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Abstract. We consider the Duhamel equation

φ ⊛ f = 1

in the subspace

C∞xy =
{
f ∈ C∞ ([0, 1] × [0, 1]) : f

(
x, y

)
= F

(
xy

)
for some F ∈ C∞ [0, 1]

}
of the space C∞ ([0, 1] × [0, 1]) and prove that if φ pxy=0, 0, then this equation is uniquely solvable in C∞xy.

The commutant of the restricted double integration operator Wxy f
(
xy

)
:=

∫ x

0

∫ y

0
f (tτ) dτdt on C∞xy is also

described. Some other related questions are also discussed.

1. Introduction

Let C∞ := C∞ ([0, 1] × [0, 1]) be the Fréchet space of infinitely differentiable functions in the square
[0, 1] × [0, 1] . The Duhamel product in C∞ is defined by the formula (see Merryfield and Watson [12]).

(
f ⊛ 1

) (
x, y

)
:=

∂2

∂x∂y

∫ x

0

∫ y

0
f
(
x − t, y − τ

)
1 (t, τ) dτdt. (1)

We remark that the Duhamel product is widely applied in various questions of analysis, especially, in
the theory of differential equations, in mathematical physics (Merryfield and Watson [12], Wigley [19, 20])
and in operator theory; see, for instance, Ivanova and Melikhov [2] and references therein. For applications
of Duhamel products in description of invariant subspaces of integration operators, we refer to the papers
[7, 10, 17, 18]. Recall that the commutant of the bounded linear operator A acting in C∞, i.e., A ∈ L (C∞) is
defined by {A}

′

:= {B ∈ L (C∞) : BA = AB} .
Recall that the double integration operator W is defined in C∞ by the formula

(
W f

) (
x, y

)
:=

∫ x

0

∫ y

0
f (t, τ) dτdt, f ∈ C∞ ([0, 1] × [0, 1]) .
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We set

C∞xy :=
{
f ∈ C∞ : f

(
x, y

)
= 1

(
xy

)
for some 1 ∈ C∞ [0, 1]

}
.

It can be easily shown that C∞xy is the closed subspace of C∞ and WC∞xy ⊂ C∞xy, i.e., C∞xy is the invariant
subspace of the integration operator W. We set Wxy :=W|C∞xy .

In this article, which is motivated with papers [8] and [14], we study uniqueness of Duhamel equations
related to the commutant of double integration operator Wxy on C∞xy.

2. Description of the commutant
{
Wxy

}′
Note that the study of commutant of a given operator A is one of the important problems of operator

theory on topological spaces, including Banach spaces. For example, it is enough to remember the celebrated
Lomonosov’s theorem on the existence of closed nontrivial hyperinvariant subspaces of compact operators
on a Banach space X (recall that a closed subspace E ⊂ X is called hyperinvariant subspace for the operator
A ∈ L (X), if it is invariant for any operator B in {A}′). In this section, we describe in terms of Duhamel
operators the commutant

{
Wxy

}′
of the operator Wxy on C∞xy. Recall that the topology in C∞ is given by the

family of the seminorms {Pn}n≥0 defined by

Pn
(

f
)
= max

 max
(x,y)∈[0,1]×[0,1]

∣∣∣∣∣∣ ∂|α|

∂xα1∂yα2
f
(
x, y

)∣∣∣∣∣∣ : |α| = α1 + α2 = 0, 1, ...,n

 . (2)

It follows from (1) and (2) that the Duhamel operator D f ,D f1 := f ⊛ 1, is the continuous operator on C∞ for
any f ∈ C∞, in particular, for any f ∈ C∞xy the Duhamel operator D f ,D f1

(
xy

)
=

(
f ⊛ 1

) (
xy

)
, is continuous in

C∞xy. In general, by using the method of the paper [8], it can be proved that (C∞,⊛) and
(
C∞xy,⊛

)
are algebras

(we omit it).

Theorem 2.1. Let T ∈ L
(
C∞xy

)
be an operator. Then T ∈

{
Wxy

}′
, i.e., TWxy = WxyT, if and only if there exists a

function φ ∈ C∞xy such that T = Dφ, where Dφ is the Duhamel operator defined by the formula(
Dφ f

) (
xy

)
=

(
φ ⊛ f

) (
xy

)
=

∂2

∂x∂y

∫ x

0

∫ y

0
φ

(
(x − t)

(
y − τ

))
f (tτ) dτdt

= φ|xy=0 f
(
xy

)
+

∫ x

0

∫ y

0

[
φy

(
(x − t)

(
y − τ

))
+ (x − t)

(
y − τ

)
φxy

(
(x − t)

(
y − τ

))]
f (tτ) dτdt,

where φy :=
∂φ(xy)
∂y and φxy := ∂2

∂x∂yφ
(
xy

)
.

Proof. We use an idea of the paper [14]; for the sake of completeness we provide here details. Let T ∈ L
(
C∞xy

)
,

i.e., TWxy =WxyT. Then we have TWxy
(
xy

)k =WxyT
(
xy

)k for all k = 0, 1, ...,whence by computing Wxy
(
xy

)k

we get

T
(∫ x

0

∫ y

0
(tτ)k dτdt

)
= T

(∫ x

0
tk

(∫ y

0
τkdτ

)
dt

)
= T

∫ x

0
tk τ

k+1

k + 1
dt

= T
(

xk+1yk+1

(k + 1)2

)
=

1

(k + 1)2 T
(
xy

)k+1 ,
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hence

T
(
xy

)k+1 = (k + 1)2 WxyT
(
xy

)k , (3)

for all k = 0, 1, .... For (3) we get by induction that

T
(
xy

)k =Wk
xyT1

k∏
m=1

m2 (k = 1, 2, ...). (4)

In fact, for k = 1, we obtain from (3) that T
(
xy

)
=WxyT1, as desired. Assume for k = n that

T
(
xy

)n =Wn
xyT1

k∏
m=1

m2. (5)

For k = n + 1 we have from (3) that

T
(
xy

)n+1 = (n + 1)2 WxyT
(
xy

)n . (6)

By considering (5) , we have from the latter equality that

T
(
xy

)n+1 = (n + 1)2 Wxy

(
Wn

xyT1
n∏

m=1
m2

)
=Wn+1

xy T1 (n + 1)2
n∏

m=1
m2 =Wn+1

xy T1
n+1∏
m=1

m2,

which proves (4) . Now we prove that

(
Wk

xy f
) (

xy
)
=

∫ x

0

∫ y

0

[
(x − t)

(
y − τ

)]k−1

[(k − 1)!]2 f (tτ) dτdt. (7)

First we show that(
Wk

xy f
) (

xy
)
=

(
xy

)k

[k!]2 ⊛ f
(
xy

)
(8)

for all k = 0, 1, .... In fact, it follows from that (1) that the constant function 1 is the unit of the algebra
(
C∞xy,⊛

)
and Wk

xy f
(
xy

)
= xy⊛ f

(
xy

)
for every f ∈ C∞xy. So, by induction we have equality (8) (the details are omitted).

Thus,we have:(
Wk

xy f
) (

xy
)
=

(
xy

)k

[k!]2 ⊛ f
(
xy

)
=

∂2

∂x∂y

∫ x

0

∫ y

0

[
(x − t)

(
y − τ

)]k

[k!]2 f (tτ) dτdt

=
1

(k!)2

∫ x

0

∫ y

0
k2 [

(x − t)
(
y − τ

)]k−1 f (tτ) dτdt

=
k2

k2 [(k − 1)!]2

∫ x

0

∫ y

0

[
(x − t)

(
y − τ

)]k−1 f (tτ) dτdt

=

∫ x

0

∫ y

0

[
(x − t)

(
y − τ

)]k−1

[(k − 1)!]2 f (tτ) dτdt.

This proves (7).
Now, formulas (4) and (7) together yield

T
(
xy

)k =
k∏

m=1
m2

∫ x

0

∫ y

0

[
(x − t)

(
y − τ

)]k−1

[(k − 1)!]2 T1dτdt
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for all k ≥ 0, and hence

T
(
xy

)k =
(
xy

)k ⊛ T1 (k ≥ 0) ,

which shows that

Tp
(
xy

)
= T1 ⊛ p

(
xy

)
for all polynomials p. From this, by considering that every Duhamel operator D1 with 1 ∈ C∞xy is continuous
on C∞xy, we deduce by Weierstrass approximation theorem that(

T f
) (

xy
)
= DT1 f

(
xy

)
= T1 ⊛ f

(
xy

)
=

∂2

∂x∂y

∫ x

0

∫ y

0
(T1)

(
(x − t)

(
y − τ

))
f (tτ) dτdt

=

∫ x

0

∫ y

0

∂2

∂x∂y
(T1)

(
(x − t)

(
y − τ

))
f (tτ) dτdt + (T1) (0) f

(
xy

)
=

∫ x

0

∫ y

0

[
(x − t)

(
y − τ

)
(T1)xy

(
(x − t)

(
y − τ

))
+ (T1)y

(
(x − t)

(
y − τ

))]
f (tτ) dτdt + (T1) (0) f

(
xy

)
.

We set φ := T1. Clearly φ ∈ C∞xy. Thus, we have

(
T f

) (
xy

)
=

∫ x

0

∫ y

0

[
φy

(
(x − t)

(
y − τ

))
+ (x − t)

(
y − τ

)
φxy

(
(x − t)

(
y − τ

))]
f (tτ) dτdt + φ (0) f

(
xy

)
,

that is(
T f

) (
xy

)
= φ

(
xy

)
⊛ f

(
xy

)
=

(
Dφ f

) (
xy

)
for all f ∈ C∞xy and some φ ∈ C∞xy.

Conversely, if φ ∈ C∞xy, then the Duhamel operator Dφ commutes with Wxy, i.e., Dφ ∈

{
Wxy

}′
. Since(

C∞xy,⊛
)

is an algebra, we conclude that Dφ is a continuous linear operator on C∞xy. This proves the theo-
rem.

Let {A}′′ denotes the bicommutant of the operator A ∈ L
(
C∞xy

)
, i.e., {A}′′ =

{
X ∈ L

(
C∞xy

)
: XT = TX for all T ∈ {A}′

}
.

Corollary 2.2.
{
Wxy

}′′
=

{
Wxy

}′
.

Proof. In order to prove that
{
Wxy

}′′
=

{
Wxy

}′
, it is enough to show that T1T2 = T2T1 for any T1,T2 ∈

{
Wxy

}′
.

In fact, by Theorem 1, there exist φ1, φ2 ∈ C∞xy such that

(
T1 f

) (
xy

)
= φ1 (0) f

(
xy

)
+

∫ x

0

∫ y

0

[
φ1,y

(
(x − t)

(
y − τ

))
+ (x − t)

(
y − τ

)
φ1,xy

(
(x − t)

(
y − τ

))]
f (tτ) dτdt

=
(
φ1 (0) I + Kφ1

)
f
(
xy

)
and (

T2 f
) (

xy
)
= φ2 (0) f

(
xy

)
+

∫ x

0

∫ y

0

[
φ2,y

(
(x − t)

(
y − τ

))
+ (x − t)

(
y − τ

)
φ2,xy

(
(x − t)

(
y − τ

))]
f (tτ) dτdt

=
(
φ2 (0) I + Kφ2

)
f
(
xy

)
.
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for all f ∈ C∞xy, where

φi,y :=
∂φi

(
xy

)
∂y

and φi,xy :=
∂2

∂x∂y
φi

(
xy

)
(i = 1, 2)

and

Kφi f
(
xy

)
:=

(
φi ⊛ f

) (
xy

)
=

∫ x

0

∫ y

0

∂2

∂x∂y
φi

(
(x − t)

(
y − τ

))
f (tτ) dτdt

=

∫ x

0

∫ y

0

[
φi,y

(
(x − t)

(
y − τ

))
+ (x − t)

(
y − τ

)
φi,xy

(
(x − t)

(
y − τ

))]
f (tτ) dτdt,

i = 1, 2. Since Kφ1 Kφ2 = Kφ2 Kφ1 , we have that

T1T2 =
(
φ1 (0) I + Kφ1

) (
φ2 (0) I + Kφ2

)
=

(
φ2 (0) I + Kφ2

) (
φ1 (0) I + Kφ1

)
= T2T1.

This completes the proof.

The related results for the commutant of integration and generalized integration operators are given,
for instance, in [1, 3, 13, 15, 16].

3. Uniqueness of solutions of Duhamel equations

In the present section, we study uniqueness of the Duhamel equation

φ ⊛ f = 1, (9)

where φ and 1 are given functions in C∞xy. First we prove the following main lemma. It generalizes Lemma
2.2 of the paper [8].

Lemma 3.1. If f ∈
(
C∞xy,⊛

)
, then f is ⊛-invertible if and only f |xy=0 , 0.

Proof. The proof of the implication =⇒ is trivial. Indeed, if f is ⊛-invertible, there exists 1 ∈ C∞xy such that f ⊛ 1 = 1,
which implies that 1 =

(
f ⊛ 1

)
|xy=0 = f |xy=01|xy=0, which shows that f |xy=0 , 0.

Conversely, we now prove that if f |xy=0 , 0, then f is a ⊛-invertible element of the algebra
(
C∞xy,⊛

)
. We assume

without loss of generality that f |xy=0 = 1. Obviously, f
(
xy

)
= 1 − h

(
xy

)
, where h ∈ C∞xy and h|xy=0 = 0. Choose

M > 0 such that
∣∣∣∣ ∂2

∂x∂y h
(
xy

)∣∣∣∣ ≤ M for all x ∈ [0, 1] and y ∈ [0, 1] (since ∂2

∂x∂y h
(
xy

)
is continuous on [0, 1] × [0, 1]).

Then it is clear that∣∣∣h (
xy

)∣∣∣ = ∣∣∣∣∣∣
∫ x

0

∫ y

0

∂2

∂x∂y
h (tτ) dτdt

∣∣∣∣∣∣ ≤M
(
xy

)
for all x ∈ [0, 1] and y ∈ [0, 1] . By the symbol h[n] we denote the ⊛-product of h with it self n times for n ≥ 0, i.e.,

h[n] = h
(
xy

) n︷︸︸︷
⊛...⊛ h

(
xy

)
, where h[0] := 1.

It follows from the definition of the Duhamel product ⊛ (see formula(1)) that(
f ⊛ 1

) (
x, y

)
=

∫ x

0

∫ y

0

∂2

∂x∂y
f
(
x − t, y − τ

)
1 (t, τ) dτdt +

∫ x

0

∂
∂x

f (x − t, 0) 1 (t, τ) dt

+

∫ y

0

∂
∂y

f
(
0, y − τ

)
1 (t, τ) dτ + f (0, 0) 1

(
x, y

)
(10)
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for all f , 1 ∈ C∞ ([0, 1] × [0, 1]) . In particular, for functions f , 1 ∈ C∞xy we get from (10) that

(
f ⊛ 1

) (
x, y

)
=

∫ x

0

∫ y

0

∂2

∂x∂y
f
((

x − t, y − τ
))
1 (t, τ) dτdt + f |xy=01

(
xy

)
(11)

(since ∂
∂x f ((x − t) 0) = ∂

∂x f (0) = 0 and ∂
∂x f

(
0
(
y − τ

))
= ∂

∂y f (0) = 0).
Now we prove by induction that∣∣∣h[n] (xy

)∣∣∣ ≤ Mm (
xy

)m

(m!)2 (12)

and ∣∣∣∣∣∣ ∂2

∂x∂y
h[m] (xy

)∣∣∣∣∣∣ ≤ Mm (
xy

)m−1

((m − 1)!)2 (13)

for all x, y ∈ [0, 1].
In fact, assume that the inequalities (12) and (13) hold for m = n, and prove that they are true also for m = n + 1.

For this purpose, by considering (11) , we have:∣∣∣h[n+1] (xy
)∣∣∣ = ∣∣∣∣∣∣

∫ x

0

∫ y

0

∂2h
(
(x − t)

(
y − τ

))
∂x∂y

h[n] (tτ) dτdt

∣∣∣∣∣∣
≤

Mn+1

(n!)2

∫ x

0

∫ y

0
tnτndτdt =

Mn+1 (
xy

)n+1

((n + 1)!)2

and ∣∣∣∣∣∣ ∂2

∂x∂y
h[n] (xy

)∣∣∣∣∣∣ =
∣∣∣∣∣∣
∫ x

0

∫ y

0

∂4

∂x2∂y2 h
(
(x − t)

(
y − τ

))
h[n] (tτ) dτdt +

∂2h
∂x∂y

|xy=0h[n] (xy
)∣∣∣∣∣∣

=

∣∣∣∣∣∣
∫ x

0

∫ y

0

∂2

∂x∂y
h
(
(x − t)

(
y − τ

)) ∂2

∂x∂y
h[n] ((x − t)

(
y − τ

))
dτdt

∣∣∣∣∣∣
≤

Mn+1

((n − 1)!)2

∫ x

0

∫ y

0
(tτ)n−1 dτdt

=
Mn+1 (

xy
)n

((n)!)2 .

Thus, (12) implies that
∑
∞

n=0

∣∣∣h[n] (xy
)∣∣∣ ≤ ∑

∞

n=0
Mn(xy)n

((n)!)2 , that is, the series

1
(
xy

)
:=

∞∑
n=0

h[n] (xy
)
,

is majorized by the series
∑
∞

n=0
Mn

((n)!)2 =: L. This means that the function series
∑
∞

n=0 h[n] (xy
)

with h[n]
∈ C∞xy

(n = 0, 1, 2, ...) converges uniformly in [0, 1] × [0, 1] . In order to prove that 1 ∈ C∞xy,we have to prove that for any
integer k > 0 the series

∞∑
n=0

∂k

∂xα∂yβ
h[n] (xy

)
, where k = α + β,

converges uniformly in [0, 1] × [0, 1] . Indeed, choose Nn ∈N such that∣∣∣∣∣∣ ∂k

∂xα∂yβ
h[n] (xy

)∣∣∣∣∣∣ ≤ Nn
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for all x ∈ [0, 1] and y ∈ [0, 1] . Since h|xy=0 = 0, it is easy to verify that

h[k]
|xy=0 =

∂2

∂x∂y
h[n] (xy

)
|xy=0 = ... =

∂k−1

∂xk1∂yk2
h[k] (xy

)
|xy=0 = 0

for each k ≥ 2. Then we have:

∂k

∂xα∂yβ
h[n] (xy

)
=

∂k

∂xα∂yβ
[(

h[k] ⊛ h[n−k]
) (

xy
)]

=
∂k

∂xα∂yβ

[(
h[k]
∗

(
h[n−k]

)
xy

) (
xy

)]
=

(
∂k

∂xα∂yβ
h[k]
∗

(
h[n−k]

)
xy

) (
xy

)
,

hence

∂k

∂xα∂yβ
h[n] (xy

)
=

(
∂k

∂xα∂yβ
h[k]
∗

(
h[n−k]

)
xy

) (
xy

)
. (14)

Using (12) , (13) and (14) , we have:

∞∑
n=0

∣∣∣∣∣∣ ∂k

∂xα∂yβ
h[n] (xy

)∣∣∣∣∣∣ = k−1∑
n=0

∣∣∣∣∣∣ ∂k

∂xα∂yβ
h[n] (xy

)∣∣∣∣∣∣ + ∞∑
n=k

∣∣∣∣∣∣ ∂k

∂xα∂yβ
h[n] (xy

)∣∣∣∣∣∣
≤

k−1∑
n=0

Nn +

∞∑
n=k

∣∣∣∣∣∣ ∂k

∂xα∂yβ
h[n] (xy

)∣∣∣∣∣∣
=

k−1∑
n=0

Nn +

∞∑
n=k

∣∣∣∣∣∣
(

∂k

∂xα∂yβ

(
h[k]
∗

(
h[n−k]

)
xy

) (
xy

))∣∣∣∣∣∣
=

k−1∑
n=0

Nn +

∞∑
n=k

∣∣∣∣∣∣
∫ x

0

∫ y

0

∂k

∂xα∂yβ
h[k] ((x − t)

(
y − τ

)) (
h[n−k]

)
xy

(tτ) dτdt

∣∣∣∣∣∣
≤

k−1∑
n=0

Nn +Nk

∞∑
n=k

∫ x

0

∫ y

0

∣∣∣∣(h[n−k]
)

xy
(tτ) dτdt

∣∣∣∣
≤

k−1∑
n=0

Nn +Nk

∞∑
n=k

Mn−k

((n − k − 1)!)2

∫ x

0

∫ y

0
tn−k−1τn−k−1dτdt

=

k−1∑
n=0

Nn +Nk

∞∑
n=k

Mn−k

((n − k)!)2

(
xy

)n−k

≤

k−1∑
n=0

Nn +Nk

∞∑
n=k

Mn−k

((n − k)!)2

Thus, the series
∑
∞

n=0
∂k

∂xα∂yβ h[n] (xy
)

is majorized by the number series

∞∑
n=0

an =

k−1∑
n=0

Nn +NkL,

where

an :=
 Nn, if 0 ≤ n ≤ k − 1

Nk
Mn−k

((n−k)!)2 , if n ≥ k ,
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which implies that 1 ∈ C∞xy. Since

(
f ⊛ 1

) (
xy

)
=

(
(1 − h) ⊛ 1

) (
xy

)
=

(1 − h) ⊛
∞∑

n=0

h[n]

 (xy
)
= 1,

we deduce that f is ⊛-invertible. The proof of lemma is completed.

Our next result is about the uniqueness of equation (9).

Theorem 3.2. If φ ∈ C∞xy and φ|xy=0 , 0, then equation (9) has a unique solution for any right-hand side 1 ∈ C∞xy.

Proof. Indeed, since φ ∈ C∞xy and φ|xy=0 , 0, it follows from Lemma1 that φ is ⊛-invertible in C∞xy. Let
ψ := φ−1⊛, then ψ ∈ C∞xy. Therefore we have from (9) that

ψ ⊛
(
φ ⊛ f

)
= ψ ⊛ 1,

hence
(
ψ ⊛ φ

)
⊛ f = ψ ⊛ 1, or equivalently 1 ⊛ f = ψ ⊛ 1. Thus f = ψ ⊛ 1, which obviously shows that the

solution of the Duhamel equation (9) exists (since Dφ is the invertible operator on C∞xy) and it is unique. The
theorem is proven.

Other applications of Duhamel products are given in [4–6, 9, 11, 15].
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