New Composition Results of Stepanov (μ, v)-Pseudo Almost Periodic Functions

Amor Rebey ${ }^{\text {a,b }}$
${ }^{a}$ Business Administration Department, College of Business Administration, Majmaah University, Majmaah, 11952, Saudi Arabia.
${ }^{b}$ Department of Mathematics, Higher institute of Applied Mathematics and Computer Sciences of Kairouan, Kairouan University, Tunisia.

Abstract

Motivated by [17], in this paper, we give sufficient conditions ensuring that the space $S^{p} P A P(\mathbb{R}, Z, \mu, v)$ of (μ, v)-pseudo almost periodic functions in Stepanov's sense is invariant by translation. Also, we provide new composition theorems of (μ, v)-pseudo almost periodic functions in the sense of Stepanov.

1. Introduction

The notion of almost periodicity introduced by Bohr [4] is not restricted just to continuous functions. One can generalize the notion to measurable functions with some suitable conditions of integrability, namely, Stepanov almost periodic functions, see [13] can be further developed. Details can be found in [2, 3, 5-7, 10, 11, 13-16].
Now, throughout this work $(Z,\|\cdot\|)$ is a Banach space. The notation $C(\mathbb{R}, Z)$ stands for the collection of all continuous functions from \mathbb{R} into Z. We denote by $B C(\mathbb{R}, Z)$ the space of all bounded continuous functions from \mathbb{R} into Z endowed with the supremum norm defined by

$$
\|x\|_{B C(\mathbb{R}, Z)}:=\sup _{t \in \mathbb{R}}\{\|x(t)\|\} .
$$

Furthermore, $B C(\mathbb{R} \times Z, Z)$ is the space of all bounded continuous functions $f: \mathbb{R} \times Z \rightarrow Z$.
Definition 1.1. [9] Let $p \in[1 ;+\infty)$. The space $\mathcal{B S}^{p}(\mathbb{R} ; Z)$ of all bounded functions in Stepanov's sense, with the exponent p, consists of all measurable functions f on \mathbb{R} with values in Z such that $\|f\|_{B S^{p}}:=\sup _{t \in \mathbb{R}}\left(\int_{t}^{t+1}\|f(s)\|^{p} d s\right)^{\frac{1}{p}}<$ ∞. This is a Banach space when it is equipped with the norm $\|f\|_{B S^{p}}$.

Remark 1.2. $f \in \mathcal{B} S^{p}(\mathbb{R} ; Z)$ iff $f^{b} \in L^{\infty}\left(\mathbb{R}, L^{p}([0,1], Z)\right)$, with f^{b} is the Bochner transform of f defined by f^{b} : $\mathbb{R} \longrightarrow L^{p}([0,1], Z), f^{b}(t)(s)=f(t+s), \forall(t, s) \in \mathbb{R} \times[0,1]$. And $\|f\|_{B S^{p}}=\left\|f^{b}\right\|_{\infty}$.

[^0]
2. Almost periodic functions

Definition 2.1. [8] A continuous function $f: \mathbb{R} \mapsto Z$ is said to be almost periodic if for every $\epsilon>0$ there exists a positive number $l(\epsilon)$ such that every interval of length $l(\epsilon)$ contains a number τ such that

$$
\|f(t+\tau)-f(t)\|<\varepsilon \text { for } t \in \mathbb{R}
$$

Let $A P(\mathbb{R}, Z)$ be the set of all almost periodic functions from \mathbb{R} to Z. Then $\left(A P(\mathbb{R}, Z),\|\cdot\| \|_{\infty}\right)$ is a Banach space with supremum norm given by

$$
\|u\|_{\infty}=\sup _{t \in \mathbb{R}}\|u(t)\| .
$$

Definition 2.2. [6] A continuous function $f: \mathbb{R} \times Z \mapsto Z$ is said to be almost periodic in t uniformly for $y \in Z$, if for every $\epsilon>0$, and any compact subset K of Z, there exists a positive number $l(\epsilon)$ such that every interval of length $l(\epsilon)$ contains a number τ such that

$$
\|f(t+\tau, y)-f(t, y)\|<\varepsilon \text { for }(t, y) \in \mathbb{R} \times K
$$

We denote the set of such functions as $\operatorname{APU}(\mathbb{R} \times Z, Z)$.
Definition 2.3. [13] Let $p \in[1,+\infty)$. A function $f \in \mathcal{B S}(\mathbb{R} ; Z)$ is said to be S^{p}-almost periodic if its Bochner transform $f^{b} \in A P\left(\mathbb{R}, L^{p}([0,1], Z)\right)$.
Denote by $A P^{p}(\mathbb{R}, Z)$ the set of all such functions.
The following remark is immediate.
Remark 2.4. [17] The map $B:\left(\mathcal{B S}^{p}(\mathbb{R}, Z),\|\cdot\|_{\mathcal{B} S^{p}}\right) \longrightarrow L^{\infty}\left(\mathbb{R}, L^{p}([0,1], Z)\right), f \longmapsto f^{b}$ is a linear isometry, in particular it is continuous.
Definition 2.5. [7] A function $f: \mathbb{R} \times Z \rightarrow Z$ is said to be S^{p}-almost periodic in t uniformly with respect to x in Z if the following two conditions hold:
(i) for all $x \in Z, f(., x) \in A P^{p}(\mathbb{R}, Z)$,
(ii) $f^{b}: \mathbb{R} \times Z \longrightarrow L^{p}([0,1], Z) ; f^{b}(t, x)(s)=f(t+s, x)$ is uniformly continuous on each compact set K in Z with respect to the second variable x, namely, for each compact set K in Z, for all $\varepsilon>0$, there exists $\delta>0$ such that for all $x_{1}, x_{2} \in K$, one has

$$
\left\|x_{1}-x_{2}\right\| \leq \delta \Rightarrow \sup _{t \in \mathbb{R}}\left(\int_{0}^{1}\left\|f\left(t+s, x_{1}\right)-f\left(t+s, x_{2}\right)\right\|^{p} d s\right)^{\frac{1}{p}} \leq \varepsilon
$$

Denote by $A P^{p} U(\mathbb{R} \times Z, Z)$ the set of all such functions.

3. Ergodic functions

Let \mathcal{B} denote the Lebesgue σ-field of \mathbb{R} and let \mathcal{M} be the set of all positive measures μ on \mathcal{B} satisfying $\mu(\mathbb{R})=+\infty$ and $\mu([a, b])<\infty$, for all $a, b \in \mathbb{R}(a \leq b)$. From now on, $\mu, v \in \mathcal{M}$.
Definition 3.1. [3] A function $f: \mathbb{R} \longrightarrow \mathrm{Z}$ is said to be (μ, v)-ergodic if

$$
\lim _{r \rightarrow \infty} \frac{1}{v([-r, r])} \int_{-r}^{r}\|f(s)\| d \mu(s)=0 .
$$

We then denote the set of all such functions by $\mathcal{E}(\mathbb{R}, Z, \mu, v)$.
Definition 3.2. [16] A function $f \in \mathcal{B S}^{p}(\mathbb{R}, Z)$ is said to be $\mathcal{S}^{p}-(\mu, v)$-ergodic if

$$
\lim _{r \rightarrow \infty} \frac{1}{v([-r, r])} \int_{-r}^{r}\left(\int_{t}^{t+1}\|f(s)\|^{p} d s\right)^{\frac{1}{p}} d \mu(t)=0
$$

Equivalently, $f^{b} \in \mathcal{E}\left(\mathbb{R}, L^{p}([0,1], Z), \mu, v\right)$.
We then denote the collection of all such functions by $\mathcal{E}^{p}(\mathbb{R}, Z, \mu, v)$.

Definition 3.3. [17] $A f: \mathbb{R} \times Z \rightarrow Z$ is said to be $\mathcal{S}^{p}-(\mu, v)$-ergodic in t uniformly with respect to $x \in Z$ if the following conditions are satisfied:
(i) For all $x \in Z, f(., x) \in \mathcal{E}^{p}(\mathbb{R}, Z, \mu, v)$.
(ii) $f^{b}: \mathbb{R} \times Z \longrightarrow L^{p}([0,1], Z) ; f^{b}(t, x)(s)=f(t+s, x)$ is uniformly continuous on each compact set K in Z with respect to the second variable $x \in Z$.

The set of such function is denoted by $\mathcal{E}^{p} U(\mathbb{R} \times Z, Z, \mu, v)$.

4. Pseudo almost periodic functions

Definition 4.1. A continuous function $f: \mathbb{R} \rightarrow Z$ is said to be (μ, v)-pseudo almost periodic if it is written in the form

$$
f=g+h
$$

where $g \in P A(\mathbb{R}, Z)$ and $h \in \mathcal{E}(\mathbb{R}, Z, \mu, v)$. The set of such functions is denoted by $\operatorname{PAP}(\mathbb{R}, Z, \mu, v)$.
Definition 4.2. A continuous function $f: \mathbb{R} \times Z \rightarrow Z$ is said to be (μ, v)-pseudo almost periodic in the first variable uniformly with respect to the second variable if is written in the form

$$
f=g+h
$$

where $g \in A P U(\mathbb{R} \times Z, Z)$ and $h \in \mathcal{E} U(\mathbb{R} \times Z, Z, \mu, v)$. The set of such functions is denoted by $P A P U(\mathbb{R} \times Z, Z, \mu, v)$.
Definition 4.3. A function $f \in \mathcal{B S}^{p}(\mathbb{R} \rightarrow Z)$ is said to be $\mathcal{S}^{p}-(\mu, v)$-pseudo almost periodic if it can be written in the form

$$
f=g+h
$$

where $g \in A P^{p}(\mathbb{R}, Z, \mu)$ and $h \in \mathcal{E}^{p}(\mathbb{R}, Z, \mu, v)$. The set of such functions will be denoted by $\operatorname{PAP}^{p}(\mathbb{R}, Z, \mu, v)$ or $S^{p} P A P(\mathbb{R}, Z, \mu, v)$.

Definition 4.4. A function $f: \mathbb{R} \times Z \rightarrow Z$ is said to be $S^{p}-(\mu, v)$-pseudo almost periodic in the first variable uniformly with respect to the second variable if it can be written in the form

$$
f=g+h
$$

where $g \in A P^{p} U(\mathbb{R} \times Z, Z)$ and $h \in \mathcal{E}^{p} U(\mathbb{R} \times Z, Z, \mu, v)$. The set of such functions is denoted by $P A P^{p} U(\mathbb{R} \times Z, Z, \mu, v)$.
We define the following conditions.
(M1):

$$
\begin{equation*}
\limsup _{r \rightarrow+\infty} \frac{\mu([-r, r])}{v([-r, r])}:=M<\infty . \tag{1}
\end{equation*}
$$

(M2): For all $\tau \in \mathbb{R}$, there exist $\beta>0$ and a bounded interval I such that

$$
\mu(\{a+\tau: a \in A\}) \leq \beta \mu(A) \quad \text { when } A \in \mathcal{B} \text { satisfies } A \cap I=\emptyset .
$$

Theorem 4.5. If (M1) and (M2) are satisfied, Then:

1. $A P^{p}(\mathbb{R}, Z)$ is a translation invariant closed subspace of $\mathcal{B S}{ }^{p}(\mathbb{R} ; Z)$.
2. $\mathcal{E}^{p}(\mathbb{R}, Z, \mu, v)$ is a translation invariant closed subspace of $\mathcal{B S}^{p}(\mathbb{R} ; Z)$.
3. $\operatorname{PA} P^{p}(\mathbb{R}, Z, \mu, v)=A P^{p}(\mathbb{R}, Z) \bigoplus \mathcal{E}^{p}(\mathbb{R}, Z, \mu, v)$ is a Banach space for the direct sum norm, where

$$
\|f\|_{P A P p(\mathbb{R}, \mu, \nu, \nu)}:=\|g\|_{A P p(\mathbb{R}, Z)}+\|h\|_{\delta v(\mathbb{R}, Z, \mu, \nu)}=\|g\|_{B S p}+\|h\|_{B S^{p}}
$$

Proof:

1. By $[12], A P\left(\mathbb{R}, L^{p}([0,1], Z)\right)$ is a translation invariant subspace of $B C\left(\mathbb{R}, L^{p}([0,1], Z)\right)$. Let $t \mapsto f_{a}(t):=$ $f(t+a)$ define a translation of f, we have

$$
\left(\left(f_{a}\right)^{b}(t)(s)=f_{a}(t+s)=f(t+s+a)=f^{b}(t+a)(s)=\left(f^{b}\right)_{a}(t)(s)\right.
$$

That is $\left(f_{a}\right)^{b}=\left(f^{b}\right)_{a}$ and then for $f \in A P^{p}(\mathbb{R}, Z), f^{b} \in A P\left(\mathbb{R}, L^{p}([0,1], Z)\right)$ then $\left(f^{b}\right)_{a}=\left(f_{a}\right)^{b} \in$ $A P\left(\mathbb{R}, L^{p}([0,1], Z)\right)$ that means $\left.f_{a} \in A P^{p}(\mathbb{R}, Z)\right)$, then $A P^{p}(\mathbb{R}, Z)$ is translation invariant. By [13], $A P^{p}(\mathbb{R}, Z)$ is a closed subspace of $\mathcal{B S}{ }^{p}(\mathbb{R} ; Z)$.
2. See [17].
3. By using the same method in [16], it is fair to show that $A P^{p}(\mathbb{R}, Z) \cap \mathcal{E}^{p}(\mathbb{R}, Z, \mu, v)=\{0\}$ and any Cauchy sequence of the space $P A P^{p}(\mathbb{R}, Z, \mu, v)$ is convergent in itself. Let $f \in A P^{p}(\mathbb{R}, Z) \cap \mathcal{E}^{p}(\mathbb{R}, Z, \mu, v)$ then $f^{b} \in A P\left(\mathbb{R}, L^{p}([0,1], Z)\right) \cap \mathcal{E}\left(\mathbb{R}, L^{p}([0,1], Z), \mu, v\right)$. According to [1], $f^{b}=0$ then $f=0$, by the injectivity of B in Remark 2.4.
The Let $\left(f_{n}\right)_{n}$ be a Cauchy sequence in $\operatorname{PAP}^{p}(\mathbb{R}, Z, \mu, v)$, then $\forall n \in \mathbb{N}, \exists!\left(g_{n}, h_{n}\right) \in A P^{p}(\mathbb{R}, Z) \times$ $\mathcal{E}^{p}(\mathbb{R}, Z, \mu, v)$ such that $f_{n}=g_{n}+h_{n}$.

Let $\varepsilon>0, \exists n_{0} \in \mathbb{N} / \forall m, n \geq n_{0}$, we have

$$
\left\|f_{n}-f_{m}\right\|_{P A P^{p}}=\left\|g_{n}-g_{m}\right\|_{B S^{p}}+\left\|h_{n}-h_{m}\right\|_{B S^{p}}<\varepsilon
$$

Then, $\forall m, n \geq n_{0}$, we have

$$
\left\|g_{n}-g_{m}\right\|_{B S^{p}}<\varepsilon \text { and }\left\|h_{n}-h_{m}\right\|_{B S^{p}}<\varepsilon .
$$

Therefore $\left(g_{n}\right)_{n}$ and $\left(h_{n}\right)_{n}$ are Cauchy sequences in the Banach Spaces $A^{p}(\mathbb{R}, Z)$ and $\mathcal{E}^{p}(\mathbb{R}, Z, \mu, v)$ respectively. Then $\exists!(g, h) \in A P^{p}(\mathbb{R}, Z) \times \mathcal{E}^{p}(\mathbb{R}, Z, \mu, v)$ such that

$$
\lim _{n \rightarrow+\infty}\left\|g_{n}-g\right\|_{B S^{p}}=0 \text { and } \lim _{n \rightarrow+\infty}\left\|h_{n}-h\right\|_{B S^{p}}=0
$$

Let $f=g+h \in A P^{p}(\mathbb{R}, Z) \oplus \mathcal{E}^{p}(\mathbb{R}, Z, \mu, v)=\operatorname{PAP}^{p}(\mathbb{R}, Z, \mu, v)$, then

$$
\lim _{n \rightarrow+\infty}\left\|f_{n}-f\right\|_{B S^{p}}=\lim _{n \rightarrow+\infty}\left\|g_{n}-g\right\|_{B S^{p}}+\lim _{n \rightarrow+\infty}\left\|h_{n}-h\right\|_{B S^{p}}=0 .
$$

Which gives, $\left(\operatorname{PAP}^{p}(\mathbb{R}, Z, \mu, v)\right.$ is a Banach space.
Remark 4.6. In the space $\operatorname{PAP}^{p}(\mathbb{R}, Z, \mu, v)$, the direct sum norm and the $\|.\|_{\mathcal{B} S^{p}}$ are equivalent.
Theorem 4.7. Let $G \in A P^{p} U(\mathbb{R} \times Z, Z)$ and $h \in A P^{p}(\mathbb{R}, Z)$ satisfy the following:

1. (A0): There exists a nonnegative function $L \in \mathcal{B S}^{p}(\mathbb{R})$ such that

$$
\forall x, y \in Z, t \in \mathbb{R}\|G(t, x)-G(t, y)\| \leq L(t)\|x-y\|
$$

And there exists $\xi>0$ such that for all $t \in \mathbb{R}, f \in \mathcal{B S}^{p}(\mathbb{R}, Z)$, we have:

$$
\left(\int_{0}^{1} L^{p}(t+s)\|f(s)\|^{p} d s\right)^{\frac{1}{p}} \leq \xi\left(\int_{0}^{1}\|f(s)\|^{p} d s\right)^{\frac{1}{p}}
$$

2. $K=\overline{\{h(t), t \in \mathbb{R}\}}$ is compact.

Then $[t \longmapsto G(t, h(t))] \in A P^{p}(\mathbb{R}, Z)$.

Proof: Take $\varepsilon>0$ and $K \subset \bigcup_{1 \leq i \leq r} B\left(y_{i}, \varepsilon\right)$, for some $y_{i} \in K$.
For $t \in \mathbb{R}$, let $E_{1}:=\left\{s \in[0,1]: h(t+s) \in B\left(y_{1}, \varepsilon\right)\right\}$ and for $2 \leq i \leq r$, we define $E_{i}:=\left\{s \in\left([0,1] \backslash \bigcup_{1 \leq j \leq i-1} E_{j}\right)\right.$: $\left.h(t+s) \in B\left(y_{i}, \varepsilon\right)\right\}$.
Here $\left\{E_{i}, 1 \leq i \leq r\right\}$ is a partition of $[0,1]$ and the sum of Lebesgue measures: $\sum_{i} \lambda\left(E_{i}\right)=1$.

$$
\begin{aligned}
I: & =\left(\int_{0}^{1}\|G(t+s+\tau, h(t+s+\tau))-G(t+s, h(t+s))\|^{p} d s\right)^{\frac{1}{p}} \\
& \leq\left(\int_{0}^{1}\|G(t+s+\tau, h(t+s+\tau))-G(t+s+\tau, h(t+s))\|^{p} d s\right)^{\frac{1}{p}} \\
& +\left(\int_{0}^{1}\|G(t+s+\tau, h(t+s))-G(t+s, h(t+s))\|^{p} d s\right)^{\frac{1}{p}} .
\end{aligned}
$$

Taking that I_{1} and I_{2}, respectively are the first and the second term of the previous sum.
By (A0), $I_{1} \leq\left(\int_{0}^{1}(L(t+s+\tau)\|h(t+s+\tau)-h(t+s)\|)^{p} d s\right)^{\frac{1}{p}}$
$\leq \xi\left(\int_{0}^{1}(\|h(t+s+\tau)-h(t+s)\|)^{p} d s\right)^{\frac{1}{p}} \leq \xi \varepsilon$, since $h \in A P^{p}(\mathbb{R}, Z)$.
For I_{2} :

$$
I_{2}=\left(\sum_{1}^{r} \int_{E_{i}}\|G(t+s+\tau, h(t+s))-G(t+s, h(t+s))\|^{p} d s\right)^{\frac{1}{p}}
$$

Let

$$
\begin{aligned}
G(t+s+\tau, h(t+s))-G(t+s, h(t+s)) & =\left(G(t+s+\tau, h(t+s))-G\left(t+s+\tau, y_{i}\right)\right) \\
& +\left(G\left(t+s+\tau, y_{i}\right)-G\left(t+s, y_{i}\right)\right) \\
& +\left(G\left(t+s, y_{i}\right)-G(t+s, h(t+s))\right. \\
& =f_{1, i}(s)+f_{2, i}(s)+f_{3, i}(s)
\end{aligned}
$$

Then

$$
\begin{aligned}
I_{2} & =\left(\sum_{1}^{r} \int_{E_{i}}\left\|f_{1, i}(s)+f_{2, i}(s)+f_{3, i}(s)\right\|^{p} d s\right)^{\frac{1}{p}} \\
& \leq\left(\sum_{1}^{r}\left[\left(\int_{E_{i}}\left\|f_{1, i}(s)\right\|^{p} d s\right)^{\frac{1}{p}}+\left(\int_{E_{i}}\left\|f_{2, i}(s)\right\|^{p} d s\right)^{\frac{1}{p}}+\left(\int_{E_{i}}\left\|f_{3, i}(s)\right\|^{p}\right)^{\frac{1}{p}}\right]^{p}\right)^{\frac{1}{p}} \\
& =\left(\sum_{1}^{r} \int_{E_{i}}\left\|f_{1, i}(s)\right\|^{p} d s\right)^{\frac{1}{p}}+\left(\sum_{1}^{r} \int_{E_{i}}\left\|f_{2, i}(s)\right\|^{p} d s\right)^{\frac{1}{p}}+\left(\sum_{1}^{r} \int_{E_{i}}\left\|f_{3, i}(s)\right\|^{p} d s\right)^{\frac{1}{p}} \\
& :=S_{1}+S_{2}+S_{3} .
\end{aligned}
$$

By (A0),

$$
\begin{aligned}
S_{1} & =\left(\sum_{1}^{r} \int_{E_{i}}\left\|G(t+s+\tau, h(t+s))-G\left(t+s+\tau, y_{i}\right)\right\|^{p} d s\right)^{\frac{1}{p}} \\
& \leq\left(\sum_{1}^{r} \int_{E_{i}}\left(L(t+s+\tau)\left\|h(t+s)-y_{i}\right\|\right)^{p} d s\right)^{\frac{1}{p}} \\
& \leq\left(\sum_{1}^{r} \int_{E_{i}}(L(t+s+\tau) \varepsilon)^{p} d s\right)^{\frac{1}{p}}
\end{aligned}
$$

$$
\begin{aligned}
& =\varepsilon\left(\sum_{1}^{r} \int_{E_{i}}(L(t+s+\tau))^{p} d s\right)^{\frac{1}{p}} \\
& =\varepsilon\left(\sum_{1}^{r} \int_{0}^{1}\left(\chi_{E_{i}}(s) L(t+s+\tau)\right)^{p} d s\right)^{\frac{1}{p}} \\
& =\varepsilon\left(\sum_{1}^{r}\left[\left(\int_{0}^{1}\left(\chi_{E_{i}}(s) L(t+s+\tau)\right)^{p} d s\right)^{\frac{1}{p}}\right]^{p}\right)^{\frac{1}{p}} \\
& \leq \varepsilon\left(\sum_{1}^{r}\left[\xi\left(\int_{0}^{1}\left(\chi_{E_{i}}(s)\right)^{p} d s\right)^{\frac{1}{p}}\right]^{p}\right)^{\frac{1}{p}} \\
& =\xi \varepsilon\left(\sum_{1}^{r} \lambda\left(E_{i}\right)\right)^{\frac{1}{p}} \\
& =\xi \varepsilon .
\end{aligned}
$$

Similarly $S_{3} \leq \varepsilon \xi$.
For S_{2} :
$S_{2}=\left(\sum_{1}^{r} \int_{E_{i}}\left\|G\left(t+s+\tau, y_{i}\right)-G\left(t+s, y_{i}\right)\right\|^{p} d s\right)^{\frac{1}{p}}$.
$G\left(., y_{1}\right) \in A P^{p}(\mathbb{R}, Z)$, then

$$
\left(\int_{0}^{1}\left\|G\left(t+s+\tau, y_{1}\right)-G\left(t+s, y_{1}\right)\right\|^{p} d s\right)^{\frac{1}{p}} \leq \frac{\varepsilon}{r^{\frac{1}{p}}} .
$$

$G\left(., y_{2}\right) \in A P^{p}(\mathbb{R}, Z)$, then

$$
\left(\int_{0}^{1}\left\|G\left(t+s+\tau, y_{2}\right)-G\left(t+s, y_{2}\right)\right\|^{p} d s\right)^{\frac{1}{p}} \leq \frac{\varepsilon}{r^{\frac{1}{p}}} .
$$

Since $G\left(., y_{j}\right) \in A P^{p}(\mathbb{R}, Z)$, then

$$
\left(\int_{0}^{1}\left\|G\left(t+s+\tau, y_{j}\right)-G\left(t+s, y_{j}\right)\right\|^{p} d s\right)^{\frac{1}{p}} \leq \frac{\varepsilon}{r^{\frac{1}{p}}}
$$

Then, we have

$$
\begin{aligned}
S_{2} & =\left(\sum_{1}^{r} \int_{E_{i}}\left\|G\left(t+s+\tau, y_{j}\right)-G\left(t+s, y_{j}\right)\right\|^{p} d s\right)^{\frac{1}{p}} \\
& \leq\left(\sum_{1}^{r} \int_{0}^{1}\left\|G\left(t+s+\tau, y_{j}\right)-G\left(t+s, y_{j}\right)\right\|^{p} d s\right)^{\frac{1}{p}} \\
& \leq\left(\sum_{1}^{r}\left(\frac{\varepsilon}{r^{\frac{1}{p}}}\right)^{p}\right)^{\frac{1}{p}}=\varepsilon .
\end{aligned}
$$

And then, $I \leq \varepsilon(1+3 \xi)$. This completes the proof.
Theorem 4.8. [17] Assume μ, v satisfy (M1). Let $G \in \mathcal{E}^{p} U(\mathbb{R} \times Z, Z, \mu, v)$ and $h: \mathbb{R} \longrightarrow Z$ satisfying:

1. (A0): There exists a nonnegative function $L \in \mathcal{B S}^{p}(\mathbb{R})$ such that

$$
\forall x, y \in Z, t \in \mathbb{R},\|G(t, x)-G(t, y)\| \leq L(t)\|x-y\|
$$

And there exists $\xi>0$ such that for all $t \in \mathbb{R}, f \in \mathcal{B S}^{p}(\mathbb{R}, Z)$, we have:

$$
\left(\int_{0}^{1} L^{p}(t+s)\|f(s)\|^{p} d s\right)^{\frac{1}{p}} \leq \xi\left(\int_{0}^{1}\|f(s)\|^{p} d s\right)^{\frac{1}{p}}
$$

2. $K=\overline{\{h(t), t \in \mathbb{R}\}}$ is compact.

Then $[t \longmapsto G(t, h(t))] \in \mathcal{E}^{p}(\mathbb{R}, Z, \mu, v)$.
Theorem 4.9. Let μ and v satisfy (M1). Assuming that $G=G_{1}+G_{2} \in \operatorname{PAP} P^{p} U(\mathbb{R} \times Z, Z, \mu, v)$ and $h=h_{1}+h_{2} \in$ $\operatorname{PAP}^{p}(\mathbb{R}, \mathrm{Z}, \mu, v)$. Supposing that the following conditions hold:

1. G_{1}, G_{2} satisfy (A0): There exists a nonnegative function $L_{i} \in \mathcal{B S}{ }^{p}(\mathbb{R})$ such that

$$
\forall x, y \in Z, t \in \mathbb{R}:\left\|G_{i}(t, x)-G_{i}(t, y)\right\| \leq L_{i}(t)\|x-y\|
$$

for $i=1$, 2. Alongside, there exists $\xi>0$ such that for all $t \in \mathbb{R}, f \in \mathcal{B S}^{p}(\mathbb{R})$

$$
\left(\int_{0}^{1} L_{i}^{p}(t+s)\|f(s)\|^{p} d s\right)^{\frac{1}{p}} \leq \xi\left(\int_{0}^{1}\|f(s)\|^{p} d s\right)^{\frac{1}{p}}
$$

2. $K_{i}=\overline{\left\{h_{i}(t), t \in \mathbb{R}\right\}}$ is compact, for $i=1,2$.

Then $t \longmapsto G(t, h(t)) \in \operatorname{PAP}^{p}(\mathbb{R}, Z, \mu, v)$.
Proof: Put $G(t, h(t))=\widetilde{G}_{1}(t)+\widetilde{G}_{2}(t)$. Where $\widetilde{G}_{1}(t):=G_{1}\left(t, h_{1}(t)\right)$ and $\widetilde{G}_{2}(t):=\left(G(t, h(t))-G\left(t, h_{1}(t)\right)\right)+G_{2}\left(t, h_{1}(t)\right)$.
By Theorem 4.7 , we have $t \longmapsto G_{1}\left(t, h_{1}(t)\right) \in A P^{p}(\mathbb{R}, Z)$ that is $\widetilde{G}_{1} \in A P^{p}(\mathbb{R}, Z)$. For \widetilde{G}_{2} :
$t \longmapsto G_{2}\left(t, h_{1}(t)\right) \in \mathcal{E}^{p}(\mathbb{R}, Z, \mu, v)$, by Theorem 4.8.
For $t \in \mathbb{R}$, we have

$$
\begin{aligned}
\left(\int_{t}^{t+1}\left\|G(s, h(s))-G\left(s, h_{1}(s)\right)\right\|^{p} d s\right)^{\frac{1}{p}} & \leq\left(\int_{t}^{t+1}\left\|G_{1}(s, h(s))-G_{1}\left(s, h_{1}(s)\right)\right\|^{p} d s\right)^{\frac{1}{p}} \\
& +\left(\int_{t}^{t+1}\left\|G_{2}(s, h(s))-G_{2}\left(s, h_{1}(s)\right)\right\|^{p} d s\right)^{\frac{1}{p}} \\
& \leq\left(\int_{0}^{1} L_{1}^{p}(t+s)\left\|h_{2}(t+s)\right\|^{p} d s\right)^{\frac{1}{p}}+\left(\int_{0}^{1} L_{2}^{p}(t+s)\left\|h_{2}(t+s)\right\|^{p} d s\right)^{\frac{1}{p}} \\
& \leq 2 \xi\left(\int_{0}^{1}\left\|h_{2}(t+s)\right\|^{p} d s\right)^{\frac{1}{p}}, \text { since } h_{2}(t+.) \in \mathcal{B} S^{p}(\mathbb{R}) .
\end{aligned}
$$

Then

$$
\frac{1}{v([-r, r])} \int_{[-r, r]}\left(\int_{t}^{t+1}\left\|G(s, h(s))-G\left(s, h_{1}(s)\right)\right\|^{p} d s\right)^{\frac{1}{p}} d \mu(t) \leq \frac{2 \xi}{v([-r, r])} \int_{[-r, r]}\left(\int_{t}^{t+1}\left\|h_{2}(s)\right\|^{p} d s\right)^{\frac{1}{p}} d \mu(t) \longrightarrow 0
$$

as $r \longrightarrow+\infty$. This implies that $t \longmapsto G(t, h(t))-G\left(t, h_{1}(t)\right) \in \mathcal{E}^{p}(\mathbb{R}, Z, \mu, v)$. Therefore, $\widetilde{G}_{2} \in \mathcal{E}^{p}(\mathbb{R}, Z, \mu, v)$.

Acknowledgments

The author would like to thank Deanship of Scientific Research at Majmaah University for supporting this work under the project number No. R-2022-270.

References

[1] E. Ait Dads, K. Ezzinbi and M. Miraoui, (μ, v)-Pseudo almost automorphic solutions for some nonautonomous differential equations, Int. J. Math. 26 (2015) 1-21.
[2] M.Ben Salah, K. Ezzinbi and A. Rebey, Pseudo almost Periodic and Pseudo almost Automorphic Solutions to Evolution Equations in Hilbert Spaces, Mediterranean Journal of Mathematics 13 (2016) 703-717.
[3] M. Ben Salah, M. Miraoui and A. Rebey, New results for some neutral partial functional differential equations, Results in Mathematics 74, 181 (2019).
[4] H. Bohr, Zur Theorie der fastperiodischen Funktionen I. Acta Math. 45 (1925) 29—127
[5] J. Blot, G. M. Mophou, G. M. N'Guérékata, and D. Pennequin, Weighted pseudo almost automorphic functions and applications to abstract differential equations. Nonlinear Anal. 71 (2009) 903-909.
[6] J. Blot, P. Cieutat and K. Ezzinbi, New approach for weighted pseudo almost periodic functions under the light of measure theory, basic results and applications, Applicable Analysis 92 (2013) 493-526.
[7] J. Blot, P. Cieutat and K. Ezzinbi, Measure theory and pseudo almost automorphic functions: New developments and applications, Nonlinear Analysis 75 (2012) 2426-2447.
[8] C. Corduneanu, Almost Periodic Functions, Wiley, New York, 1968 (Reprinted, Chelsea, New York, 1989).
[9] T. Diagana, Stepanov-like pseudo-almost periodicity and its applications to some nonau- tonomous differential equations, Nonlinear Analysis: Theory, Methods and Applications 69 (2008) 4277-4285.
[10] T. Diagana, K. Ezzinbi, M. Miraoui, Pseudo-almost periodic and pseudo-almost automorphic solutions to some evolution equations involving theoretical measure theory, Cubo 16 (2014) 1-31.
[11] Miraoui M, Existence of μ-pseudo almost periodic solutions to some evolution equations. Mathematical Methods in the Applied Sciences 40 (2017) 4716-4726 .
[12] N'Guérékata GM, Almost automorphic and almost periodic functions in abstract spaces. Kluwer Academic Publishers, NewYork. 2001.
[13] G. M. N'Guérékata, A. Pankov, Stepanov-like almost automorphic functions and monotone evolution equations, Nonlinear Analysis 68 (2008) 2658-2667.
[14] C.Y. Zhang, Pseudo almost periodic solutions of some differential equations, Journal of Mathematical Analysis and Applications 151 (1994) 62-76.
[15] M. Miraoui, K. Ezzinbi and A. Rebey, μ-Pseudo Almost periodic solutions in α-norm to some neutral partial differential equations with finite delay, Dynamics of Continuous Discrete and Impulsive Systems, Canada (2017) 83-96.
[16] A. Rebey, H. Elmonser, M. Eljeri, M. Miraoui, New results for doubly mesured pseudo almost periodic functions in Stepanov's sense, Ukrainian Mathematical Journal, 74 (10) (2022) DOI: 10.37863/umzh.v74i10.6315
[17] A. Rebey and M. Eljeri, Composition Results of Stepanov (μ, v)-Pseudo Almost Automorphic Functions, Filomat 35 (14) (2021) 4755--4763.

[^0]: 2020 Mathematics Subject Classification. 43A60, 34C27
 Keywords. Almost periodic functions in Stepanov's sense; Measure theory.
 Received: 31 December 2020; Revised: 15 June 2022; Accepted: 03 July 2022
 Communicated by Dragan S. Djordjević
 Research supported by Deanship of Scientific Research at Majmaah University.
 Email address: a.rebey@mu.edu.sa (Amor Rebey)

