# Multiplicity of Solutions for Kirchhoff Type Problem Involving Eigenvalue 

A. Rezvani ${ }^{\text {a }}$, M. Alimohammady ${ }^{\text {a,b }}$, B. Agheli ${ }^{\text {a }}$<br>${ }^{a}$ Department of Mathematics, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran<br>${ }^{b}$ Department of Mathematics, University of Mazandran, Babolsar, Iran


#### Abstract

This paper is concerned with the existence and multiplicity of weak solutions for a $p(x)$-Kirchhoff problem by using variational method and genus theory. We prove the simplicity and boundedness of the principal eigenvalue.


## 1. Introduction

In this paper, the authors study the following nonlocal $p(x)$-Kirchhoff problem:

$$
\begin{cases}-\left(a+b \int_{\Omega} \frac{1}{p(x)}|\nabla u|^{p(x)} d x\right) \operatorname{div}\left(|\nabla u|^{p(x)-2} \nabla u\right)=\lambda|u|^{q(x)-2} u-g(x)|u|^{p(x)-2} u & \text { in } \Omega  \tag{1}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where $a, b>0$ are constants, $\Omega \subset \mathbb{R}^{N}$ is a bounded smooth domain, $\lambda$ is a positive real parameter and $g$ is a continuous function and $p(x), q(x)$ are real continuous functions on $\bar{\Omega}$ with $1<q(x)<p(x)<p^{*}(x)=\frac{N p(x)}{N-p(x)}$ and $p(x)<N$ for all $x \in \bar{\Omega}$.

Based on variational methods, especially the Krasnoselskii's genus theorem, the existence of infinitely many solutions has been proved. The main conclusion of the paper is correct and improves the related results on this topic.

In recent years, there has been a great deal of work done on Kirchhoff $p(x)$-Laplacian equations, especially concerning the existence, multiplicity, uniqueness and reqularity of solutions. Some important and interesting results can be found, for example, in [1,3,6,9,16-18] and references therein.

Many results have been obtained on this kind of problems, for example [3, 9, 19]. With the aid of the three-critical-point theorem related to local linking due to Brezis and Nirenberg [1], Zeng-Ou, -Li [19] proved the existence of at least two nontrivial solutions for the following nonlocal Kirchhoff type problem:

$$
\begin{cases}-\left(a+b \int_{\Omega}|\nabla u|^{2} d x\right) \Delta u=f(x, u) & \text { in } \Omega  \tag{2}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

[^0]where $\Omega$ is a smooth bounded domain in $\mathbb{R}^{N}(N \geq 1), a, b>0$ are real numbers and $f(x, u)$ is a continuous function which 3-sublinear or asymptotically critical growth at infinity.

Recently, Che-Chen [3] extended problem (2) to the following Kirchhoff-type equations:

$$
\begin{cases}-\left(a+b \int_{\mathbb{R}^{3}}|\nabla u|^{2} d x\right) \Delta u+V(x) u+\mu \phi|u|^{p-2} u=f(x, u)+g(x, u) & \text { in } \mathbb{R}^{3}  \tag{3}\\ (-\Delta)^{\frac{\alpha}{2}} \phi=\mu|u|^{p} & \text { in } \mathbb{R}^{3}\end{cases}
$$

where $a>0, b, \mu \geq 0$ are constants, $\alpha \in(0,3), p \in[2,3+2 \alpha)$ and the potential $V(x)$ may be unbounded from below. Under some mild conditions on $f(x, u)$ and $g(x, u)$, the authors proved that the above system has infinitely many nontrivial solutions.

In recent years, the study of new Kirchhoff type equations (1) was firstly extended by Hamdani et al. [9] to the case involving the $p(x)$-Laplacian of type:

$$
\begin{cases}-\left(a-b \int_{\Omega} \frac{1}{p(x)}|\nabla u|^{p(x)} d x\right) \operatorname{div}\left(|\nabla u|^{p(x)-2} \nabla u\right)=\lambda|u|^{p(x)-2} u+g(x, u) & \text { in } \Omega  \tag{4}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where $a \geq b>0$ are constants, $\Omega \subset \mathbb{R}^{N}$ is a bounded smooth domain, $p \in C(\bar{\Omega})$ with $N>p(x)>1, \lambda$ is a real parameter and $g$ is a continuous function. The authors in [9] proved the existence and multiplicity of solutions by using the Mountain pass theorem and Fountain theorem.

Motivated by the works above, we shall study the existence and multiplicity of the solutions for problem (1) by using variational method and Krasnoselskiis genus theory. Moreover, we study the simplicity and the boundedness of the principal eigenvalue of problem (1), with $p(x) \equiv p$.

The outline of this paper is the following: In Section 2, we give some preliminary results. Section 3 is devoted to the proof of Theorem 3.5. Finally, we give the proofs of Theorem 4.5, Theorem 4.6 and Theorem 4.8 in Section 4.

## 2. Preliminaries

For the reader's convenience, we recall some necessary knowledge and propositions concerning the Lebesgue and Sobolev spaces.

Let $\Omega$ be a bounded domain of $\mathbb{R}^{N}$, denote $C_{+}(\bar{\Omega})=\{p(x) ; p(x) \in C(\bar{\Omega}), p(x)>1$, for all $x \in \bar{\Omega}\}$.
For any continuous function $p: \Omega \rightarrow(1, \infty)$,

$$
p^{-}:=\inf _{x \in \Omega} p(x) \quad \text { and } \quad p^{+}:=\sup _{x \in \Omega} p(x) .
$$

Let $p \in C_{+}(\bar{\Omega})$, the variable exponent Lebesgue space is defined by

$$
L_{p(x)}(\Omega):=\left\{u: \Omega \rightarrow \mathbb{R} \text { is a measurable function : } \int_{\Omega}|u(x)|^{p(x)} d x<+\infty\right\}
$$

The space is equipped with the so-called Luxemburg norm:

$$
|u|_{p(x)}:=\inf \left\{\mu>0: \int_{\Omega}\left|\frac{u(x)}{\mu}\right|^{p(x)} d x \leq 1\right\}
$$

$L_{p(x)}(\Omega)$ is a separable and reflexive Banach space [9].
The modular of $L_{p(x)}(\Omega)$ is defined by

$$
\rho_{p(x)}(u):=\int_{\Omega}|u(x)|^{p(x)} d x
$$

Proposition 2.1. [18]. The space $\left(L_{p(x)}(\Omega),|u|_{p(x)}\right)$ is separable, uniformly convex, reflexive and its conjugate space is $\left(L_{q(x)}(\Omega),|u|_{q(x)}\right)$, where $q(x)$ is the conjugate function of $p(x)$, i.e.,

$$
\frac{1}{p(x)}+\frac{1}{q(x)}=1, \quad \forall x \in \Omega
$$

For all $u \in L_{p(x)}(\Omega), v \in L_{q(x)}(\Omega)$, the Hölder's type inequality

$$
\begin{equation*}
\left|\int_{\Omega} u v d x\right| \leq\left(\frac{1}{p^{-}}+\frac{1}{q^{-}}\right)|u|_{p(x)}|v|_{q(x)} \leq 2|u|_{p(x)}|v|_{q(x)} \tag{5}
\end{equation*}
$$

holds.
Proposition 2.2. [5]. Suppose that $u_{n}, u \in L_{p(x)}(\Omega)$, then the following properties hold:

$$
\begin{aligned}
& |u|_{p(x)}>1 \Rightarrow|u|_{p(x)}^{p^{-}} \leq \rho_{p(x)}(u) \leq|u|_{p(x)}^{p^{+}} ; \\
& |u|_{p(x)}<1 \Rightarrow|u|_{p(x)}^{p^{+}} \leq \rho_{p(x)}(u) \leq|u|_{p(x)^{-}}^{p^{-}} ; \\
& \left.|u|_{p(x)}<1(\text { respectively },=1 ;>1) \Leftrightarrow \rho_{p(x)}(u)<1 \text { (respectively, }=1 ;>1\right) ; \\
& \left|u_{n}\right|_{p(x)} \longrightarrow 0(\text { respectively }, \longrightarrow+\infty) \Leftrightarrow \rho_{p(x)}\left(u_{n}\right) \longrightarrow 0(\text { respectively }, \longrightarrow+\infty) ; \\
& \lim _{n \rightarrow \infty}\left|u_{n}-u\right|_{p(x)}=0 \Longleftrightarrow \lim _{n \rightarrow \infty} \rho_{p(x)}\left(u_{n}-u\right)=0 .
\end{aligned}
$$

The Sobolev space $W^{1, p(x)}(\Omega)$ is defined as

$$
W^{1, p(x)}(\Omega):=\left\{u \in L_{p(x)}(\Omega):|\nabla u| \in L_{p(x)}(\Omega)\right\},
$$

is a separable and reflexive Banach spaces. For more details, we refer to [7, 15, 17].
$W^{1, p(x)}(\Omega)$ is equipped with the norm

$$
\|u\|_{1, p(x)}=\|u\|_{p(x)}+\|\nabla u\|_{p(x)} .
$$

On $W^{1, p(x)}(\Omega)$ we may consider the following equivalent norm

$$
\|u\|_{p(x)}=|\nabla u|_{p(x)} .
$$

$W_{0}^{1, p(x)}(\Omega)$ is defined as the closure of $C_{0}^{\infty}(\Omega)$ with respect to the norm

$$
\|u\|=\inf \left\{\mu>0: \int_{\Omega}\left|\frac{\nabla u(x)}{\mu}\right|^{p(x)} d x \leq 1\right\}
$$

It is well known that

$$
W_{0}^{1, p(x)}(\Omega)=\left\{u ;\left.u\right|_{\partial \Omega}=0, u \in L_{p(x)}(\Omega),|\nabla u| \in L_{p(x)}(\Omega)\right\} .
$$

For more details, we refer to $[8,9]$.
Proposition 2.3. (Sobolev Embedding[16]) For $p, q \in C_{+}(\bar{\Omega})$ such that $1<q(x)<p^{*}(x)$ for all $x \in \bar{\Omega}$, there is a Continuous embedding

$$
W_{0}^{1, p(x)}(\Omega) \hookrightarrow L_{q(x)}(\Omega)
$$

is continuous and compact. Therefore, there is a constant $C_{0}>0$, such that $\left\|u_{n}\right\|_{q(x)} \leq C_{0}\left\|u_{n}\right\|$.

Proposition 2.4. (Poincare Inequality[7]) There is a constant $C>0$, such that

$$
\begin{equation*}
|u|_{p(x)} \leq C\|\nabla u\|_{p(x)} \tag{6}
\end{equation*}
$$

for all $u \in W_{0}^{1, p(x)}(\Omega)$.
Definition 2.5. Let $E$ be a real Banach space.
Set $R:=\{A \subset E-\{0\} ; A$ is compact and symmetric $\}$. Let $A \in R$ and we define the genus of $A$ as follows:

$$
\gamma(A):=\inf \left\{m \geq 1 ; \exists f \in C\left(A, \mathbb{R}^{m} \backslash\{0\}\right) ; f \text { is odd }\right\}
$$

and $\gamma(A)=\infty$, if does not exist such a map $f$. $\gamma(\varnothing)=0$ by definition.
For more details, we refer to [6].
Theorem 2.6. [6]. Let $\Omega \subset \mathbb{R}^{N}$ be bounded symmetric with boundary $\partial \Omega$. Assume that $0 \in \Omega$, then $\gamma(\partial \Omega)=N$.
Corollary 2.7. [6]. The genus of unit sphere $S^{N-1}$ of the space $\mathbb{R}^{N}$ is $N$.

## 3. Main results

Definition 3.1. $u \in W_{0}^{1, p(x)}(\Omega)$ is called a weak solution of (1) if

$$
\left(a+b \int \frac{1}{p(x)}|\nabla u|^{p(x)} d x\right) \int_{\Omega}|\nabla u|^{p(x)-2} \nabla u \nabla \varphi d x=\lambda \int_{\Omega}|u|^{q(x)-2} u \varphi d x-\int_{\Omega} g(x)|u|^{p(x)-2} u \varphi d x
$$

for all $\varphi \in W_{0}^{1, p(x)}(\Omega)$.
The energy functional associated with problem (1)

$$
J(u)=a \int_{\Omega} \frac{1}{p(x)}|\nabla u|^{p(x)} d x+\frac{b}{2}\left(\int_{\Omega} \frac{1}{p(x)}|\nabla u|^{p(x)} d x\right)^{2}-\lambda \int_{\Omega} \frac{1}{q(x)}|u|^{q(x)} d x+\int_{\Omega} \frac{g(x)}{p(x)}|u|^{p(x)} d x
$$

for all $u \in W_{0}^{1, p(x)}(\Omega)$ is well defined, $C^{1}$ functional and for all $u, \varphi \in W_{0}^{1, p(x)}(\Omega)$

$$
\begin{aligned}
\left\langle J^{\prime}(u), \varphi\right\rangle & =\left(a+b \int \frac{1}{p(x)}|\nabla u|^{p(x)} d x\right) \int_{\Omega}|\nabla u|^{p(x)-2} \nabla u \nabla \varphi d x \\
& -\lambda \int_{\Omega}|u|^{q(x)-2} u \varphi d x+\int_{\Omega} g(x)|u|^{p(x)-2} u \varphi d x
\end{aligned}
$$

we can observe that the critical points of this energy functional are weak solutions of the problem (1).
We consider $\Omega \subset \mathbb{R}^{N}(N>3)$ is a bounded domain with smooth boundary and $p, q \in C_{+}(\Omega)$ such that:

$$
\begin{equation*}
1<q^{-} \leq q(x) \leq q^{+}<p^{-} \leq p(x) \leq p^{+}<2 p^{-}<p^{*}(x)=\frac{N p(x)}{N-p(x)} \tag{7}
\end{equation*}
$$

and $p(x)<N$ for all $x \in \bar{\Omega}$.
Furthermore, we assume that the function $g(x)$ satisfies the hypothesis:
(H) $g: \bar{\Omega} \rightarrow[0, \infty), g \in L^{\infty}(\bar{\Omega})$.

Proposition 3.2. [1]. Define the functional $\Lambda=\int_{\Omega} \frac{1}{p(x)}|\nabla u|^{p(x)} d x$. Then $\Lambda: W_{0}^{1, p(x)}(\Omega) \rightarrow \mathbb{R}$ is convex. The mapping $\Lambda^{\prime}: W_{0}^{1, p(x)}(\Omega) \rightarrow\left(W_{0}^{1, p(x)}(\Omega)\right)^{*}$ is a strictly monotone, bounded homeomorphism, and of $\left(S_{+}\right)$type, namely $u_{n} \rightharpoonup u($ weakly $)$ and $\varlimsup_{n \rightarrow \infty}\left(\Lambda^{\prime}\left(u_{n}\right), u_{n}-u\right) \leq 0$ implies $u_{n} \rightarrow u$ (strongly).

Definition 3.3. The functional J satisfies the Palais-Smale condition at the level $C \in \mathbb{R}\left({ }^{\prime \prime}(P S)_{C}\right.$ condition" for short) if for every sequence $\left\{u_{n}\right\} \subset W_{0}^{1, p(x)}(\Omega)$ satisfying

$$
J\left(u_{n}\right) \rightarrow C \text { and } J^{\prime}\left(u_{n}\right) \rightarrow 0 \text { as } n \rightarrow \infty,
$$

has a convergence subsequence of $\left\{u_{n}\right\}$.
Theorem 3.4. [6]. Let $J \in C^{1}\left(W_{0}^{1, p(x)}, \mathbb{R}\right)$ and satisfies the $(P S)_{C}$ Condition. We assume the following conditions
i) J is bounded from below and even;
ii) There is a compact set $T \in R$ such that $\gamma(T)=k$ and

$$
\sup _{x \in T} J(x)<J(0) .
$$

Then problem, (1) has at least $k$ pairs of distinct critical points, and their corresponding critical values are less than $J(0)$.

Theorem 3.5. If (7) holds. Then there are at least $k$ pairs of different critical point for (1).
Lemma 3.6. The functional J satisfies the $(P S)_{C}$ condition.
Proof. We prove that $\left\{u_{n}\right\}$ is bounded in $W_{0}^{1, p(x)}(\Omega)$.
Let $\left\{u_{n}\right\} \subset W_{0}^{1, p(x)}(\Omega)$ be a $(P S)_{C}$ sequence. Arguing by contradiction we assume that, passing eventually to a subsequence, still denote by $\left\{u_{n}\right\}$, we have $\left\|u_{n}\right\| \rightarrow+\infty$ as $n \rightarrow+\infty$. we choose $0<\theta<\left\{\frac{1}{q^{+}}, \frac{1}{p^{+}}, \frac{p^{-}}{2 p^{+2}}\right\}$.

By Definition 3.3, for $n$ large enough, we have

$$
\begin{aligned}
C+\left\|u_{n}\right\| & \geq J\left(u_{n}\right)-\theta\left\langle J^{\prime}\left(u_{n}\right), u_{n}\right\rangle \\
& \geq a\left(\frac{1}{p^{+}}-\theta\right) \int_{\Omega}\left|\nabla u_{n}\right|^{p(x)} d x+b\left(\frac{1}{2 p^{+^{2}}}-\frac{\theta}{p^{-}}\right)\left(\int_{\Omega}\left|\nabla u_{n}\right|^{p(x)} d x\right)^{2} \\
& -\lambda\left(\frac{1}{q^{-}}-\theta\right) \int_{\Omega}\left|u_{n}\right|^{q(x)} d x+\left(\frac{1}{p^{+}}-\theta\right) \int_{\Omega} g(x)\left|u_{n}\right|^{p(x)} d x .
\end{aligned}
$$

By Proposition 2.3, there is a constant $C_{0}>0$, such that

$$
-\lambda\left(\frac{1}{q^{-}}-\theta\right)\left\|u_{n}\right\|_{q} \geq-\lambda C_{0}\left(\frac{1}{q^{-}}-\theta\right)\left\|u_{n}\right\| .
$$

So

$$
C+\left\|u_{n}\right\| \geq a\left(\frac{1}{p^{+}}-\theta\right)\left\|u_{n}\right\|^{p^{-}}+b\left(\frac{1}{2 p^{+^{2}}}-\frac{\theta}{p^{-}}\right)\left\|u_{n}\right\|^{2 p^{-}}-\lambda C_{0}\left(\frac{1}{q^{-}}-\theta\right)\left\|u_{n}\right\| .
$$

Dividing the above inequality by $\left\|u_{n}\right\|$ and passing to the limit as $n \rightarrow \infty$, we obtain a contradiction. It follows from (7) that $\left\{u_{n}\right\}$ is bounded in $W_{0}^{1, p(x)}(\Omega)$.

It follows from Proposition 2.3, where $1 \leq s(x)<p^{*}(x)$ and $W_{0}^{1, p(x)}(\Omega)$ is reflexive Banach space, we may assume that

$$
\begin{align*}
& u_{n} \rightharpoonup u \quad \text { in } \quad W_{0}^{1, p(x)}(\Omega), \quad u_{n} \rightarrow u \quad \text { in } \quad L_{s(x)}(\Omega), \\
& u_{n}(x) \rightarrow u(x), \text { a.e. in } \Omega . \tag{8}
\end{align*}
$$

Hölder's inequality and (8), imply that

Thus

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int\left|u_{n}\right|^{p(x)-2} u_{n}\left(u_{n}-u\right) d x=0 \tag{9}
\end{equation*}
$$

similarly

$$
\lim _{n \rightarrow \infty} \int\left|u_{n}\right|^{q(x)-2} u_{n}\left(u_{n}-u\right) d x \rightarrow 0
$$

Then $\left\langle J^{\prime}\left(u_{n}\right), u_{n}-u\right\rangle \rightarrow 0$,

$$
\begin{aligned}
& \left\langle J^{\prime}\left(u_{n}\right), u_{n}-u\right\rangle=\left(a+b \int \frac{1}{p(x)}\left|\nabla u_{n}\right|^{p(x)} d x\right) \int_{\Omega}\left|\nabla u_{n}\right|^{p(x)-2} \nabla u_{n}\left(\nabla u_{n}-\nabla u\right) d x \\
& -\lambda \int_{\Omega}\left|u_{n}\right|^{q(x)-2} u_{n}\left(u_{n}-u\right) d x+\int_{\Omega} g(x)\left|u_{n}\right|^{p(x)-2} u_{n}\left(u_{n}-u\right) d x \rightarrow 0
\end{aligned}
$$

So, we can deduce from (9) that

$$
\begin{equation*}
\left(a+b \int_{\Omega} \frac{1}{p(x)}\left|\nabla u_{n}\right|^{p(x)} d x\right) \int_{\Omega}\left|\nabla u_{n}\right|^{p(x)-2} \nabla u_{n}\left(\nabla u_{n}-\nabla u\right) d x \rightarrow 0 \tag{10}
\end{equation*}
$$

So, we have

$$
\left\langle\Lambda^{\prime}\left(u_{n}\right), u_{n}-u\right\rangle=\int_{\Omega}\left|\nabla u_{n}\right|^{p(x)-2} \nabla u_{n}\left(\nabla u_{n}-\nabla u\right) d x \longrightarrow 0
$$

from Proposition 3.2, $u_{n} \rightarrow u$ in $W_{0}^{1, p(x)}(\Omega)$.
Lemma 3.7. The functional Jis coercive and bounded from below.
Proof. Indeed, for any $u \in W_{0}^{1, p(x)}(\Omega)$, we have

$$
J(u) \geq \frac{a}{p^{+}} \int|\nabla u|^{p(x)}+\frac{b}{2 p^{+^{2}}}\left(\int_{\Omega}|\nabla u|^{p(x)} d x\right)^{2}-\frac{\lambda}{q^{-}} \int_{\Omega}|u|^{q(x)} d x+\frac{1}{p^{+}} \int g(x)|u|^{p(x)} d x .
$$

Let $\rho_{p}(u)=\int_{\Omega}|u|^{p(x)}$, by (6), we have some cases:
i) If $\rho_{p}(u)>1$,

$$
J(u) \geq \frac{a}{p^{+}}\|u\|^{p^{-}}+\frac{b}{2 p^{+{ }^{2}}}\|u\|^{2 p^{-}}-\frac{\lambda C_{1}}{q^{-}}\|u\|^{+^{+}}
$$

Since (7), so $J$ is coercive and bounded from below.
ii) If $\rho_{p}(u)<1$,

$$
J(u) \geq \frac{a}{p^{+}}\|u\|^{p^{+}}+\frac{b}{2 p^{+^{2}}}\|u\|^{2 p^{+}}-\frac{\lambda C_{1}}{q^{-}}\|u\|^{q^{-}}
$$

Since $2 p^{+}>p^{+}$and $2 p^{+}>p^{-}$, then $J$ is coercive and bounded from below.
proof of theorem 3.5. We notice that $W_{0}^{1, p^{+}}(\Omega) \subset W_{0}^{1, p(x)}(\Omega)$.
Let us consider $\left(e_{n}\right)_{n=1}^{\infty}$ a schauder basis for $W_{0}^{1, p^{+}}(\Omega)$ [14] and $X_{k}=\operatorname{span}\left\{e_{1}, e_{2}, \ldots, e_{k}\right\}$, the subspace of $W_{0}^{1, p^{+}}(\Omega)$ generated by $e_{1}, e_{2}, \ldots, e_{k}$. Clearly $X_{k}$ is subspace of $W_{0}^{1, p(x)}(\Omega)$.
So, we notice that $X_{k} \subset L^{q(x)}(\Omega)$ because $X_{k} \subset W_{0}^{1, p^{+}}(\Omega) \subset L_{q(x)}$. Thus, the norms $\|\cdot\|$ and $|\cdot|_{q(x)}$ are equivalent on $X_{k}$, because $X_{k}$ is a finite dimension space. Consequently, there exists a positive constant $C_{k}$ such that

$$
|u|_{q(x)} \geq C_{k}\|u\|, \text { for all } u \in X_{k}
$$

Let $u \in X_{k} ;\|u\|<1$, by (H) we have

$$
\begin{aligned}
& J(u)=a \int_{\Omega} \frac{1}{p(x)}|\nabla u|^{p(x)} d x+\frac{b}{2}\left(\int_{\Omega} \frac{1}{p(x)}|\nabla u|^{p(x)} d x\right)^{2} \\
& -\lambda \int \frac{1}{q(x)}|u|^{q(x)}+\int \frac{g(x)}{p(x)}|u|^{p(x)} d x \\
& \leq \frac{a}{p^{-}} \int_{\Omega}|\nabla u|^{p(x)}+\frac{b}{2 p^{-2}}\left(\int|\nabla u|^{p(x)} d x\right)^{2}-\frac{\lambda}{q^{+}} \int_{\Omega}|u|_{q(x)}^{q(x)}+\frac{1}{p^{-}} \int g(x)|u|^{p(x)} d x \\
& \leq \alpha_{1}\left(\|u\|^{p^{-}}+\|u\|^{2 p^{-}}\right)-\alpha_{2}\|u\|_{q(x)}^{\|^{+}}+\frac{\|g\|_{\infty}}{p^{-}}\|u\|^{p^{-}} \\
& \leq \alpha_{3}\left(\|u\|^{p^{-}}+\|u\|^{2 p^{-}}\right)-\alpha_{2} C\|u\|^{q^{+}} \\
& =\|u\|^{q^{+}}\left[\alpha_{3}\left(\|u\|^{p^{-}-q^{+}}+\|u\|^{2 p^{-}-q^{+}}\right)-C \alpha_{2}\right] .
\end{aligned}
$$

There exists $r_{1} \in(0,1)$ be enough small in which $r_{1}^{q^{+}}<1$ and $\alpha_{3} r_{1}^{p^{-}-q^{+}}+\alpha_{2} r_{1}^{2 p^{-}-q^{+}} \leq \frac{C \alpha_{2}}{2}$.
Considering $T=S_{r}^{k}=\left\{u \in X_{k} \mid\|u\|=r_{1}\right\}, J(u) \leq r_{1}^{q^{+}}\left(\alpha_{3} r_{1}^{p^{-}-q^{+}}+\alpha_{3} r_{1}^{2 p^{-}-q^{+}}-C \alpha_{2}\right), \forall u \in T$. Then

$$
\sup _{T} J(u) \leq 1 \cdot\left(\frac{C \alpha_{2}}{2}-C \alpha_{2}\right)=-\frac{C \alpha_{2}}{2}<0=J(0) .
$$

Since $X_{k}$ and $\mathbb{R}^{k}$ are isomorphic so $S_{r}^{k}$ and $S^{k-1}$ are homeomorphic so $\gamma\left(S_{r}^{k}\right)=k$. $J$ is even, so by Theorem 3.4, $J$ has least $k$ pairs of different critical points.

Corollary 3.8. If (7) holds. Then there are infinitely many solution for (1).
Proof. Since $k$ is arbitrary, so there are infinitely many critical points of $J$.

## 4. Regularity results on eigenfunctions

In this section we shall prove boundedness and the simplicity of the problem (1) typical conditions. We consider the following problem

$$
\begin{cases}-\left(a+b \int_{\Omega} \frac{|\nabla u| p}{p}\right) \Delta_{p} u=\lambda|u|^{p-2} u & \text { in } \Omega  \tag{11}\\ u=0 & \text { on } \partial \Omega .\end{cases}
$$

The pair $(u, \lambda) \in W_{0}^{1, p}(\Omega) \times \mathbb{R}^{+}$is a weak solution of (11) if

$$
\begin{equation*}
a \int|\nabla u|^{p-2} \nabla u \cdot \nabla v d x+\left(\frac{b}{p} \int|\nabla u|^{p-2} \nabla u \cdot \nabla v\right) \cdot \int|\nabla u|^{p} d x=\lambda \int|u|^{p-2} u v d x . \tag{12}
\end{equation*}
$$

Lemma 4.1. [4].
(i) Let $p \geq 2$ then for all $x, y \in \mathbb{R}^{N}$

$$
\begin{equation*}
|y|^{p} \geq|x|^{p}+p|x|^{p-2} x \cdot(y-x)+C(p)|x-y|^{p} . \tag{13}
\end{equation*}
$$

(ii) Let $1<p<2$, then for all $x, y \in \mathbb{R}^{n}$,

$$
\begin{equation*}
|y|^{p} \geq|x|^{p}+p|x|^{p-2} x \cdot(y-x)+C(p) \frac{|x-y|^{2}}{(|x|+|y|)^{2-p}} . \tag{14}
\end{equation*}
$$

(iii) For any $x \neq y, p>1$,

$$
|y|^{p}>|x|^{p}+p|x|^{p-2} x \cdot(y-x) .
$$

In the above $C(p)$ is a constant depending only on $p$.
Theorem 4.2. [14]. Let $f \in C(\mathbb{R})$ be a piecewise smooth function with $f^{\prime} \in L^{\infty}(\mathbb{R})$. Then
(a) If $u \in W^{1, p}(\Omega)$, then $f \circ u \in W^{1, p}(\Omega)$.
(b) If $u \in W_{0}^{1, p}(\Omega)$ and $f(0)=0$, then $f \circ u \in W_{0}^{1, p}(\Omega)$.

In all cases, we have

$$
\nabla(f \circ u)=\left\{\begin{array}{lll}
f^{\prime}(u) \nabla u & \text { if } & u \notin L \\
0 & \text { if } & u \in L
\end{array}\right.
$$

where $L$ denotes the set of corner points of $f$.
Lemma 4.3. [14]. Let $u$ be in $W^{1, p}(\Omega), u \geq 0$. Let $\left\{u_{n}\right\}$ be a sequence such that $u_{n} \rightarrow u$ in $W^{1, p}(\Omega)$. Then the sequence $\left\{u_{n}^{+}\right\}$also converges to $u$ in $W^{1, p}(\Omega)$.

Lemma 4.4. Let $u$ be in $W_{0}^{1, p}(\Omega), u \geq 0$. Then there exist a sequence of nonnegative functions in $C_{0}^{\infty}(\Omega)$ converging to $u$ in $W_{0}^{1, p}(\Omega)$.

Theorem 4.5. Let $X$ be $W_{0}^{1, p}(\Omega)$ or $W^{1, p}(\Omega)$ and let $(u, \lambda) \in X \times \mathbb{R}^{+}$be an eigen pair of the weak form (11), then $u \in L^{\infty}(\Omega)$.

Proof. By Sobolev's embedding theorem it suffices to consider the case $p \leq N$. Assume first that $u \geq 0$. For $M>0$ define $v_{M}(x)=\min \{u(x), M\}$.
Letting $f(x)=x$, if $x \leq M$ and $f(x)=M$, if $x>M$, it follows from Theorem 4.2 that $v_{M} \in X \cap L^{\infty}(\Omega)$.
For $k>0$ define $\varphi=v_{M}^{k p+1}$, then $\nabla \varphi=(k p+1) v_{M}^{k p} \cdot \nabla v_{M}$. It follows that $\varphi \in X \cap L^{\infty}(\Omega)$.
Using $\varphi$ as a test function in (11), one obtains

$$
\begin{aligned}
& a(k r+1) \int_{\Omega}|\nabla u|^{p-2} \nabla u \nabla v_{M} \cdot v_{M}^{k p} d x+(k p+1) \frac{b}{p}\left(\int|\nabla u|^{p-2} \nabla u \cdot \nabla v_{M}^{k p}\right) . \\
& \int_{\Omega}|\nabla u| d x=\lambda \int_{\Omega}|u|^{p-2} u v_{M}^{k p+1} d x \leq \lambda \int_{\Omega}|u|^{(k+1) p} d x .
\end{aligned}
$$

Then

$$
\begin{aligned}
& a(k p+1) \int_{\Omega}\left|\nabla v_{M} \cdot v_{M}^{k}\right|^{p} d x+(k p+1) \frac{b}{p}\left(\int_{\Omega} \nabla v_{M}^{k p+p-1}\right) \int_{\Omega}\left|\nabla v_{M}\right|^{p} d x \\
& \leq \lambda \int_{\Omega}|u|^{(k+1) p} d x .
\end{aligned}
$$

Since

$$
a \frac{(k p+1)}{(k+1)^{p}} \int_{\Omega}\left|\nabla v_{M}^{k+1}\right|^{p} \leq \lambda|u|^{(k+1) p} d x
$$

So

$$
\begin{aligned}
& a \frac{k p+1}{(k+1)^{p}} \int_{\Omega}\left|\nabla v_{M}^{k+1}\right|^{p}+\frac{k p+1}{(k+1)^{p}} \int_{\Omega}\left|v_{M}^{k+1}\right|^{p} d x \\
& \leq\left(\lambda+\frac{k p+1}{(k+1)^{p}}\right) \int_{\Omega} u^{(k+1) p} d x
\end{aligned}
$$

Then

$$
a \int_{\Omega}\left|\nabla v_{M}^{k+1}\right|^{p} d x+\int_{\Omega}\left|v_{M}^{k+1}\right|^{p} d x \leq\left(\lambda \frac{(k+1)^{p}}{(k p+1)}+1\right) \int_{\Omega} u^{(k+1) p} d x
$$

By (6), we have

$$
\left\|v_{M}^{k+1}\right\|^{p} \leq\left(\lambda \frac{(k+1)^{p}}{(k p+1)}+1\right)\|u\|_{(k+1) p}^{(k+1) p}
$$

By Sobolev's embedding theorem, there is a constant $C_{1}>0$ such that

$$
\left\|v_{M}^{k+1}\right\|_{p^{*}} \leq C_{1}\left\|v_{M}^{k+1}\right\|,
$$

we take $p^{*}=\frac{N p}{N-p}$, if $p<N$ and $p^{*}=2 p$, if $p=N$. Thus

$$
\begin{aligned}
\left\|v_{M}\right\|_{(k+1) p^{*}} & \leq\left\|v_{M}^{k+1}\right\|_{p^{*}}^{\frac{1}{k+1}} \\
& \leq C_{1}^{\frac{1}{k+1}}\left(\lambda \frac{(k+1)^{p}}{(k p+1)}+1\right)^{\frac{1}{p(k+1)}}\|u\|_{(k+1) p}
\end{aligned}
$$

We can find a constant $C_{2}>0$ such that

$$
\left(\lambda \frac{(k+1)^{p}}{(k p+1)}+1\right)^{\frac{1}{p \sqrt{k+1}}} \leq C_{2}
$$

for any $k>0$.
Thus

$$
\left\|v_{M}\right\|_{(k+1) p^{*}} \leq C_{1}^{\frac{1}{k+1}} C_{2}^{\frac{1}{\sqrt{k+1}}}\|u\|_{(k+1) p}
$$

Letting $M \rightarrow \infty$, Fatou's lemma implies that

$$
\begin{equation*}
\|u\|_{(k+1) p^{*}} \leq C_{1}^{\frac{1}{k+1}} C_{2}^{\frac{1}{\sqrt{k+1}}}\|u\|_{(k+1) p} \tag{15}
\end{equation*}
$$

Choosing $k_{1}$ such that $\left(k_{1}+1\right) p=p^{*}$, then (15) becomes
$\|u\|_{\left(k_{1}+1\right) p^{*}} \leq C_{1}^{\frac{1}{k_{1}+1}} C_{2}^{\frac{1}{\sqrt{k_{1}+1}}}\|u\|_{p^{*}}$.
Next, we choose $k_{2}$ such that $\left(k_{2}+1\right) p=\left(k_{1}+1\right) p^{*}$, then taking $k_{2}=k$ in $(15)$, we have

$$
\begin{aligned}
\|u\|_{\left(k_{2}+1\right) p^{*}} & \leq C_{1}^{\frac{1}{k_{2}+1}} C_{2}^{\frac{1}{\sqrt{k_{2}+1}}}\|u\|_{\left(k_{2}+1\right) p} \\
& =C_{1}^{\frac{1}{k_{2}+1}} C_{2}^{\frac{1}{\sqrt{k_{2}+1}}}\|u\|_{\left(k_{1}+1\right) p^{*}}
\end{aligned}
$$

Then we obtain

$$
\|u\|_{\left(k_{n}+1\right) p^{*}} \leq C_{1}^{\frac{1}{k_{n}+1}} C_{2}^{\frac{1}{\sqrt{k_{n}+1}}}\|u\|_{\left(k_{n-1}+1\right) p^{*}}
$$

where the sequence $\left\{k_{n}\right\}$ is chosen such that $\left(k_{n}+1\right) p=\left(k_{n-1}+1\right) p^{*}, k_{0}=0$. We see that $k_{n}+1=\left(\frac{p^{*}}{p}\right)^{n}$.
Hence

$$
\|u\|_{\left(k_{n}+1\right) p^{*}} \leq C_{1}^{\sum_{i=1}^{n} \frac{1}{k_{i}+1}} C_{2}^{\sum_{i=1}^{n} \frac{1}{\sqrt{k_{i}+1}}}\|u\|_{p^{*}}
$$

As $\frac{p}{p^{*}}<1$, there is $C>0$ such that for any $n=1,2, \ldots$

$$
\|u\|_{\left(k_{n}+1\right) p^{*}} \leq C\|u\|_{p^{*}},
$$

with $r_{n}=\left(k_{n}+1\right) p^{*} \rightarrow \infty$ as $n \rightarrow \infty$.
We show that $u \in L^{\infty}(\Omega)$.
Suppose that $u \notin L^{\infty}(\Omega)$, then there exist $\varepsilon>0$ and a set $A$ of positive measure in $\Omega$ such that

$$
|u(x)|>C\|u\|_{p^{*}}+\varepsilon=K, \text { for all } x \in A
$$

Then

$$
\liminf _{n \rightarrow \infty}\|u\|_{r_{n}} \geq \liminf _{n \rightarrow \infty}\left(\int_{A} K^{r_{n}}\right)^{\frac{1}{r_{n}}}=\liminf _{n \rightarrow \infty} K|A|^{\frac{1}{r_{n}}}=K>C\|u\|_{p^{*}} .
$$

Which is contradiction.
If $u$ (as an eigen function of (11)) changes sign, we consider $u^{+}$. By Lemma 4.3, $u^{+} \in X$.
Define for each $M>0, v_{M}(x)=\min \left\{u^{+}(x), M\right\}$. Taking again $\varphi=v_{M}^{k p+1}$ as a test function in $X$, we obtain

$$
\begin{aligned}
& a(k p+1) \int_{\Omega}|\nabla u|^{p-2} \nabla u \cdot \nabla v_{M} \cdot v_{M}^{k p} d x+\frac{b}{p}(k p+1)\left(\int_{\Omega}|\nabla u|^{p-2} \nabla u \cdot \nabla v_{M}^{k p}\right) \cdot \int_{\Omega}|\nabla u|^{p} d x \\
& =\lambda \int_{\Omega}|u|^{p-2} u v_{M}^{k p+1} d x
\end{aligned}
$$

which implies

$$
\begin{aligned}
& a(k p+1) \int_{\Omega}\left|\nabla u^{+}\right|^{p-2} \nabla u^{+} \cdot \nabla v_{M} v_{M}^{k p} d x+(k p+1) \frac{b}{p}\left(\int\left|\nabla u^{+}\right|^{p-2} \nabla u^{+} \cdot \nabla v_{M}^{k p}\right) \int_{\Omega}\left|\nabla u^{+}\right|^{p} d x \\
& =\lambda \int_{\Omega}\left|u^{+}\right|^{p-2} u^{+} v_{M}^{k p+1} d x
\end{aligned}
$$

Proceding the same way as above we conclude that $u^{+} \in L^{\infty}(\Omega)$. Similary we have $u^{-} \in L^{\infty}(\Omega)$. Therefore $u=u^{+}+u^{-}$is in $L^{\infty}(\Omega)$.

We define the following quantities for problem (1)

$$
\begin{equation*}
\lambda^{*}=\inf _{u \in W_{0}^{1, p(x)}(\Omega) \backslash\{0\}} \frac{a \int \frac{1}{p(x)}|\nabla u|^{p(x)} d x+\frac{b}{2}\left(\int_{\Omega} \frac{1}{p(x)}|\nabla u|^{p(x)} d x\right)^{2}+\int \frac{g(x)}{p(x)}|u|^{p(x)} d x}{\int_{\Omega} \frac{1}{q(x)}|u|^{q(x)} d x} \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda_{1}=\inf _{u \in W_{0}^{1, p(x)}(\Omega) \backslash\{0\}} \frac{\left.\left(a+b \int \frac{1}{p(x)}|\nabla u|^{p(x)} d x\right) \int_{\Omega}|\nabla u|^{p(x)}\left|d x+\int g(x)\right| u\right|^{p(x)} d x}{\int_{\Omega}|u|^{q(x)} d x} \tag{17}
\end{equation*}
$$

$\lambda_{1}$ is smalest eigenvalue.

Theorem 4.6. The problem (1) has no-solution for every $\lambda<\lambda_{1}$.
Proof. Let

$$
P(x, u)=\left(a+b \int_{\Omega} \frac{1}{p(x)}|\nabla u|^{p(x)} d x\right) \int_{\Omega}|\nabla u|^{p(x)} d x+\int_{\Omega} g(x)|u|^{p(x)} d x
$$

and

$$
Q(x, u)=\int_{\Omega}|u|^{q(x)} d x
$$

We have $\lambda_{1}:=\inf _{u \in W_{0}^{1, p(x)}(\Omega) \backslash\{0\}} \frac{P(x, u)}{Q(x, u))}$.
Fix $\lambda<\lambda_{1}$ we argue by contradiction and assume that $\lambda$ is an eigenvalue of the problem (1).
Therefore we may find $u \in W_{0}^{1, p(x)}(\Omega) \backslash\{0\}$ such that

$$
\begin{aligned}
& \left(a+b \int_{\Omega} \frac{1}{p(x)}|\nabla u|^{p(x)} d x\right) \int_{\Omega}|\nabla u|^{p(x)-2} \nabla u \nabla \varphi d x+\int_{\Omega} g(x)|u|^{p(x)-2} u \varphi d x \\
& =\lambda \int_{\Omega}|u|^{q(x)-2} u \varphi d x, \quad \text { for all } \varphi \in W_{0}^{1, p(x)}(\Omega)
\end{aligned}
$$

Thus we have

$$
P_{u}^{\prime}(x, u)=\lambda Q_{u}^{\prime}(x, u)
$$

For now on, taking $\varphi=u$, we get that $P(x, u)=\lambda Q(x, u)$.
Hence,

$$
\lambda=\frac{P(x, u)}{Q(x, u)} \geq \inf _{u \in W_{0}^{1, p(x)}(\Omega) \backslash\{0\}} \frac{P(x, u)}{Q(x, u)}=\lambda_{1}
$$

which contradict by the choice of $\lambda$.
Let us denote the quantity of the problem (11)

$$
\begin{equation*}
\lambda^{*}:=\inf _{u \in W_{0}^{1 p(x)}(\Omega) \backslash\{0\}} \frac{\frac{a}{p} \int_{\Omega}|\nabla u|^{p} d x+\frac{b}{2 p^{2}}\left(\int_{\Omega}|\nabla u|^{p} d x\right)^{2}}{\frac{1}{p} \int_{\Omega}|u|^{p} d x} \tag{18}
\end{equation*}
$$

The smallest eigenvalue of problem (11) is

$$
\begin{equation*}
\lambda_{1}:=\inf _{u \in W_{0}^{1, p(x)}(\Omega) \backslash\{0\}} \frac{a \int|\nabla u|^{p} d x+\frac{b}{p}\left(\int_{\Omega}|\nabla u|^{p} d x\right)^{2}}{\int_{\Omega}|u|^{p} d x} \tag{19}
\end{equation*}
$$

Lemma 4.7. [14]. Let $u$ be an eigenfunction associated with $\lambda_{1}$, then either $u>0$ or $u<0$ in $\Omega$.
Theorem 4.8. The principal eigenvalue $\lambda_{1}$ is simple .i.e., if $u$ and $v$ are two eigenfunctions associated with $\lambda_{1}$, then there exists $C$ such that $u=C v$.
Proof. By Lemma 4.7, we can assume that $u$ and $v$ are positive in $\Omega$. Let $\eta=\frac{\left(u+\varepsilon p-(v+\varepsilon)^{p}\right.}{(u+\varepsilon)^{p-1}}$ and $\theta=\frac{\left(v+\varepsilon \varepsilon^{p}-(u+\varepsilon)^{p}\right.}{(v+\varepsilon)^{p-1}}$. Where $\varepsilon$ is a positive parameter. Then

$$
\nabla \eta=\left\{1+(p-1)\left(\frac{v+\varepsilon}{u+\varepsilon}\right)^{p}\right\} \nabla u-p\left(\frac{v+\varepsilon}{u+\varepsilon}\right)^{p-1} \nabla v
$$

From Theorem 4.5, since $u$ and $v$ are bounded, $\nabla \eta$ is in $L^{p}(\Omega)$ and thus $\eta$ is in $W^{1, p}(\Omega)$.
By symmetry argument the gradient of the test function $\theta$ in the corresponding equation for $v$ has a similar expression when $u$ and $v$ interchanged.
Set $u_{\varepsilon}=u+\varepsilon$ and $v_{\varepsilon}=v+\varepsilon$. Inserting these test functions in to their equations obtained from (12) and adding these equations, we obtain

$$
\begin{aligned}
& \lambda_{1} \int_{\Omega} u^{p-1} \frac{u_{\varepsilon}^{p}-v_{\varepsilon}^{p}}{u_{\varepsilon}^{p-1}}-\lambda_{1} \int_{\Omega} v^{p-1} \frac{v_{\varepsilon}^{p}-u_{\varepsilon}^{p}}{v_{\varepsilon}^{p-1}} \\
& =\lambda_{1} \int_{\Omega}\left[\frac{u^{p-1}}{u_{\varepsilon}^{p-1}}-\frac{v^{p-1}}{v_{\varepsilon}^{p-1}}\right]\left(u_{\varepsilon}^{p}-v_{\varepsilon}^{p}\right) d x \\
& =a\left[\int_{\Omega}\left(\left\{1+(p-1)\left(\frac{v_{\varepsilon}}{u_{\varepsilon}}\right)^{p}\right\}\left|\nabla u_{\varepsilon}\right|^{p}+\left\{1+(p-1)\left(\frac{u_{\varepsilon}}{v_{\varepsilon}}\right)^{p}\right\}\left|\nabla v_{\varepsilon}\right|^{p}\right) d x\right. \\
& \left.-\int_{\Omega}\left(p\left(\frac{v_{\varepsilon}}{u_{\varepsilon}}\right)^{p-1}\left|\nabla u_{\varepsilon}\right|^{p-2} \nabla u_{\varepsilon} \cdot \nabla v_{\varepsilon}+p\left(\frac{u_{\varepsilon}}{v_{\varepsilon}}\right)^{p-1}\left|\nabla v_{\varepsilon}\right|^{p-2} \nabla v_{\varepsilon} \cdot \nabla u_{\varepsilon}\right) d x\right] \\
& +\frac{b}{p}\left[\int_{\Omega}\left(\left\{1+(p-1)\left(\frac{v_{\varepsilon}}{u_{\varepsilon}}\right)^{p}\right\}\left|\nabla u_{\varepsilon}\right|^{p}+\left\{1+(p-1)\left(\frac{u_{\varepsilon}}{v_{\varepsilon}}\right)^{p}\right\}\left|\nabla v_{\varepsilon}\right|^{p}\right) d x\right. \\
& \left.-\int_{\Omega}\left(p\left(\frac{v_{\varepsilon}}{u_{\varepsilon}}\right)^{p-1}\left|\nabla u_{\varepsilon}\right|^{p-2} \nabla u_{\varepsilon} \cdot \nabla v_{\varepsilon}+p\left(\frac{u_{\varepsilon}}{v_{\varepsilon}}\right)^{p-1}\left|\nabla v_{\varepsilon}\right|^{p-2} \nabla v_{\varepsilon} \cdot \nabla u_{\varepsilon}\right) d x\right] \\
& \cdot\left[\int_{\Omega}\left(\left\{1+(p-1)\left(\frac{v_{\varepsilon}}{u_{\varepsilon}}\right)^{p}\right\}\left|\nabla u_{\varepsilon}\right|^{p}+\left\{1+(p-1)\left(\frac{u_{\varepsilon}}{v_{\varepsilon}}\right)^{p}\right\}\left|\nabla v_{\varepsilon}\right|^{p}\right) d x\right. \\
& \left.-\int\left(p\left(\frac{v_{\varepsilon}}{u_{\varepsilon}}\right)^{p-1}\left|\nabla u_{\varepsilon}\right|^{p}+p\left(\frac{u_{\varepsilon}}{v_{\varepsilon}}\right)^{p-1}\left|\nabla v_{\varepsilon}\right|^{p}\right)\right] \\
& =a\left[\int_{\Omega}\left(u_{\varepsilon}^{p}-v_{\varepsilon}^{p}\right)\left(\left|\nabla \ln u_{\varepsilon}\right|^{p}-\left|\nabla \ln v_{\varepsilon}\right|^{p}\right) d x\right. \\
& -p \int_{\Omega} v_{\varepsilon}^{p}\left|\nabla \ln u_{\varepsilon}\right|^{p-2} \nabla \ln u_{\varepsilon}\left(\nabla \ln v_{\varepsilon}-\nabla \ln u_{\varepsilon}\right) d x \\
& \left.-p \int_{\Omega} u_{\varepsilon}^{p}\left|\nabla \ln v_{\varepsilon}\right|^{p-2} \nabla \ln v_{\varepsilon}\left(\nabla \ln u_{\varepsilon}-\nabla \ln v_{\varepsilon}\right) d x\right] \\
& +\frac{b}{p}\left[\int_{\Omega}\left(u_{\varepsilon}^{p}-v_{\varepsilon}^{p}\right)\left(\left|\nabla \ln u_{\varepsilon}\right|^{p}-\left|\nabla \ln v_{\varepsilon}\right|^{p}\right) d x\right. \\
& -p \int_{\Omega} v_{\varepsilon}^{p}\left|\nabla \ln u_{\varepsilon}^{p-2}\right| \nabla \ln u_{\varepsilon}\left(\nabla \ln v_{\varepsilon}-\nabla \ln u_{\varepsilon}\right) d x \\
& \left.-p \int_{\Omega} u_{\varepsilon}^{p}\left|\nabla \ln v_{\varepsilon}^{p-2}\right| \nabla \ln v_{\varepsilon}\left(\nabla \ln u_{\varepsilon}-\nabla \ln v_{\varepsilon}\right) d x\right] \\
& \cdot\left[\int_{\Omega}\left(u_{\varepsilon}^{p}-v_{\varepsilon}^{p}\right)\left(\left|\nabla \ln u_{\varepsilon}\right|^{p}-\left|\nabla \ln v_{\varepsilon}\right|^{p}\right) d x\right. \\
& -p \int_{\Omega} v_{\varepsilon}^{p}\left|\nabla \ln u_{\varepsilon}\right|^{p-2} \nabla \ln u_{\varepsilon}\left(\frac{\nabla u_{\varepsilon}}{v_{\varepsilon}}-\nabla \ln u_{\varepsilon}\right) d x \\
& \left.-p \int_{\Omega} u_{\varepsilon}^{p}\left|\nabla \ln v_{\varepsilon}\right|^{p-2} \nabla \ln v_{\varepsilon}\left(\frac{\nabla v_{\varepsilon}}{u_{\varepsilon}}-\nabla \ln v_{\varepsilon}\right) d x\right] .
\end{aligned}
$$

Set $x_{1}=u_{\varepsilon} \nabla \ln v_{\varepsilon}, y_{1}=u_{\varepsilon} \nabla \ln u_{\varepsilon}, x_{2}=v_{\varepsilon} \nabla \ln u_{\varepsilon}, y_{2}=v_{\varepsilon} \nabla \ln v_{\varepsilon}$ and viceverse, inequality (14) in Lemma 4.1
implies that

$$
\begin{aligned}
L_{\varepsilon} & =\int_{\Omega}\left(u_{\varepsilon}^{p}-v_{\varepsilon}^{p}\right)\left(\left|\nabla \ln u_{\varepsilon}\right|^{p}-\left|\nabla \ln v_{\varepsilon}\right|^{p}\right) d x \\
& -p \int_{\Omega} v_{\varepsilon}^{p}\left|\nabla \ln u_{\varepsilon}\right|^{p-2} \nabla \ln u_{\varepsilon}\left(\nabla \ln v_{\varepsilon}-\nabla \ln u_{\varepsilon}\right) d x \\
& -p \int_{\Omega} u_{\varepsilon}^{p}\left|\nabla \ln v_{\varepsilon}\right|^{p-2} \nabla \ln v_{\varepsilon}\left(\nabla \ln u_{\varepsilon}-\nabla \ln v_{\varepsilon}\right) d x \geq 0
\end{aligned}
$$

and

$$
\begin{aligned}
S_{\varepsilon} & =\int_{\Omega}\left(u_{\varepsilon}^{p}-v_{\varepsilon}^{p}\right)\left(\left|\nabla \ln u_{\varepsilon}\right|^{p}-\left|\nabla \ln v_{\varepsilon}\right|^{p}\right) d x \\
& -p \int_{\Omega} v_{\varepsilon}^{p}\left|\nabla \ln u_{\varepsilon}\right|^{p-2} \nabla \ln u_{\varepsilon}\left(\frac{\nabla u_{\varepsilon}}{v_{\varepsilon}}-\nabla \ln u_{\varepsilon}\right) d x \\
& -p \int_{\Omega} u_{\varepsilon}^{p}\left|\nabla \ln v_{\varepsilon}\right|^{p-2} \nabla \ln v_{\varepsilon}\left(\frac{\nabla v_{\varepsilon}}{u_{\varepsilon}}-\nabla \ln v_{\varepsilon}\right) d x \geq 0 .
\end{aligned}
$$

Dominated convergence theorem implies that

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0^{+}} \lambda_{1} \int_{\Omega}\left[\frac{u^{p-1}}{u_{\varepsilon}^{p-1}}-\frac{v^{p-1}}{v_{\varepsilon}^{p-1}}\right]\left(u_{\varepsilon}^{p}-v_{\varepsilon}^{p}\right) d x=0 \tag{20}
\end{equation*}
$$

Theorem 4.6 of [14] implies that $u$ and $v$ are in $C^{1, \alpha}(\bar{\Omega})$.
For the case $p \geq 2$, from to inequality (13) in Lemma 4.1 we have

$$
\begin{aligned}
0 & \leq C(p) \int_{\Omega}\left(\frac{1}{v_{\varepsilon}^{p}}+\frac{1}{u_{\varepsilon}^{p}}\right)\left|v_{\varepsilon} \nabla u_{\varepsilon}-u_{\varepsilon} \nabla v_{\varepsilon}\right|^{p} d x \\
& \leq L_{\varepsilon} \leq L_{\varepsilon}+L_{\varepsilon} S_{\varepsilon} \leq \lambda_{1} \int_{\Omega}\left[\frac{u^{p-1}}{u_{\varepsilon}^{p-1}}-\frac{v^{p-1}}{v_{\varepsilon}^{p-1}}\right]\left(u_{\varepsilon}^{p}-v_{\varepsilon}^{p}\right) d x
\end{aligned}
$$

for every $\varepsilon>0$. Recalling (20), for $\varepsilon \rightarrow 0^{+}$, from Fatou's Lemma we obtain $\lim v_{\varepsilon} \nabla u_{\varepsilon}-u_{\varepsilon} \nabla v_{\varepsilon}=0$ a.e, in $\Omega$ and thus

$$
v \nabla u=u \nabla v \quad \text { a.e, in } \Omega .
$$

We obtain immediatly that $\nabla\left(\frac{u}{v}\right)=0$, i.e., there is a constant $k$ such that $u=k v$ a.e, in $\Omega$. By continuity, $u=k v$ at every point in $\Omega$.

## References

[1] M. Avci, B. Cekic, and R. Mashiyev, Existence and multiplicity of the solutions of the $p(x)$-Kirchhoff type equation via genus theory, Math. App. SCI. 34 (2011), 1751-1759.
[2] H. Brezis, L. Nirenberg, Remarks on finding critical points, Commun. Pure Appl. Math. 44, 939-963 (1991).
[3] G. Che., H. Chen, Infinitely many solutions for Kirchhoff equations with sign-changing potential and Hatree nonlinearity, Mediterranean Journal of Mathematics. 15, Article number. 131(2018), 1-17.
[4] F. Correa and G. Figueiredo, On a $p$-Kirchhoff equation via Krasnoselskii's genus, Applied Mathematics Letters. 22 (2009), 819-822.
[5] L. Diening, P. Harjulehto, P. Hästö, M. Ružička, Lebesgue and Sobolev spaces with variable Exponents, in: Lecture Notes in Mathematics, Vol. 2017, Springer, Heidelberg, 2011.
[6] Z. EL Allali, S. Taarabti, Existence and multiplicity of the solutions for the $p(x)$-Kirchhoff equation via genus theory, Communications in Applied Analysis, 23, No. 1(2019), 79-95.
[7] X.L. Fan, D. Zhao, On the spaces $L^{p(x)}(\Omega)$ and $W^{m, p(x)}(\Omega)$, J. Math. Anal. Appl. 263 (2001), 424-446.
[8] V. Florin. UTA, Ground state solutions and concentration phenomena in nonlinear eigenvalue problems with variable exponents, Annals of the University of Craiova, Mathematics and Computer Seience Series, Volume 45(1). (2018), 122-136.
[9] M.K. Hamdani, A. Harrabi, F. Mtiri, D.D. Repovs̆, Existence and multiplicity results for a new $p(x)$-Kirchhoff problem, Nonlinear Analysis, 190(2020), 1-15.
[10] M. K. Hamdani, On a nonlocal asymmetric Kirchhoff problems, Asian-European Journal of Mathematics, World Scientific, (2019) DOI: 10.1142/S1793557120300018LY.
[11] M.K. Hamdani, N.T. Chung, M. B. Aminlouee Infinitely many solutions for a new class of Schrödinger-Kirchhoff type equations in $\mathbb{R}^{N}$ involving the fractional $p$-Laplacian, J. Elliptic Parabol. Equ., (2021) 1-25 DOI: 10.1007/s41808-020-00093-7.
[12] M.K. Hamdani, N. T. Chung, D.D. Repovš, New class of sixth-order nonhomogeneous $p(x)$-Kirchhoff problems with sign-changing weight functions, Advances in Nonlinear Analysis, (2021) 10(1), 1117-1131.
[13] M.K. Hamdani, J. Zuo, N. T. Chung, D.D. Repovs̆, Multiplicity of solutions for a class of fractional $p(x,$.$) -Kirchhoff-type problems$ without the Ambrosetti-Rabinowitz condition, Bound- ary Value Problems, 2020(1), 1-16.
[14] A. Le, Eigenvalues problems for the $p$-Laplacian, Nonlinear Analysis 64 (2006), 1057-1099.
[15] M. Mihailescu, Existence and multiplicity of solutions for a Neumann problem involving the $p(x)$-Laplacian operator, Nonlinear Anal. T. M. A. 67 (2007), 1419-1425.
[16] V. Radulescu, D. Repovs, Partial Differential Equations with variable Exponents, Monographs and research notes in mathematics; 9. Hoboken, NJ: CRC Press, 2015, -321 p.
[17] N. Tsouli, O. Chakrone, O. Darhouche and M. Rahmani, Nonlinear eigenvalue problem for the $p$-Laplacian, Communications in Mathematical Analysis, V. 20 1(2017), 69-82.
[18] J. Yao, Solutions for Neumann boundary value problems involving $p(x)$-Laplace operators, Nonlinear Anal. 68 (5) (2008), 12711283.
[19] Z. Q. Ou- C. Li, Existence of nontrivial solutions for a class of nonlocal Kirchhoff type problems, Boundary value problems 2018, Article number. 158 (2018), 1-7.


[^0]:    2020 Mathematics Subject Classification. Primary 35P30; Secondary 49R05, 58C40
    Keywords. p(x)-Laplacian; modular function; genus theory
    Received: 22 September 2020; Revised: 04 April 2021; Accepted: 23 May 2021
    Communicated by Marko Nedeljkov
    Corresponding author: M. Alimohammady
    Email addresses: Asieh.Rezvani@gmail.com (A. Rezvani), amohsen@umz.ac.ir (M. Alimohammady), b.agheli@qaemiau.ac.ir (B. Agheli)

