Invertible weighted shift operators which are m-isometries, Proc. Amer. Math. Soc. 141(12)(2013) 4241-4247.
[9] M. Chō, S. Ôta, K. Tanahashi, A. Uchiyama, Spectral properties of m-isometric operators, Funct. Anal. Approx. Comput. 4(2012) 33-39.
[10] J.B. Conway, B.B. Morrel, Operators that are points of spectral continuity, Integral Equ. Oper. Theory 2(1979) 174-198.
[11] B.P. Duggal, Tensor product of n-isometries, Linear Algebra Appl. 437(2012) 307-318.
[12] B.P. Duggal, I.H. Jeon, I.H. Kim, Continuity of the spectrum on a class of upper triangular operator matrices, J. Math. Anal. Appl. 370(2010) 584-587.
[13] J. Eschmeier, B. Prunaru, Invariant subspaces for operators with Bishop's property (β) and thick spectrum, J. Funct. Anal. 94(1990) 196-222.
[14] S. Jung, Y. Kim, E. Ko, J.E. Lee, On (A, m)-expansive operators, Studia Math. 231(1)(2012) 3-23.
[15] K.B. Laursen, M.M. Neumann, Introduction to Local Spectral Theory, Clarendon Press, Oxford, 2000.
[16] S. Mecheri, S.M. Patel, On quasi-2-isometric operators, Linear and Multilinear Algebra 66(5)(2018) 1019-1025.
[17] S.M. Patel, 2-isometry operators, Glasnik Mat. 37(57)(2002) 143-147.
[18] S. Richter, Invariant subspaces of the Dirichlet shift, J. Reine Angew. Math. 386(1988) 205-220.
[19] J. Stampfli, Hyponormal operators and spectral density, Trans. Amer. Math. Soc. 117(1965) 469-476.
[20] J.L. Shen, G.X. Ji, On an elementary operator with 2-isometric operator entries, Filomat 32(14)(2018) 5083-5088.
[21] J.L. Shen, G.X. Ji, Spectral properties and the dynamics of quasi-2-expansive operators, J. Spectr. Theory 10(1)(2020) 323-335.
[22] J.T. Yuan, G.X. Ji, On (n; k)-quasiparanormal operators, Studia Math. 209(3)(2012) 289-301.

[^0]: 2020 Mathematics Subject Classification. Primary 47B20; Secondary 47A10
 Keywords. Square-2-isometric operator, Quasi-square-2-isometric operator, Spectral continuity, Invariant subspace, Riesz idempotent

 Received: 15 December 2020; Accepted: 04 June 2022
 Communicated by Dragan S. Djordjević
 Research supported by the National Research Project Cultivation Foundation of Henan Normal University (20210372).
 Email addresses: zuofei2008@sina.com (Fei Zuo), zuoyawen1215@126. com (Junli Shen), alatanca@imu.edu. cn (Alatancang Chen)

