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Available at: http://www.pmf.ni.ac.rs/filomat

New Composition Results of Stepanov (µ, ν)-Pseudo Almost Periodic
Functions

Amor Rebeya,b

aBusiness Administration Department, College of Business Administration, Majmaah University, Majmaah, 11952, Saudi Arabia.
bDepartment of Mathematics, Higher institute of Applied Mathematics and Computer Sciences of Kairouan, Kairouan University, Tunisia.

Abstract. Motivated by [17], in this paper, we give sufficient conditions ensuring that the space SpPAP(R,Z, µ, ν)
of (µ, ν)-pseudo almost periodic functions in Stepanov’s sense is invariant by translation. Also, we provide
new composition theorems of (µ, ν)-pseudo almost periodic functions in the sense of Stepanov.

1. Introduction

The notion of almost periodicity introduced by Bohr [4] is not restricted just to continuous functions.
One can generalize the notion to measurable functions with some suitable conditions of integrability,
namely, Stepanov almost periodic functions, see [13] can be further developed. Details can be found in
[2, 3, 5–7, 10, 11, 13–16].
Now, throughout this work (Z, ∥.∥) is a Banach space. The notation C(R,Z) stands for the collection of all
continuous functions from R into Z. We denote by BC(R,Z) the space of all bounded continuous functions
from R into Z endowed with the supremum norm defined by

∥x∥BC(R,Z) := supt∈R{∥x(t)∥}.

Furthermore, BC(R × Z,Z) is the space of all bounded continuous functions f : R × Z→ Z.

Definition 1.1. [9] Let p ∈ [1;+∞). The space BSp(R; Z) of all bounded functions in Stepanov’s sense, with the

exponent p, consists of all measurable functions f onR with values in Z such that ∥ f ∥BSp := sup
t∈R

(
∫ t+1

t
∥ f (s)∥pds)

1
p <

∞. This is a Banach space when it is equipped with the norm ∥ f ∥BSp .

Remark 1.2. f ∈ BSp(R; Z) iff f b
∈ L∞(R,Lp([0, 1],Z)), with f b is the Bochner transform of f defined by f b :

R −→ Lp([0, 1],Z), f b(t)(s) = f (t + s),∀(t, s) ∈ R × [0, 1]. And ∥ f ∥BSp = ∥ f b
∥∞.
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2. Almost periodic functions

Definition 2.1. [8] A continuous function f : R 7→ Z is said to be almost periodic if for every ϵ > 0 there exists a
positive number l(ϵ) such that every interval of length l(ϵ) contains a number τ such that

∥ f (t + τ) − f (t)∥ < ε for t ∈ R.

Let AP(R,Z) be the set of all almost periodic functions from R to Z. Then (AP(R,Z), ∥.∥∞) is a Banach
space with supremum norm given by

∥u∥∞ = sup
t∈R
∥u(t)∥.

Definition 2.2. [6] A continuous function f : R × Z 7→ Z is said to be almost periodic in t uniformly for y ∈ Z, if
for every ϵ > 0, and any compact subset K of Z, there exists a positive number l(ϵ) such that every interval of length
l(ϵ) contains a number τ such that

∥ f (t + τ, y) − f (t, y)∥ < ε for (t, y) ∈ R × K.

We denote the set of such functions as APU(R × Z,Z).

Definition 2.3. [13] Let p ∈ [1,+∞). A function f ∈ BSp(R; Z) is said to be Sp-almost periodic if its Bochner
transform f b

∈ AP(R,Lp([0, 1],Z)).
Denote by APp(R,Z) the set of all such functions.

The following remark is immediate.

Remark 2.4. [17] The map B : (BSp(R,Z), ∥.∥BSp ) −→ L∞(R,Lp([0, 1],Z)), f 7−→ f b is a linear isometry, in
particular it is continuous.

Definition 2.5. [7] A function f : R × Z→ Z is said to be Sp-almost periodic in t uniformly with respect to x in Z
if the following two conditions hold:
(i) for all x ∈ Z, f (., x) ∈ APp(R,Z),
(ii) f b : R × Z −→ Lp([0, 1],Z); f b(t, x)(s) = f (t + s, x) is uniformly continuous on each compact set K in Z with
respect to the second variable x, namely, for each compact set K in Z, for all ε > 0, there exists δ > 0 such that for all
x1, x2 ∈ K, one has

∥x1 − x2∥ ≤ δ⇒ sup
t∈R

(
∫ 1

0
∥ f (t + s, x1) − f (t + s, x2)∥pds)

1
p ≤ ε.

Denote by APpU(R × Z,Z) the set of all such functions.

3. Ergodic functions

Let B denote the Lebesgue σ-field of R and letM be the set of all positive measures µ on B satisfying
µ(R) = +∞ and µ([a, b]) < ∞, for all a, b ∈ R (a ≤ b). From now on, µ, ν ∈ M.

Definition 3.1. [3] A function f : R −→ Z is said to be (µ, ν)−ergodic if

lim
r→∞

1
ν([−r, r])

∫ r

−r
∥ f (s)∥dµ(s) = 0.

We then denote the set of all such functions by E(R,Z, µ, ν).

Definition 3.2. [16] A function f ∈ BSp(R,Z) is said to be Sp
− (µ, ν)−ergodic if

lim
r→∞

1
ν([−r, r])

∫ r

−r
(
∫ t+1

t
∥ f (s)∥pds)

1
p dµ(t) = 0

Equivalently, f b
∈ E(R,Lp([0, 1],Z), µ, ν).

We then denote the collection of all such functions by Ep(R,Z, µ, ν).
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Definition 3.3. [17] A f : R × Z → Z is said to be Sp-(µ, ν)-ergodic in t uniformly with respect to x ∈ Z if the
following conditions are satisfied:
(i) For all x ∈ Z, f (., x) ∈ Ep(R,Z, µ, ν).
(ii) f b : R × Z −→ Lp([0, 1],Z); f b(t, x)(s) = f (t + s, x) is uniformly continuous on each compact set K in Z with
respect to the second variable x ∈ Z.

The set of such function is denoted by EpU(R × Z,Z, µ, ν).

4. Pseudo almost periodic functions

Definition 4.1. A continuous function f : R → Z is said to be (µ, ν)-pseudo almost periodic if it is written in the
form

f = 1 + h,

where 1 ∈ PA(R,Z) and h ∈ E(R,Z, µ, ν). The set of such functions is denoted by PAP(R,Z, µ, ν).

Definition 4.2. A continuous function f : R×Z→ Z is said to be (µ, ν)-pseudo almost periodic in the first variable
uniformly with respect to the second variable if is written in the form

f = 1 + h,

where 1 ∈ APU(R×Z,Z) and h ∈ EU(R×Z,Z, µ, ν). The set of such functions is denoted by PAPU(R×Z,Z, µ, ν).

Definition 4.3. A function f ∈ BSp(R→ Z) is said to be Sp
− (µ, ν)-pseudo almost periodic if it can be written in

the form
f = 1 + h,

where 1 ∈ APp(R,Z, µ) and h ∈ Ep(R,Z, µ, ν). The set of such functions will be denoted by PAPp(R,Z, µ, ν) or
SpPAP(R,Z, µ, ν).

Definition 4.4. A function f : R×Z→ Z is said to be Sp-(µ, ν)-pseudo almost periodic in the first variable uniformly
with respect to the second variable if it can be written in the form

f = 1 + h,

where 1 ∈ APpU(R×Z,Z) and h ∈ EpU(R×Z,Z, µ, ν). The set of such functions is denoted by PAPpU(R×Z,Z, µ, ν).

We define the following conditions.

(M1):

lim sup
r→+∞

µ([−r, r])
ν([−r, r])

:=M < ∞. (1)

(M2): For all τ ∈ R, there exist β > 0 and a bounded interval I such that

µ({a + τ : a ∈ A}) ≤ βµ(A) when A ∈ B satisfies A ∩ I = ∅.

Theorem 4.5. If (M1) and (M2) are satisfied, Then:

1. APp(R,Z) is a translation invariant closed subspace of BSp(R; Z).
2. Ep(R,Z, µ, ν) is a translation invariant closed subspace of BSp(R; Z).
3. PAPp(R,Z, µ, ν) = APp(R,Z)

⊕
E

p(R,Z, µ, ν) is a Banach space for the direct sum norm, where

∥ f ∥PAPp(R,Z,µ,ν) := ∥1∥APp(R,Z) + ∥h∥Ep(R,Z,µ,ν) = ∥1∥BSp + ∥h∥BSp

.
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Proof:

1. By [12], AP(R,Lp([0, 1],Z)) is a translation invariant subspace of BC(R,Lp([0, 1],Z)). Let t 7→ fa(t) :=
f (t + a) define a translation of f , we have

(( fa)b(t)(s) = fa(t + s) = f (t + s + a) = f b(t + a)(s) = ( f b)a(t)(s).

That is ( fa)b = ( f b)a and then for f ∈ APp(R,Z) , f b
∈ AP(R,Lp([0, 1],Z)) then ( f b)a = ( fa)b

∈

AP(R,Lp([0, 1],Z)) that means fa ∈ APp(R,Z)), then APp(R,Z) is translation invariant.
By [13], APp(R,Z) is a closed subspace of BSp(R; Z).

2. See [17].
3. By using the same method in [16], it is fair to show that APp(R,Z)∩Ep(R,Z, µ, ν) = {0} and any Cauchy

sequence of the space PAPp(R,Z, µ, ν) is convergent in itself. Let f ∈ APp(R,Z) ∩ Ep(R,Z, µ, ν) then
f b
∈ AP(R,Lp([0, 1],Z)) ∩ E(R,Lp([0, 1],Z), µ, ν). According to [1], f b = 0 then f = 0, by the injectivity

of B in Remark 2.4.
The Let ( fn)n be a Cauchy sequence in PAPp(R,Z, µ, ν), then ∀n ∈ N,∃!(1n, hn) ∈ APp(R,Z) ×
E

p(R,Z, µ, ν) such that fn = 1n + hn.

Let ε > 0, ∃n0 ∈N/∀m,n ≥ n0, we have

∥ fn − fm∥PAPp = ∥1n − 1m∥BSp + ∥hn − hm∥BSp < ε.

Then, ∀m,n ≥ n0, we have
∥1n − 1m∥BSp < ε and ∥hn − hm∥BSp < ε.

Therefore (1n)n and (hn)n are Cauchy sequences in the Banach Spaces APp(R,Z) and Ep(R,Z, µ, ν)
respectively. Then ∃!(1, h) ∈ APp(R,Z) × Ep(R,Z, µ, ν) such that

lim
n→+∞

∥1n − 1∥BSp = 0 and lim
n→+∞

∥hn − h∥BSp = 0.

Let f = 1 + h ∈ APp(R,Z) ⊕ Ep(R,Z, µ, ν) = PAPp(R,Z, µ, ν), then

lim
n→+∞

∥ fn − f ∥BSp = lim
n→+∞

∥1n − 1∥BSp + lim
n→+∞

∥hn − h∥BSp = 0.

Which gives, (PAPp(R,Z, µ, ν) is a Banach space.

Remark 4.6. In the space PAPp(R,Z, µ, ν), the direct sum norm and the ∥.∥BSp are equivalent.

Theorem 4.7. Let G ∈ APpU(R × Z,Z) and h ∈ APp(R,Z) satisfy the following:

1. (A0): There exists a nonnegative function L ∈ BSp(R) such that

∀x, y ∈ Z, t ∈ R∥G(t, x) − G(t, y)∥ ≤ L(t)∥x − y∥.

And there exists ξ > 0 such that for all t ∈ R, f ∈ BSp(R,Z), we have:

( ∫ 1

0
Lp(t + s)∥ f (s)∥pds

) 1
p
≤ ξ
( ∫ 1

0
∥ f (s)∥pds

) 1
p
,

2. K = {h(t), t ∈ R} is compact.

Then [t 7−→ G(t, h(t))] ∈ APp(R,Z).
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Proof: Take ε > 0 and K ⊂
⋃

1≤i≤r

B(yi, ε), for some yi ∈ K.

For t ∈ R, let E1 := {s ∈ [0, 1] : h(t + s) ∈ B(y1, ε)} and for 2 ≤ i ≤ r, we define Ei := {s ∈
(
[0, 1] \

⋃
1≤ j≤i−1

E j

)
:

h(t + s) ∈ B(yi, ε)}.
Here {Ei, 1 ≤ i ≤ r} is a partition of [0, 1] and the sum of Lebesgue measures:

∑
i λ(Ei) = 1.

I : = (
∫ 1

0
∥G(t + s + τ, h(t + s + τ)) − G(t + s, h(t + s))∥pds)

1
p

≤ (
∫ 1

0
∥G(t + s + τ, h(t + s + τ)) − G(t + s + τ, h(t + s))∥pds)

1
p

+ (
∫ 1

0
∥G(t + s + τ, h(t + s)) − G(t + s, h(t + s))∥pds)

1
p .

Taking that I1 and I2, respectively are the first and the second term of the previous sum.

By (A0), I1 ≤ (
∫ 1

0
(L(t + s + τ)∥h(t + s + τ) − h(t + s)∥)pds)

1
p

≤ ξ(
∫ 1

0
(∥h(t + s + τ) − h(t + s)∥)pds)

1
p ≤ ξε, since h ∈ APp(R,Z).

For I2:

I2 = (
r∑
1

∫
Ei

∥G(t + s + τ, h(t + s)) − G(t + s, h(t + s))∥pds)
1
p .

Let

G(t + s + τ, h(t + s)) − G(t + s, h(t + s)) = (G(t + s + τ, h(t + s)) − G(t + s + τ, yi))
+ (G(t + s + τ, yi) − G(t + s, yi))
+ (G(t + s, yi) − G(t + s, h(t + s))
= f1,i(s) + f2,i(s) + f3,i(s)

Then

I2 = (
r∑
1

∫
Ei

∥ f1,i(s) + f2,i(s) + f3,i(s)∥pds)
1
p

≤

( r∑
1

[
(
∫

Ei

∥ f1,i(s)∥pds)
1
p + (
∫

Ei

∥ f2,i(s)∥pds)
1
p + (
∫

Ei

∥ f3,i(s)∥p)
1
p
]p) 1

p

=
( r∑

1

∫
Ei

∥ f1,i(s)∥pds
) 1

p
+
( r∑

1

∫
Ei

∥ f2,i(s)∥pds
) 1

p
+
( r∑

1

∫
Ei

∥ f3,i(s)∥pds
) 1

p

:= S1 + S2 + S3.

By (A0),

S1 =
( r∑

1

∫
Ei

∥G(t + s + τ, h(t + s)) − G(t + s + τ, yi)∥pds
) 1

p

≤

( r∑
1

∫
Ei

(L(t + s + τ)∥h(t + s) − yi∥)pds
) 1

p

≤

( r∑
1

∫
Ei

(L(t + s + τ)ε)pds
) 1

p
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= ε
( r∑

1

∫
Ei

(L(t + s + τ))pds
) 1

p

= ε
( r∑

1

∫ 1

0
(χEi (s)L(t + s + τ))pds

) 1
p

= ε
( r∑

1

[(
∫ 1

0
(χEi (s)L(t + s + τ))pds)

1
p ]p
) 1

p

≤ ε
( r∑

1

[ξ(
∫ 1

0
(χEi (s))pds)

1
p ]p
) 1

p

= ξε
( r∑

1

λ(Ei)
) 1

p

= ξε.

Similarly S3 ≤ εξ.
For S2 :

S2 =
( r∑

1

∫
Ei

∥G(t + s + τ, yi) − G(t + s, yi)∥pds
) 1

p .

G(., y1) ∈ APp(R,Z), then

(
∫ 1

0
∥G(t + s + τ, y1) − G(t + s, y1)∥pds

) 1
p
≤
ε

r
1
p

.

G(., y2) ∈ APp(R,Z), then

(
∫ 1

0
∥G(t + s + τ, y2) − G(t + s, y2)∥pds

) 1
p
≤
ε

r
1
p

.

Since G(., y j) ∈ APp(R,Z), then

(
∫ 1

0
∥G(t + s + τ, y j) − G(t + s, y j)∥pds

) 1
p
≤
ε

r
1
p

.

Then, we have

S2 =
( r∑

1

∫
Ei

∥G(t + s + τ, y j) − G(t + s, y j)∥pds
) 1

p

≤

( r∑
1

∫ 1

0
∥G(t + s + τ, y j) − G(t + s, y j)∥pds

) 1
p

≤

( r∑
1

( ε
r

1
p

)p) 1
p
= ε.

And then, I ≤ ε(1 + 3ξ). This completes the proof.

Theorem 4.8. [17] Assume µ, ν satisfy (M1). Let G ∈ EpU(R × Z,Z, µ, ν) and h : R −→ Z satisfying:

1. (A0): There exists a nonnegative function L ∈ BSp(R) such that

∀x, y ∈ Z, t ∈ R, ∥G(t, x) − G(t, y)∥ ≤ L(t)∥x − y∥.

And there exists ξ > 0 such that for all t ∈ R, f ∈ BSp(R,Z), we have:( ∫ 1

0
Lp(t + s)∥ f (s)∥pds

) 1
p
≤ ξ
( ∫ 1

0
∥ f (s)∥pds

) 1
p
,
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2. K = {h(t), t ∈ R} is compact.

Then [t 7−→ G(t, h(t))] ∈ Ep(R,Z, µ, ν).

Theorem 4.9. Let µ and ν satisfy (M1). Assuming that G = G1 + G2 ∈ PAPpU(R × Z,Z, µ, ν) and h = h1 + h2 ∈

PAPp(R,Z, µ, ν). Supposing that the following conditions hold:

1. G1,G2 satisfy (A0): There exists a nonnegative function Li ∈ BS
p(R) such that

∀x, y ∈ Z, t ∈ R : ∥Gi(t, x) − Gi(t, y)∥ ≤ Li(t)∥x − y∥,

for i = 1, 2. Alongside, there exists ξ > 0 such that for all t ∈ R, f ∈ BSp(R)

( ∫ 1

0
Lp

i (t + s)∥ f (s)∥pds
) 1

p
≤ ξ
( ∫ 1

0
∥ f (s)∥pds

) 1
p
.

2. Ki = {hi(t), t ∈ R} is compact, for i = 1, 2.

Then t 7−→ G(t, h(t)) ∈ PAPp(R,Z, µ, ν).

Proof: Put G(t, h(t)) = G̃1(t)+G̃2(t). Where G̃1(t) := G1(t, h1(t)) and G̃2(t) := (G(t, h(t))−G(t, h1(t)))+G2(t, h1(t)).
By Theorem 4.7 , we have t 7−→ G1(t, h1(t)) ∈ APp(R,Z) that is G̃1 ∈ APp(R,Z). For G̃2:
t 7−→ G2(t, h1(t)) ∈ Ep(R,Z, µ, ν), by Theorem 4.8.

For t ∈ R, we have( ∫ t+1

t
∥G(s, h(s)) − G(s, h1(s))∥pds

) 1
p
≤

( ∫ t+1

t
∥G1(s, h(s)) − G1(s, h1(s))∥pds

) 1
p

+
( ∫ t+1

t
∥G2(s, h(s)) − G2(s, h1(s))∥pds

) 1
p

≤

( ∫ 1

0
Lp

1(t + s)∥h2(t + s)∥pds
) 1

p
+
( ∫ 1

0
Lp

2(t + s)∥h2(t + s)∥pds
) 1

p

≤ 2ξ
( ∫ 1

0
∥h2(t + s)∥pds

) 1
p
, since h2(t + .) ∈ BSp(R).

Then

1
ν([−r, r])

∫
[−r,r]

( ∫ t+1

t
∥G(s, h(s)) − G(s, h1(s))∥pds

) 1
p dµ(t) ≤

2ξ
ν([−r, r])

∫
[−r,r]

( ∫ t+1

t
∥h2(s)∥pds

) 1
p dµ(t) −→ 0

as r −→ +∞. This implies that t 7−→ G(t, h(t)) − G(t, h1(t)) ∈ Ep(R,Z, µ, ν). Therefore, G̃2 ∈ E
p(R,Z, µ, ν).
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