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Abstract. In this article, we study Feng-Liu [Fixed point theorems for multi-valued contractive mappings
and multi-valued Caristi type mappings, J. Math. Anal. Appl. 317 (2006), 103–112.] type fixed point
theorems and present some new results for multi-valued mappings in metric spaces using the concept of
ω-distance. We also discuss, some non-trivial examples to illustrate facts. Finally, we present applications
of our results to integral inclusions and non-linear matrix equations. An example is given, together with
convergence and error analysis, as well as average CPU time analysis and visualization of solution in
surface plot.

1. Introduction and Preliminaries

The classical Banach contraction theorem (in short BCT) is an important and fruitful tool in nonlinear
analysis. A number of extensions an generalizations of the BCT have been obtained by many mathe-
maticians. Nadler [12] presented a multi-valued version of the BCT. His results was also extended and
generalized by many authors. Feng and Liu [7] extended Nadler’s result in the following way:

Theorem 1.1. [7]. Let (Ξ, d) be a complete metric space, ℑ : Ξ → Pcl(Ξ) a multi-valued mapping and f : Ξ → R,
f (ν) = d(ν,ℑν) a lower semi-continuous function. If there exist b, c ∈ (0, 1) with b < c such that for any ν ∈ Ξ there
is ϑ ∈ ℑν satisfying

c d(ν, ϑ) ≤ f (ν) and f (ϑ) ≤ b d(ν, ϑ),

then ℑ has a fixed point in Ξ.

A number of extensions and generalizations of the above theorem appeared in [3, 4, 6, 9, 13, 14] and
elsewhere.

On the other hand, in 1996, Kada et al. [8] introduced the concept of w-distance on a metric space and
presented a generalized version of Caristi fixed point theorem, Ekeland’s ϵ-variational principle and the
non-convex minimization theorem (cf. Mizoguchi and Takahashi [11]).
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Definition 1.2. [8]. Let (Ξ, d) be a metric space. A function ω : Ξ × Ξ → [0,∞) is called a w-distance on Ξ if it
satisfies the following properties:

(W1) ω(ϑ, µ) ≤ ω(ϑ, ν) + ω(ν, µ) for any ϑ, ν, µ ∈ Ξ;
(W2) ω is lower semi continuous in its second variable; i.e., if ϑ ∈ Ξ and νn → ν ∈ Ξ, thenω(ϑ, ν) ≤ lim inf

n→∞
ω(ϑ, νn);

(W3) for each ϵ > 0, there exists a δ > 0 such that ω(µ, ϑ) ≤ δ and ω(µ, ν) ≤ δ imply d(ϑ, ν) ≤ ϵ.

The authors in [13], studied Feng-Liu type fixed point theorems and obtained a generalization of Theorem
1.1. Their theorems contain many results as particular cases. In this article, we continue this study and
present some new Feng-Liu type fixed point results for multi-valued mappings in metric spaces using the
concept of ω-distance. Our results are motivated by Feng and Liu [7], Kada et al. [8] and others.

Now, we recall some notations, definitions and results for the sake of completeness.

Throughout this paper, (Ξ, d) denotes a metric space and Pcl(Ξ) the family of all nonempty closed subsets
of Ξ. For any subset D , ∅ of Ξ,

d(ν,D) = inf
ϑ∈D

d(ν, ϑ) and ω(ν,D) = inf
ϑ∈D

ω(ν, ϑ).

Definition 1.3. Let ℑ : Ξ → Pcl(Ξ) be a multi-valued mapping. A point ν ∈ Ξ is said to be a fixed point of ℑ if
ν ∈ ℑν.

Definition 1.4. [20] A function f : Ξ→ R is called lower semi-continuous (l.s.c., in short) if

f (ν) ≤ lim inf
n→∞

f (νn) (1)

for all sequences {νn} in Ξ with lim
n→∞

νn = ν ∈ Ξ).

Definition 1.5. Let F : (0,∞)→ R be a function such that

(F1) F is strictly increasing;

(F2) for each sequence {ςs} of positive numbers,

lim
s→∞

ςs = 0 if and only if lim
s→∞
F(ςs) = −∞;

(F3) there exists k ∈ (0, 1) such that lim
ς→0+

ςkF(ς) = 0;

(F4) F(infB) = infF(B) for all B ⊆ (0, 1) with infB > 0.

We denote the sets of all functions F satisfying (F1)–(F3), (F1)–(F4) by F, F∗, respectively. It is clear that F∗ ⊂ F
and some examples of functions belonging toF∗ areF1(ς) = ln ς,F2(ς) = ς+ ln ς,F3(ς) = −1/

√
ς,F4(ς) = ln(ς2+ς)

[20].

Note that, if F satisfies (F1), then it satisfies (F4) if and only if it is right-continuous.

Definition 1.6. [20]. A mapping ℑ : Ξ→ Ξ is said to be F-contraction if there exist F ∈ F and κ ∈ R+ such that

κ + F(d(ℑν,ℑϑ)) ≤ F(d(ν, ϑ)),

for all ν, ϑ ∈ Ξ with d(ℑν,ℑϑ) > 0.

It is evident that every contraction mapping is F-contraction (with F(ς) = ln ς and κ = − lnλ) but the
converse need not be true. Wardowski [20] showed that each F-contraction on a complete metric space
has a fixed point. Afterwards, several researchers obtained various fixed point results using the idea of
F-contractions [21].
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Definition 1.7. [18]. A mapping ℑ : Ξ→ 2Ξ (= collection of all nonempty subsets of Ξ) is said to be multi-valued
F-contraction if there exist F ∈ F and κ ∈ R+ such that for all ν, ϑ ∈ Ξ with ϑ ∈ ℑν there exists µ ∈ ℑϑ for which

κ + F(d(ℑϑ,ℑµ)) ≤ F (N(ν, ϑ)) (2)

if d(ϑ, µ) > 0, where

N(ν, ϑ) = max
{
d(ν, ϑ), d(ν,ℑν), d(ϑ,ℑϑ),

1
2

[d(ν,ℑϑ) + d(ϑ,ℑν)]
}
. (3)

In [17], Samet et al. defined the α-admissibility of mappings as follows:

Definition 1.8. [17]. Let α : Ξ × Ξ → [0,∞) be a function. A mapping ℑ : Ξ → Ξ is said to be an α-admissible
mapping if, for ν, ϑ ∈ Ξ

α(ν, ϑ) ≥ 1⇒ α(ℑ(ν),ℑ(ϑ)) ≥ 1.

Definition 1.9. [5]. Let ℑ : Ξ→ 2Ξ be a multi-valued mappings and α : Ξ × Ξ→ [0,∞) a function. The mapping
ℑ is called α∗-admissible if ν1, ν2 ∈ Ξ,

α(ν1, ν2) ≥ 1⇒ α∗(ℑ(ν1),ℑ(ν2)) ≥ 1

where α∗(Λ1,Λ2) := inf{α(ξ1, ξ2) : ξ1 ∈ Λ1 and ξ2 ∈ Λ2}.

Definition 1.10. [2]. Let α, η : Ξ × Ξ → [0,+∞) be functions. A mapping ℑ : Ξ → 2Ξ is said to be a generalized
α∗-admissible mapping with respect to an η if for ν1, ν2 ∈ Ξ,

α(ν1, ν2) ≥ η(ν1, ν2)⇒ α(µ1, µ2) ≥ η(µ1, µ2) ∀ µ1 ∈ ℑν1, ∀ µ2 ∈ ℑν2.

If η(ν1, ν2) = 1 for all ν1, ν2 ∈ Ξ, then Definition 1.10 implies Definition 1.9, while if α(ν1, ν2) = 1, ℑ is an
η∗-subadmissible mapping.

We shall use the following lemmas for proving our main results.

Lemma 1.11. [8]. Let (Ξ, d) be a metric space and let ω be a w-distance on Ξ. Suppose that {ϑn}, {νn} are sequences
in Ξ and {αn}, {βn} are sequences in [0,∞) converging to 0, and let ϑ, ν, µ ∈ Ξ. Then the following assertions hold.

(i) If ω(ϑn, ν) ≤ αn and ω(ϑn, µ) ≤ βn for all n ∈ N, then ν = µ. In particular, if ω(ϑ, ν) = ω(ϑ, µ) = 0, then
ν = µ,

(ii) if ω(ϑn, νn) ≤ αn and ω(ϑn, ν) ≤ βn for all n ∈N, then {νn} converges to ν,
(iii) if ω(ϑn, ϑm) ≤ αn for all n,m ∈N with m > n, then {ϑn} is a Cauchy sequence,
(iv) if ω(ν, ϑn) ≤ αn for all n ∈N, then {ϑn} is a Cauchy sequence.

Lemma 1.12. [8, 19]. Let ω be a w-distance on a metric space (Ξ, d) and {ϑn} be a sequence in Ξ such that for each
ϵ > 0 there exists Nϵ ∈ N such that m > n > Nϵ implies ω(ϑn, ϑm) < ϵ, i.e., lim

m,n→∞
ω(ϑn, ϑm) = 0. Then {ϑn} is a

Cauchy sequence.

Lemma 1.13. [10]. Let K be a closed subset of Ξ and ω be a w-distance on Ξ. Assume that there exists ν ∈ Ξ such
that ω(ν, ν) = 0. Then ω(ν,K ) = 0 if and only if ν ∈ K , where ω(ν,K ) = inf

ϑ∈K
ω(ν, ϑ).
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2. F-contraction type Feng-Liu results

Recall that the set O(ν0;ℑ) = {ℑnν0 : n = 0, 1, 2, . . . } is called the orbit of the self-mapping ℑ at the point
ν0 ∈ Ξ. If (1) is satisfied for all sequences {νn} ⊂ O(ν0), then f is an orbitally l.s.c..

Letℑ : Ξ→ Pcl(Ξ) be a multi-valued mapping,F ∈ F and τ : (0,∞)→ (0,∞). For ν ∈ Ξwithω(ν,ℑν) > 0,
define a set Fντ ⊆ Ξ as

Fντ =

{
ϑ ∈ ℑν : F(ω(ν, ϑ)) ≤ F(max{ω(ν,ℑν), ω(ϑ,ℑϑ)})

+τ(max{ω(ν,ℑν), ω(ϑ,ℑϑ)})

}
.

Theorem 2.1. Let (Ξ, d) be a orbitally complete metric space with w-distance ω and ℑ : Ξ→ Pcl(Ξ). Assume that

(a) the mapping ν 7→ ω(ν,ℑν) is orbitally l.s.c.;
(b) ℑ is a muti-valued generalized α∗-admissible with respect to an η mapping;
(c) there exist functions θ, τ : (0,∞)→ (0,∞) such that

θ(ς) > τ(ς), lim inf
t→ς+

θ(t) > lim inf
t→ς+

τ(t) for all ς ≥ 0;

(d) for any ν ∈ Ξ with ω(ν,ℑν) > 0, there exists ϑ ∈ Fντ with α(ν, ϑ) ≥ η(ν, ϑ) satisfying

θ(max{ω(ν,ℑν), ω(ϑ,ℑϑ)}) + F(ω(ϑ,ℑϑ)) ≤ F(ω(ν, ϑ));

(e) if {νn} ⊂ Ξ with νn+1 ∈ ℑνn, νn → ν ∈ Ξ as n → ∞ and α(νn, νn+1) ≥ η(νn, νn+1) for all n ∈ N then
α(νn, ν) ≥ η(νn, ν) for all n ∈N.

Then there exists ϱ ∈ Ξ such that ω(ϱ,ℑϱ) = 0. Further, if ω(ϱ, ϱ) = 0 then ϱ ∈ ℑϱ.

Proof. Suppose that for all ν ∈ Ξ, ω(ν,ℑν) > 0 and take an arbitrary point ν0 ∈ Ξ. From (d), there exists
ν1 ∈ Fντ , ∅. If ν0 ∈ Ξ is any initial point, then there exists ν1 ∈ F

ν0
τ with α(ν0, ν1) ≥ η(ν0, ν1) such that

θ(max{ω(ν0,ℑν0), ω(ν1,ℑν1)}) + F(ω(ν1,ℑν1)) ≤ F(ω(ν0, ν1)).

For ν1 ∈ Ξ with ν1 ∈ ℑ(ν0), α(ν0, ν1) ≥ η(ν0, ν1), and there exists ν2 ∈ F
ν1
τ with ν2 ∈ ℑ(ν1). From (b), we have

α(ν1, ν2) ≥ η(ν1, ν2) and hence from (d)

θ(max{ω(ν1,ℑν1), ω(ν2,ℑν2)}) + F(ω(ν2,ℑν2)) ≤ F(ω(ν1, ν2)).

Continuing this process, we get an iterative sequence {νr}, where νr+1 ∈ F
νr
τ , νr+1 ∈ ℑνr with α(νr, νr+1) ≥

η(νr, νr+1) and

θ(max{ω(νr,ℑνr), ω(νr+1,ℑνr+1)}) + F(ω(νr+1,ℑνr+1)) ≤ F(ω(νr, νr+1)).

Therefore for νr+2 ∈ ℑνr+1, we have

θ(max {ω(νr, νr+1), ω(νr+1, νr+2)}) + F(ω(νr+1,ℑνr+1)) ≤ F(ω(νr, νr+1)). (4)

We will verify that {νr} is a Cauchy sequence. Since νr+1 ∈ F
νr
τ , then by the definition of Fνr

τ , we have

F(ω(νr, νr+1)) ≤ F(max{ω(νr,ℑνr), ω(νr+1,ℑνr+1)})
+ τ(max {ω(νr, νr+1), ω(νr+1, νr+2)}). (5)

Put ϱr = ω(νr, νr+1) for r ∈N, then ϱr > 0. From (4) and (5) we have

F(ϱr+1) ≤ F(max{ϱr, ϱr+1}) + τ(max{ϱr, ϱr+1}) − θ(max{ϱr, ϱr+1}). (6)

If ϱr ≤ ϱr+1, then we have

F(ϱr+1) ≤ F(ϱr+1) + τ(ϱr+1) − θ(ϱr+1),
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a contradiction since from (c), θ(ς) > τ(ς). Therefore,

F(ϱr+1) ≤ F(ϱr) + τ(ϱr) − θ(ϱr)
= F(ϱr) − (θ(ϱr) − τ(ϱr)). (7)

From (7), {ϱr} is decreasing. Therefore, there exists δ > 0 such that
lim
r→∞

ϱr = δ. Let β(t) = θ(t) − τ(t), for all t > 0. Then using (7), the following holds:

F(ϱr+1) ≤ F(ϱr) − β(ϱr)
≤ F(ϱr−1) − β(ϱr) − β(ϱr−1)
...

≤ F(ϱ0) − β(ϱr) − β(ϱr−1) − . . . − β(ϱ0). (8)

Let qr be the greatest number in {0, 1, . . . , r − 1} such that

β(ϱqr ) = min{β(ϱ0), β(ϱ1), . . . , β(ϱr)}

for all r ∈N. In this case, {qr} is a nondecreasing sequence. From (8) we get

F(ϱr) ≤ F(ϱ0) − rβ(ϱqr ). (9)

Now consider the sequence {β(ϱqr )}. We distinguish two cases.

Case 1: For each r ∈N there is s > r such that β(ϱqr ) > β(ϱqs ). Then we obtain a subsequence {ϱqrk
} of {ϱqr } with

β(ϱqrk
) > β(ϱqrk+1

) for all k. Since ϱqrk
→ δ we deduce that

lim inf
k→∞

β(ϱqrk
) > 0.

Hence

F(ϱrk ) ≤ F(ϱ0) − rkβ(ϱqrk
) for all k.

Consequently, lim
k→∞
F(ϱrk ) = −∞ and by (F2), lim

k→∞
ϱrk = 0 which contradicts the fact that lim

k→∞
ϱrk > 0.

Case 2: There is r0 ∈N such that β(ϱq0 ) > β(ϱqs ) for all s > r0. Then F(ϱs) ≤ F(ϱ0) − sβ(ϱqr0
) for all s > r0. Hence,

lim
s→∞
F(ϱs) = −∞ and by (F2), lim

s→∞
ϱs = 0, which contradicts the fact that lim

s→∞
ϱs > 0.

Therefore in both the cases

lim
r→∞

ϱr = 0.

Now, from (F3), there exists k ∈ (0, 1) such that

lim
r→∞

(ϱr)kF(ϱr) = 0.

By (9), the following holds for all r ∈N:

(ϱr)kF(ϱr) − (ϱr)kF(ϱ0) ≤ (ϱr)k(F(ϱ0) − rβ(ϱqr )) − (ϱr)k(F(ϱ0)

= −r(ϱr)kβ(ϱqr ) ≤ 0. (10)

Passing to the limit as r→∞ in (10), we obtain

lim
r→∞

r(ϱr)kβ(ϱqr ) = 0.
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Since ζ := lim inf
r→∞

β(ϱqr ) > 0, there exists r0 ∈N such that β(ϱqr ) >
ζ
2 for all r , r0. Thus,

r(ϱr)k ζ
2
< r(ϱr)kβ(ϱqr ) (11)

for all r ≥ r0. Letting r→∞ in (11), we have 0 ≤ lim
r→∞

r(ϱr)k ζ
2 < lim

r→∞
r(ϱr)kβ(ϱqr ) = 0, that is,

lim
r→∞

r(ϱr)k = 0 (12)

From (12), there exits r1 ∈N such that r(ϱr)k
≤ 1 for all r ≥ r1. So, we have, for all r ≥ r1,

ϱr ≤
1

r1/k
. (13)

In order to show that {νr} is a Cauchy sequence consider s, r ∈ N such that s > r ≥ r1. Using the triangular
inequality for ω and from (13), we have

ω(νr, νs) ≤ ω(νr, νr+1) + ω(νr+1, νr+2) + · · · + ω(νs−1, νs)
≤ ϱr + ϱr+1 + · · · + ϱs−1

=

s−1∑
i=r

ϱi ≤

∞∑
i=r

ϱi ≤

∞∑
r=1

1
r1/k

.

By the convergence of the series
∞∑

r=1

1
r1/k , passing to the limit as r → ∞, we get ω(νr, νs) → 0 and by Lemma

1.12, {νr} is a Cauchy sequence in Ξ.

Since Ξ is a orbitally complete metric space, there exists ϱ ∈ Ξ such that νr → ϱ as n → ∞. Also,
α(νr, νr+1) ≥ η(νr, νr+1). So, using condition (e), we get α(νr, ϱ) ≥ η(νr, ϱ). Consequentially, from (9) and (F2)
we have

lim
r→∞

ω(νr,ℑνr) = 0.

Since ν 7→ ω(ν,ℑν) is orbitally l.s.c.,

0 ≤ ω(ϱ,ℑϱ) ≤ ω(νr,ℑνr)→ 0.

This proves ω(ϱ,ℑϱ) = 0. Since ω(ϱ, ϱ) = 0 and ℑϱ is closed, by Lemma 1.13, ϱ ∈ ℑϱ.

Theorem 2.2. The conclusion of Theorem 2.1 remains true if the condition (e) is replaced by the following one:
(e′) for every ϑ ∈ Ξ with ϑ < ℑϑ, inf{ω(ν, ϑ) + ω(ν,ℑν) | ν ∈ Ξ} > 0.

Proof. By Theorem 2.1, we get a sequence {νn} converging to ϱ ∈ Ξ.Assume that ϱ < ℑϱ. Since for each ν ∈ Ξ,
the mapping ω(ν,ℑν) : Ξ→ [0,+∞) is l.s.c, for every n > n0, we get

ω(νn, ϱ) ≤ lim inf
m→∞

ω(νn, νm) ≤
∞∑

r=1

1
r1/k

.

Now, by (e′) and the above inequality, we get

0 < inf{ω(ν, ϱ) + ω(ν,ℑ(ν)) : ν ∈ Ξ}
≤ inf{ω(νn, ϱ) + ω(νn,ℑ(νn)) : n > n0}

≤ inf{2
∞∑

r=1

1
r1/k

: n > n0}

= lim
r→∞

2
∞∑

r=1

1
r1/k
= 0.

which contradicts our assumption. Therefore, ϱ ∈ ℑϱ.
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If we take ω = d in Theorem 2.1, we get the following result.

Theorem 2.3. Let (Ξ, d) be a orbitally complete metric space and ℑ : Ξ→ Pcl(Ξ). Assume that

(a) the mapping ν 7→ d(ν,ℑν) is orbitally l.s.c.;
(b) ℑ is a muti-valued generalized α∗-admissible with respect to an η mapping;
(c) there exist functions θ, τ : (0,∞)→ (0,∞) such that

θ(ς) > τ(ς), lim inf
t→ς+

θ(t) > lim inf
t→ς+

τ(t) for all ς ≥ 0;

(d) for any ν ∈ Ξ with d(ν,ℑν) > 0, there exists ϑ ∈ Gντ with α(ν, ϑ) ≥ η(ν, ϑ) satisfying

θ(max{d(ν,ℑν), d(ϑ,ℑϑ)}) + F(d(ϑ,ℑϑ)) ≤ F(d(ν, ϑ));

where Gντ =
{
ϑ ∈ ℑν : F(d(ν, ϑ)) ≤ F(max{d(ν,ℑν), d(ϑ,ℑϑ)})

+τ(max{d(ν,ℑν), d(ϑ,ℑϑ)})

}
.

(e) if {νn} ⊂ Ξ with νn+1 ∈ ℑνn, νn → ν ∈ Ξ as n → ∞ and α(νn, νn+1) ≥ η(νn, νn+1) for all n ∈ N then
α(νn, ν) ≥ η(νn, ν) for all n ∈N.

Then ℑ has a fixed point in Ξ.

The following result is an application of the above theorem.

Theorem 2.4. Let (Ξ, d) be a orbitally complete metric space andℑ : Ξ→ C(Ξ) a continuous mapping. Assume that

(a) ℑ is a muti-valued generalized α∗-admissible with respect to an η mapping;
(b) there exist functions θ, τ : (0,∞)→ (0,∞) such that

θ(ς) > τ(ς), lim inf
t→ς+

θ(t) > lim inf
t→ς+

τ(t) for all ς ≥ 0;

(c) for any ν ∈ Ξ there exists ϑ ∈ Ξ withH(ℑν,ℑϑ) > 0 and α(ν, ϑ) ≥ η(ν, ϑ) satisfying

θ(max{d(ν,ℑν), d(ϑ,ℑϑ)}) + F(H(ℑν,ℑϑ)) ≤ F(d(ν, ϑ)),

whereH is generalized Pompeiu Hausdorff metric, i.e.,

H(A,B) = max
{

sup
ν∈A

d(ν,B), sup
ϑ∈B

d(ϑ,A)
}

;

(d) if {νn} ⊂ Ξ with νn+1 ∈ ℑνn, νn → ν ∈ Ξ as n → ∞ and α(νn, νn+1) ≥ η(νn, νn+1) for all n ∈ N then
α(νn, ν) ≥ η(νn, ν) for all n ∈N.

Then ℑ has a fixed point in Ξ.

Proof. Since ℑ is continuous it is l.s.c. Therefore d(ν,ℑν) is l.s.c. Also,

θ(m(x, y)) + d(ϑ,ℑϑ) ≤ θ(m(x, y)) + F(H(ℑν,ℑϑ))
≤ F(d(ν, ϑ)),

where m(x, y) = max{d(ν,ℑν), d(ϑ,ℑϑ)}. Thus all the conditions of Theorem 2.1 are satisfied. Therefore ℑ
has a fixed point in Ξ.

If Ξ is complete, θ(s) = k > 0 (a constant) and α(ν, ϑ) = η(ν, ϑ) = 1 in the above theorem then we get the
following result.

Theorem 2.5. Let (Ξ, d) be a complete metric space and ℑ : Ξ→ C(Ξ) a continuous mapping. Assume that for any
ν ∈ Ξ there exists ϑ ∈ Ξ withH(ℑν,ℑϑ) > 0

k + F(H(ℑν,ℑϑ)) ≤ F(d(ν, ϑ)).

Then ℑ has a fixed point in Ξ.
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3. Implicit type Feng-Liu results

Denote Φ := {φ : R+ → R+ } satisfying the following conditions:

(a) φ is increasing and φ(0) = 0;
(b)

∑
∞

n=1 φ
n(ζ) < ∞, for ζ > 0; where φn is the n-th iterate.

It should be noted that φ(ζ) < ζ and the family Φ , ∅.

Example 3.1. Consider Ξ = [0, 1] with usual distance. Define the mapping φ(ζ) = 3λζ
7 , where 0 < λ < 1. Then we

have φn(ζ) = 3nλnζ
7n . Therefore,

∑
∞

n=1 φ
n(ζ) =

∑
∞

n=1
3nλnζ

7n < ∞ and hence Φ , ∅.

We consider a family of functions Λ := {ψ : R5
→ R} satisfying the properties:

(ψ1) ψ is non-decreasing in the fourth variable;
(ψ2) if ϑ, ν, µ ∈ R+ satisfy ϑ ≤ ψ(ν, ν, ϑ, ν + ϑ, µ), then there exists φ ∈ Φ such that ϑ ≤ φ(ν).

Example 3.2. Let ψ(q1, q2, q3, q4, q5) = (aq2
1 − b

q2
2+q2

3
q4+q5+1 )1/2, 1/2 < a < 1 and 0 < b < 1/2.

(ψ1) ψ is non-decreasing in the fourth variable.
(ψ2) For ϑ, ν, µ ∈ R+, we have

ϑ ≤ ψ(ν, ν, ϑ, ϑ + ν, µ) =
(
aν2
− b

ϑ2 + ν2

1 + ϑ + ν + µ

)1/2

.

It is clear that ϑ ≤ φ(ν), where φ(ν) = hν and h =
√

a < 1.

Example 3.3. Let ψ(q1, q2, q3, q4, q5) = (aq2
1 − b

q2
2+q2

3

q2
4+q2

5+1 )1/2, 1/2 < a < 1 and 0 < b < 1/2.

(ψ1) ψ is non-decreasing in the fourth variable.
(ψ2) For ϑ, ν, µ ∈ R+, we have

ϑ ≤ ψ(ν, ν, ϑ, ϑ + ν, µ) =
(
aν2
− b

ϑ2 + ν2

1 + (ϑ + ν)2 + µ2

)1/2

.

It is clear that ϑ ≤ φ(ν), where φ(ν) = hν and h =
√

a < 1.

Example 3.4. Let ψ(q1, q2, q3, q4, q5) = hq2 where h ∈ [0, 1). Then

(ψ1) ψ is non-decreasing in the fourth variable.
(ψ2) If ϑ ≤ ψ(ν, ν, ϑ, ν + ϑ, µ) for some ϑ, ν, µ ∈ R+ then ϑ ≤ φ(ν) where φ(ν) = hν.

Example 3.5. Let ψ(q1, q2, q3, q4, q5) = a max{q1, q2, q3} + bq4 with a, b ≥ 0 and a + 2b < 1.

(ψ1) ψ is non-decreasing in the fourth variable.
(ψ2) Let ϑ ≤ ψ(ν, ν, ϑ, ζ + ν, µ) for some ϑ, ν, µ ∈ R+.

If ϑ > ν, we get

ϑ ≤

(
b

1 − a − b

)
ν

a contradiction. If ϑ ≤ ν, we get

ϑ ≤

(
a + b
1 − b

)
ν.

Now, there exists a φ ∈ Φ defined by φ(ν) =
(

a+b
1−b

)
ν such that ϑ ≤ φ(ν).
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Let ℑ : Ξ → Pcl(Ξ) be a multi-valued mapping, ψ ∈ Λ. We define the set Υ(ϱ) ⊆ Ξ for ϱ ∈ Ξ with
f (ϱ) = ω(ϱ,ℑϱ) > 0 as

Υ(ϱ) = {ϑ ∈ ℑϱ : ω(ϱ, ϑ) ≤ max{ω(ϱ,ℑϱ), ω(ϑ,ℑϑ)} }.

Theorem 3.6. Let (Ξ, d) be a metric space with w-distance ω and ℑ : Ξ→ Pcl(Ξ). Assume that

(I1) the mapping ϱ 7→ f (ϱ) is orbitally l.s.c.;
(I2) there exists ν0 ∈ Ξ and ν1 ∈ ℑν0 such that α(ν0, ν1) ≥ η(ν0, ν1);
(I3) ℑ is a muti-valued generalized α∗-admissible with respect to an η mapping;
(I4) (Ξ, d) is ℑ-orbitally complete at ν0;
(I5) for any ϱ ∈ Ξ with f (ϱ) > 0, there exist ϑ ∈ Υ(ϱ) and ψ ∈ Λ satisfying

ω(ϑ,ℑϑ) ≤ ψ
(
ω(ϱ, ϑ), ω(ϱ,ℑϱ), ω(ϑ,ℑϑ),

ω(ϱ,ℑϑ), ω(ϑ,ℑϱ)

)
;

(I6) if {νn} ⊂ Ξ with νn+1 ∈ ℑνn, νn → ν ∈ Ξ as n → ∞ and α(νn, νn+1) ≥ η(νn, νn+1) for all n ∈ N, then
α(νn, ν) ≥ η(νn, ν) for all n ∈N.

Then there exists ϱ ∈ Ξ such that ω(ϱ,ℑϱ) = 0. Further, if ω(ϱ, ϱ) = 0 then ϱ ∈ ℑϱ.

Proof. Suppose that for all ν ∈ Ξ, we have ω(ν,ℑν) > 0. By (I2) there exist ν0 ∈ Ξ and ν1 ∈ Υ(ν0) with
α(ν0, ν1) ≥ η(ν0, ν1) such that

ω(ν1,ℑν1) ≤ ψ

(
ω(ν0, ν1), ω(ν0,ℑν0), ω(ν1,ℑν1),

ω(ν0,ℑν1), ω(ν1,ℑν0)

)
.

For ν1 ∈ Ξ with ν1 ∈ ℑ(ν0), α(ν0, ν1) ≥ η(ν0, ν1), and there exists ν2 ∈ Υ(ν1) with ν2 ∈ ℑ(ν1). From (I3), we
have α(ν1, ν2) ≥ η(ν1, ν2) and hence from (I5)

ω(ν2,ℑν2) ≤ ψ
(
ω(ν1, ν2), ω(ν1,ℑν1), ω(ν2,ℑν2),

ω(ν1,ℑν2), ω(ν2,ℑν1)

)
.

Continuing this process, we get an iterative sequence {νr}, where νr+1 ∈ Υ(νr), νr+1 < ℑνr+1 with α(νr, νr+1) ≥
η(νr, νr+1) and

ω(νr+1,ℑνr+1) ≤ ψ
(
ω(νr, νr+1), ω(νr,ℑνr), ω(νr+1,ℑνr+1),

ω(νr,ℑνr+1), ω(νr+1,ℑνr)

)
.

Using (ψ1) we obtain

ω(νr+1,ℑνr+1) ≤ ψ
(
ω(νr, νr+1), ω(νr,ℑνr), ω(νr+1,ℑνr+1),
ω(νr, νr+1) + (νr+1,ℑνr+1), ω(νr+1,ℑνr)

)
.

It follows from (ψ2) that there is φ ∈ Φ such that

ω(νr+1,ℑνr+1) ≤ φ(ω(νr, νr+1)). (14)

We now show that the sequence {νr} is a Cauchy. Since νr+1 ∈ Υ(νr), by the definition of Υ(νr),

ω(νr, νr+1) ≤ max{ω(νr,ℑνr), ω(νr+1,ℑνr+1)} (15)

Put σr = ω(νr, νr+1) for r ∈N. Then σr > 0. From (14) and (15) we have

ω(νr+1,ℑνr+1) ≤ φ(max{ω(νr,ℑνr), ω(νr+1,ℑνr+1)})
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i.e.,

σr+1 ≤ φ(max{σr, σr+1}).

If σr ≤ σr+1, then we have

σr+1 ≤ φ(σr+1) < σr+1,

a contradiction. Thus σr > σr+1 for all r ∈N and

σr+1 ≤ φ(σr). (16)

From (16) and using the triangular inequality, for all r, s ∈Nwith s > r,

ω(νr, νr+s) ≤ ω(νr, νr+1) + ω(νr+1, νn+2) + . . . + ω(νs−1, νs)

≤

s∑
k=r

φk(ω(ν0, ν1)

≤

∑
k≥r

φk(ω(ν0, ν1)

→ 0 as r→∞.

Therefore, {νr} is a Cauchy sequence in O(ν0,ℑ).
Since Ξ is a ℑ-orbitally complete, there exists an ϱ ∈ Ξ such that νr → ϱ as r→∞. Consequentially, from

(16), lim
r→∞

ω(νr,ℑνr) = 0. Since ν 7→ f (ν) is orbitally l.s.c.,

0 ≤ ω(ϱ,ℑϱ) ≤ lim inf
r→∞

ω(νr,ℑνr) = 0.

This proves ω(ϱ,ℑϱ) = 0. Since ω(ϱ, ϱ) = 0 and ℑϱ is closed, by Lemma 1.13, ϱ ∈ ℑϱ.

Our second result is related to multi-valued mappings ℑ on the metric space Ξ,where ℑν is compact for all
ν ∈ Ξ.

Theorem 3.7. The conclusion of Theorem 3.6 remains true if ℑ : Ξ→ C(Ξ).

Another result is as follows.

Theorem 3.8. The conclusion of Theorem 3.6 (or Theorem 3.7 ) remains true if the condition (I6) is replaced by the
(e′).

Proof. We refer the proof of Theorem 3.6.

4. Ordered version of Feng-Liu results

We shall now consider spaces equipped with a partial order. We say (Ξ, d,⊑) an ordered metric space if:

(i) (Ξ, d) is a metric space,

(ii) (Ξ,⊑) is a partially ordered set.

Elements ν, ϑ ∈ Ξ are called comparable if ν ⊑ ϑ or ϑ ⊑ ν holds.

A multi-valued mapping ℑ : (Ξ, d,⊑)→ 2Ξ is said to be ⊑-weakly comparative if, for each ν ∈ Ξ and ϑ ∈ ℑν
with ν ⊑ ϑ, we have ϑ ⊑ ζ for all ζ ∈ ℑϑ.

We define the set Υ(ϱ,⊑) ⊆ Ξ for ϱ ∈ Ξwith f (ϱ) > 0 as

Υ(ϱ,⊑) = {ϑ ∈ ℑϱ : ω(ϱ, ϑ) ≤ max{ω(ϱ,ℑϱ), ω(ϑ,ℑϑ)}, ϱ ⊑ ϑ}.
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Theorem 4.1. Let (Ξ, d,⊑) be a ordered metric space with w-distance ω and ℑ : Ξ→ Pcl(Ξ). Assume that

(i) the mapping ϱ 7→ f (ϱ) is ordered orbitally l.s.c.;
(ii) there exist ν0 ∈ Ξ and ν1 ∈ ℑν0 such that ν0 ⊑ ν1;

(iii) ℑ is ⊑-weakly comparative;
(iv) (Ξ, d) is ℑ-orbitally complete at ν0;
(v) for any ϱ ∈ Ξ with f (ϱ) > 0, there exist ϑ ∈ Υ(ϱ) and ψ ∈ Λ satisfying

ω(ϑ,ℑϑ) ≤ ψ
(
ω(ϱ, ϑ), ω(ϱ,ℑϱ), ω(ϑ,ℑϑ),

ω(ϱ,ℑϑ), ω(ϑ,ℑϱ)

)
.

If the condition{
if {νn} ⊂ Ξ with νn+1 ∈ ℑνn, νn → ζ in Ξ
as n→∞, then νn ⊑ ζ for all n (17)

holds. Then there exists ϱ ∈ Ξ such that ω(ϱ,ℑϱ) = 0. Further, if ω(ϱ, ϱ) = 0 then ϱ ∈ ℑϱ.

Proof. Following proof of Theorem 3.6 and the fact that Υ(ν,⊑) ⊆ Ξ, we can show that {νn} is a Cauchy
sequence in (Ξ, d,⊑) with νn−1 ⊑ νn for n ∈ N. From the completeness of Ξ, there exist a ζ ∈ Ξ such that
νn → ζ as n → +∞. By assumption (17), νn ⊑ ζ, for all n. The rest of the proof follows in the same way as
the proof of Theorem 3.6.

5. Binary relation version of Feng-Liu results

Let (Ξ, d,R) be a binary metric space, where R is a binary relation over Ξ. Define S := R ∪ R−1. It is easy to
see that, for all ν, ϑ ∈ Ξ, (ν, ϑ) ∈ S⇔ (ν, ϑ) ∈ R or (ϑ, ν) ∈ R.
Let Ξ be a nonempty set and R be a binary relation over Ξ. A multi-valued mapping ℑ : Ξ→ 2Ξ is said to
be R-weakly comparative if, for each ν ∈ Ξ and ϑ ∈ ℑν with (ν, ϑ) ∈ S, we have (ϑ, ζ) ∈ S for all ζ ∈ ℑϑ.
A function f : (Ξ, d,R) → R is called binary orbitally l.s.c. if f (ν) ≤ lim inf

n→∞
f (νn) for all sequences {νn} in Ξ

with (ℑνn,ℑνn+1) ∈ S for all n ≥ 1 and lim
n→∞

νn = ν ∈ Ξ.

We define the set Υ(ϱ,⊑) ⊆ Ξ for ϱ ∈ Ξwith f (ϱ) > 0 and a binary relation R, as

Υ(ϑ,R) = {ϑ ∈ ℑϱ : ω(ϱ, ϑ) ≤ max{ω(ϱ,ℑϱ), ω(ϑ,ℑϑ)}, (ϱ, ϑ) ∈ S}.

Theorem 5.1. Let (Ξ, d,R) be a binary metric space with w-distance ω and ℑ : Ξ→ Pcl(Ξ). Assume that

(i) the mapping ϱ 7→ f (ϱ) is binary orbitally l.s.c.;
(ii) there exist ν0 ∈ Ξ and ν1 ∈ ℑν0 such that (ν0, ν1) ∈ S;

(iii) ℑ is an R-weakly comparative mapping;
(iv) (Ξ, d) is ℑ-orbitally complete at ν0;
(v) for any ϱ ∈ Ξ with f (ϱ) > 0, there exist ϑ ∈ Υ(ϱ) and ψ ∈ Λ satisfying

ω(ϑ,ℑϑ) ≤ ψ
(
ω(ϱ, ϑ), ω(ϱ,ℑϱ), ω(ϑ,ℑϑ),

ω(ϱ,ℑϑ), ω(ϑ,ℑϱ)

)
.

If the condition{
if {νn} ⊂ Ξ with νn+1 ∈ ℑνn, νn → ζ in Ξ
as n→ +∞, then (νn, ζ) ∈ S for all n (18)

holds. Then there exists ϱ ∈ Ξ such that ω(ϱ,ℑϱ) = 0. Further, if ω(ϱ, ϱ) = 0 then ϱ ∈ ℑϱ.
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If ℑ is single valued, Ξ is complete in the above theorem then we get the following result.

Theorem 5.2. Let (Ξ, d,R) be a binary complete metric space and ℑ : Ξ→ Ξ a continuous mapping such that

(a) there exist ν0 ∈ Ξ such that (ν0,ℑν0) ∈ S;
(b) ℑ is an R-weakly comparative mapping, that is, for ν, ϑ ∈ Ξ with (ν, ϑ) ∈ S, we have (ℑν,ℑϑ) ∈ S;
(c) for any ν ∈ Ξ there exists ϑ ∈ Ξ with (ν, ϑ) ∈ S and d(ℑν,ℑϑ) > 0 satisfying

d(ℑν,ℑϑ) ≤ ψ
(

d(ν, ϑ), d(ν,ℑν), d(ϑ,ℑϑ),
d(ν,ℑϑ), d(ϑ,ℑν)

)
.

Then ℑ has a fixed point in Ξ.

6. Examples

In this section, we present some illustrative examples.

Example 6.1. Let Ξ = [0,∞) be equipped with the usual metric d and ω a w-distance on Ξ defined by ω(ν, ϑ) =
max{ν, ϑ}. Define F(t) = ln t, θ(t) = k, τ(t) = 9k

10 with k ∈ (0, ln 2] and

ℑν =

[ ν
2

2 ,
ν
2 ], if ν ∈ [0, 1)

[ 1
9 ,

1
4 ], otherwise,

and

α(ν, ϑ) = 3 and η(ν, ϑ) = 2 for all ν, ϑ ∈ Ξ.

Then ω(ν,ℑν) = ν is continuous on Ξ and hence orbitally l.s.c. on Ξ. So, condition (a) of Theorem 2.1 is satisfied. It
is trivial to verify that conditions (b), (c) and (e) also hold.

To verify condition (d), we consider following two cases:

Case 1 ν ∈ [0, 1). Take ϑ = ν
2 ∈ ℑν. Then ϑ ∈ Fντ, since

F(ω(ν, ϑ)) = F(ν) ≤ F(ν) +
9k
10

= F(max{ω(ν,ℑν), ω(ϑ,ℑϑ)}) + τ(max{ω(ν,ℑν), ω(ϑ,ℑϑ)}).

Also

θ(max{ω(ν,ℑν), ω(ϑ,ℑϑ)}) + F(ω(ϑ,ℑϑ)) = k + F
(
ν
2

)
≤ F(ν) = F(ω(ν, ϑ)).

Case 2 ν ∈ [1,∞). Take ϑ = 1
4 ∈ ℑν. Then ϑ ∈ Fντ, since

F(ω(ν, ϑ)) = F(ν) ≤ F(ν) +
9k
10

= F(max{ω(ν,ℑν), ω(ϑ,ℑϑ)}) + τ(max{ω(ν,ℑν), ω(ϑ,ℑϑ)}).

Also

θ(max{ω(ν,ℑν), ω(ϑ,ℑϑ)}) + F(ω(ϑ,ℑϑ)) = k + F
(1

4

)
≤ F(ν) = F(ω(ν, ϑ)).
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Finally, there exists 0 ∈ Ξ such that ω(0, 0) = 0. Therefore all the conditions of Theorem 2.1 are satisfied and 0 ∈ ℑ0.

Example 6.2. Let Ξ, d,F, θ, τ, α, η and ℑ be as in Example 6.1. Let ω be a w-distance on Ξ defined by ω(ν, ϑ) = ϑ.

Then ω(ν,ℑν) =

 ν
2

2 , if ν ∈ [0, 1)
1
9 , otherwise.

is orbitally l.s.c. on Ξ. So, condition (a) of Theorem 2.1 is satisfied. It is trivial to

verify that conditions (b), (c) and (e) also hold.

To verify condition (d), we consider following two cases:

Case 1 ν ∈ [0, 1). Take ϑ = ν2

2 ∈ ℑν. Then ϑ ∈ Fντ, since

F(ω(ν, ϑ)) = F

(
ν2

2

)
≤ F

(
ν2

2

)
+

9k
10

= F(max{ω(ν,ℑν), ω(ϑ,ℑϑ)}) + τ(max{ω(ν,ℑν), ω(ϑ,ℑϑ)}).

Also,

θ(max{ω(ν,ℑν), ω(ϑ,ℑϑ)}) + F(ω(ϑ,ℑϑ)) = k + F
(
ν2

8

)
≤ F

(
ν4

2

)
= F(ω(ν, ϑ))

Case 2 ν ∈ [1,∞). Take ϑ = 1
4 ∈ ℑν. Then ϑ ∈ Fντ, since

F(ω(ν, ϑ)) = F
(1

4

)
≤ F

(1
4

)
+

9k
10

= F(max{ω(ν,ℑν), ω(ϑ,ℑϑ)}) + τ(max{ω(ν,ℑν), ω(ϑ,ℑϑ)}).

Also,

θ(max{ω(ν,ℑν), ω(ϑ,ℑϑ)}) + F(ω(ϑ,ℑϑ)) = k + F
(1

8

)
≤ F

(1
4

)
= F(ω(ν, ϑ)).

Finally, there exists 0 ∈ Ξ such that ω(0, 0) = 0. Therefore all the conditions of Theorem 2.1 are satisfied and 0 ∈ ℑ0.

7. Applications

In this section we present two applications of our results.

7.1. Application to integral inclusions
Consider the integral inclusion

ϑ(t) ∈ γ(t) +

b∫
a

M(t, s, ϑ(s)) ds, t ∈ J = [a, b], (19)

where γ ∈ Ξ = C[a, b] is a given function, M : J × J × R → C(R) is a given set-valued mapping and ϑ ∈ Ξ
is the unknown function. Here, Ξ = C[a, b] is the standard Banach space of continuous real functions with
the supremum norm.

Consider the following assumptions:
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(I) For each ϑ ∈ Ξ, the mapping Mϑ : J2
→ C(R) given by Mϑ(t,s) =M(t, s, ϑ(s)), is continuous;

(II) for every ϑ ∈ Ξ there is a function mϑ in Mϑ(t,s) such that

ϑ(t) ≤ γ(t) +

b∫
a

mϑ(t, s) ds, t, s ∈ J;

(III) for all mν(t, s) ∈Mν(t, s) and mϑ(t, s) ∈Mϑ(t, s)

|mν(t, s) −mϑ(t, s)| ≤
e−k

b − a
|ν(t) − ϑ(t)|

for all t, s ∈ J.

Theorem 7.1. Let the assumptions (I)–(III) hold. Then the integral inclusion (7.5) has a solution in X.

Proof. Let ℑ : Ξ→ C(Ξ) be the operator given by

ℑϑ =
{
ν ∈ X : ν(t) ∈ γ(t) +

b∫
a

M(t, s, ϑ(s)) ds, t ∈ [a, b]
}
.

Obviously, ϑ ∈ Ξ is a solution of the inclusion (7.5) if and only if ϑ is a fixed point of operator ℑ.

We first check that the operator ℑ is well-defined. Indeed, let ϑ ∈ Ξ be arbitrary. By (I), the set-valued
operator Mϑ : J2

→ C(R) is continuous (w.r.t. Pompeiu-Hausdorff metric on C(R). From the Michael’s
selection theorem, it follows that there exists a continuous function mϑ : J2

→ R such that mϑ(t,s) ∈Mϑ(t,s) for

each (t, s) ∈ J2. Hence, the function ν(t) = γ(t) +
b∫

a
mϑ(t,s) ds belongs to ℑϑ, i.e., ℑϑ , ∅. Since γ and Mϑ are

continuous on J, resp. J2, their ranges are bounded and hence ℑϑ is bounded.

Also,

sup
φ∈ℑν

d(φ,ℑϑ) = sup
φ∈ℑν

inf
χ∈ℑϑ

d(φ, χ)

= sup
φ∈ℑν

inf
χ∈ℑv

max
t∈J
|φ(t) − χ(t)|

= sup
mν∈Mν

inf
mϑ∈Mϑ

max
t∈J

∣∣∣∣∣
b∫

a

[mν(t, s) −mϑ(t, s)] ds
∣∣∣∣∣

≤ sup
mν∈Mν

inf
mϑ∈Mϑ

max
t∈J

b∫
a

|mν(t, s) −mϑ(t, s)| ds

≤
e−k

b − a
max

t∈J

b∫
a

|ν(t) − ϑ(t)| ds

≤
e−k

b − a
max

t∈J
|ν(t) − ϑ(t)|

b∫
a

ds

= e−kd(ν, ϑ).
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Similarly, one can see that

sup
χ∈ℑϑ

d(χ,ℑu) ≤ e−kd(ν, ϑ).

Therefore, we have

H(ℑν,ℑϑ) ≤ e−kd(ν, ϑ).

Taking logarithm on both sides.

ln(H(ℑν,ℑϑ)) ≤ ln(e−kd(ν, ϑ)),

and hence

k + ln(H(ℑν,ℑϑ)) ≤ ln(d(ν, ϑ)),

Taking F(ξ) = ln(ξ), and θ(s) = k. Then ℑ satisfies all the conditions of Theorem 2.5, and so ℑ has a fixed
point, that is, the integral inclusion (7.5) has a solution in Ξ = C[a, b].

7.2. Application to nonlinear matrix equations

LetH(n) stand for the set of all n × n Hermitian matrices over C, K (n)
(
⊂ H(n)

)
stand for the set of all

n × n positive semi-definite matrices, P(n)
(
⊂ K (n)

)
stand for the set of n × n positive definite matrices,

M(n) stand for the set of all n × n matrices over C.
For a matrix B ∈ H(n), we will denote by s(B) any of its singular values and by s+(B) the sum of all of

its singular values, that is, the trace norm ∥B∥ = s+(B). For C,D ∈ H(n), C ⪰ D (resp. C ≻ D) will mean that
the matrix C −D is positive semi-definite (resp. positive definite).

The following lemmas are needed in the subsequent discussion.

Lemma 7.2. [15]. If A ⪰ O and B ⪰ O are n × n matrices, then

0 ≤ tr(AB) ≤ ∥A∥tr(B).

Lemma 7.3. [15]. If A ∈ H(n) such that A ≺ In, then ∥A∥ < 1.

Consider the NME

Z = Q +

k∑
i=1

B
∗

i F(Z)Bi, (20)

where Q ∈ P(n), Bi ∈ M(n), i = 1, . . . , k, and the operators F : P(n)→ P(n) is continuous in the trace norm.

Theorem 7.4. Consider the problem described by (20). Assume that:

(H1) there exists Q ∈ P(n), such that
∑m

i=1B
∗

i F(Q)Bi ≻ 0;
(H2)

∑m
i=1BiB

∗

i ≺ ηIn;
(H3) there existsZ0 ∈ P(n) such that

Z0 ⪯ Q +

m∑
i=1

B
∗

i F(Z0)Bi;

(H4) for everyK , L ∈ P(n) withK ⪯ L implies

m∑
i=1

B
∗

i F(K )Bi ⪯

m∑
i=1

B
∗

i F(L)Bi;
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(H5) for every K , L ∈ P(n) such that K ⪯ L with
∑m

i=1B
∗

i F(K )Bi ,
∑m

i=1B
∗

i F(L)Bi, then for a, b ≥ 0 and
a + 2b < 1.

tr(F(K ) − F(L)) ≤
a
η

max

 tr(K −L), tr
(
K −Q −

∑m
i=1B

∗

i F(K )Bi

)
,

tr
(
L − Q −

∑m
i=1B

∗

i F(L)Bi

) 
+

b
η

[
tr

(
K −Q −

∑m
i=1B

∗

i F(L)Bi

) ]
.

Then the matrix equation (20) has a unique solution.

Proof. Let us consider the set ∆ = {Z ∈ P(n) : ∥Z∥ ≤M}, which is a closed subset of P(n).
Define the operators T : ∆→ ∆ by

T (Z) = Q +
m∑

i=1

B
∗

i F(Z)Bi,

forZ ∈ ∆. It is clear that finding positive definite solution(s) of the system (20) is equivalent to finding fixed
point(s) of T .
Define a binary relation

R = {(X, Y) ∈ P(n) × P(n) : X ⪯ Y}.

Notice that T is well defined and continuous. From assumption (H3), (Z0,TZ0) ∈ R, and from (H4), T is
R-weakly comparative.

Now, for (K , L) ∈ R, from assumption (H5), we have

∥T (K ) − T (L)∥tr = tr(T (K ) − T (L))

= tr(
m∑

i=1

B
∗

i (F(K ) − F(L))Bi)

=

m∑
i=1

tr(B∗i (F(K ) − F(L))Bi)

=

m∑
i=1

tr(BiB
∗

i (F(K ) − F(L)))

= tr((
m∑

i=1

BiB
∗

i )(F(K ) − F(L)))

≤ ∥

m∑
i=1

BiB
∗

i ∥ × ∥(F(K ) − F(L))∥tr

≤
∥
∑m

i=1BiB
∗

i ∥

η
×

[
a max

{
∥K − L∥tr, ∥K − TK∥tr, ∥L − TL∥tr

}
+b∥K − TL∥tr

]
≤ a max

{
∥K − L∥tr, ∥K − TK∥tr, ∥L − TL∥tr

}
+ b∥K − TL∥tr.

Consider ψ ∈ Λ given by ψ(r1, r2, r3, r4, r5) = a max{r1, r2, r3}+ b[r4] where a, b ≥ 0 and a+ 2b < 1. Thus all the
hypotheses of Theorem 5.2 are satisfied, therefore there exists Ẑ ∈ P(n) such that T (Ẑ) = Ẑ, and hence the
matrix equation (20) has a solution in P(n).

Example 7.5. Consider the following non-linear equation:

T (Z) = Q +B∗1F(Z)B1 +B
∗

2F(Z)B2
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Consider matrices B1, B2, Q,Z0 K , L as

B1 =


2.1572 0.0758 0.0105 0.5680
0.7487 1.5457 0.4859 0.7734
0.1209 0.2918 1.4497 0.8768
0.0544 0.2715 0.1318 1.7113

 ,B2 =


1.4059 0.5581 0.4653 0.6253
0.4085 1.9346 0.5010 0.3839
0.3851 0.6482 1.3886 0.7527
0.8695 0.3122 0.5059 2.2562

 ,

Q =


4.2052 2.3634 2.2443 3.3809
2.3634 6.5039 2.6620 2.3096
2.2443 2.6620 4.4006 3.2642
3.3809 2.3096 3.2642 8.2542

 ,Z0 =


0.9507 0 0 0

0 1.0373 0 0
0 0 0.9176 0
0 0 0 0.9176

 ,

K =


7.1848 2.4186 0.8847 1.2350
2.4186 5.6600 2.1379 2.0534
0.8847 2.1379 4.6685 1.9751
1.2350 2.0534 1.9751 5.0362

 ,L =

7.2027 2.4246 0.8869 1.2381
2.4246 5.6742 2.1432 2.0586
0.8869 2.1432 4.6801 1.9800
1.2381 2.0586 1.9800 5.0488

 .
The initial matrices are

U0 =


7.1848 2.4186 0.8847 1.2350
2.4186 5.6600 2.1379 2.0534
0.8847 2.1379 4.6685 1.9751
1.2350 2.0534 1.9751 5.0362

 ,V0 = 104
×


1.1275 0.9852 0.6370 0.7097
0.9852 1.0179 0.7118 0.7708
0.6370 0.7118 0.5399 0.5696
0.7097 0.7708 0.5696 0.6321

 ,

W0 =


558.2799 428.9370 256.3169 292.2718
428.9370 470.3649 320.8055 342.4425
256.3169 320.8055 270.0951 265.8767
292.2718 342.4425 265.8767 311.8194

 .
We take r = 4, η = 1.1356e + 03, a = 0.99, b = 0.01, tolerance: tol=1e-14 and F(X) = X0.0001 to test our algorithm.
The numerical results are given in Table 1.

Table 1. Three initial value analysis
Initial. Mat F(X) Iter no. CPU Error

U0 U0.0001
0 5 0.054401 0

V0 V0.0001
0 6 0.025553 0

W0 W0.0001
0 6 0.033240 0

After 6 successive iterations, we obtain the following positive-definite solution

Ẑ =


4.2140 2.3676 2.2474 3.3873
2.3676 6.5119 2.6661 2.3147
2.2474 2.6661 4.4061 3.2696
3.3873 2.3147 3.2696 8.2667

 .
The graphical view of convergence and solution plots are shown in Figure 7.5 and Figure 7.5 below:
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