On an Open Problem of Lü, Li and Yang

Sujoy Majumder ${ }^{\text {a }}$, Arup Dam ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics, Raiganj University, Raiganj, West Bengal-733134, India.
${ }^{b}$ Bajitpur High School, P.O.- Ratanpur, Dist.- Dakshin Dinajpur, West Bengal-733124, India.

Abstract

In this paper with the help of the idea of normal family we solve an open problem posed in the last section of [12]. Also we exhibit some relevant examples to fortify our result.

1. Introduction, Definitions and Results

In the paper, by a meromorphic (resp. entire) function we shall always mean meromorphic (resp. entire) function in the whole complex plane \mathbb{C}. Also it is assumed that the reader is familiar with the standard symbols and fundamental results of Nevanlinna value distribution theory of meromorphic functions. For a meromorphic function f in \mathbb{C}, we shall use the following standard notations of the value distribution theory: $T(r, f), m(r, \infty ; f), N(r, \infty ; f), \bar{N}(r, \infty ; f), \ldots$ (see, e.g., [8, 21]). We adopt the standard notation $S(r, f)$ for any quantity satisfying the relation $S(r, f)=o(T(r, f))$ as $r \rightarrow \infty$ except possibly a set of finite linear measure. A meromorphic function a is said to be a small function of f if $T(r, a)=S(r, f)$. The order and the hyper-order of a meromorphic function f are denoted and defined by

$$
\rho(f)=\underset{r \rightarrow \infty}{\limsup } \frac{\log T(r, f)}{\log r} \text { and } \rho_{1}(f)=\limsup _{r \rightarrow \infty} \frac{\log \log T(r, f)}{\log r}
$$

respectively.
Let h be a meromorphic function in \mathbb{C}. Then h is called a normal function if there exists a positive real number M such that $h^{\#}(z) \leq M \forall z \in \mathbb{C}$, where

$$
h^{\#}(z)=\frac{\left|h^{\prime}(z)\right|}{1+|h(z)|^{2}}
$$

denotes the spherical derivative of h.
Let \mathcal{F} be a family of meromorphic functions in a domain $D \subset \mathbb{C}$. We say that \mathcal{F} is normal in D if every sequence $\left\{f_{n}\right\}_{n} \subseteq \mathcal{F}$ contains a subsequence which converges spherically and uniformly on the compact subsets of D (see [17]).

[^0]Let f be an entire function. We know that $M(r, f)=\max _{|z|=r}|f(z)|$ and f can be expressed by the power series $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$. We denote by

$$
\mu(r, f)=\max _{n \in \mathbb{N},|z|=r}\left\{\left|a_{n} z^{n}\right|\right\} \text { and } v(r, f)=\sup \left\{n:\left|a_{n}\right| r^{n}=\mu(r, f)\right\} .
$$

Clearly for a polynomial $P(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\ldots+a_{0}, a_{n} \neq 0$, we have

$$
\mu(r, P)=\left|a_{n}\right| r^{n} \text { and } v(r, P)=n
$$

for all r sufficiently large.
In the general case, $\left|a_{n}\right| r^{n} \leq \mu(r, f)$ for all $n \geq 0$ and $\left|a_{n}\right| r^{n}<\mu(r, f)$ for all $n>v(r, f)$.
Here it is enough to recall that
(1) $\mu(r, f)$ is strictly increasing for all r sufficiently large, is continuous and tends to $+\infty$ as $r \rightarrow \infty$;
(2) $v(r, f)$ is increasing, piecewise constant, right-continuous and also tends to $+\infty$ as $r \rightarrow \infty$.

Let f and g be two non-constant meromorphic functions and Q be a polynomial or a finite complex number. If $g-Q=0$ whenever $f-Q=0$, we write $f=Q \Rightarrow g=Q$.

Let f and g be two non-constant meromorphic functions and a be a small function with respect to f and g. We say that f and g share a CM (counting multiplicities) if $f-a$ and $g-a$ have the same zeros with the same multiplicities and if we do not consider the multiplicities, then we say that f and g share $a \mathrm{IM}$ (ignoring multiplicities).

Rubel and Yang [16] first considered the uniqueness of an entire function when it shares two values CM with its first derivative. In 1977, they proved if a non-constant entire function f shares two finite distinct values CM with f^{\prime}, then $f \equiv f^{\prime}$. This result has been improved from sharing values CM to IM by Mues and Steinmetz [15] and in the case when f is a non-constant meromorphic function by Gundersen [6]. Since then the subject of sharing values between a meromorphic function and its derivative has been extensively studied by many researchers and a lot of interesting results have been obtained (see [21]).

In the case of sharing one value, R. Brück [1] first discussed the possible relation between f and f^{\prime} when an entire function f and it's derivative f^{\prime} share only one finite value CM. The origin of the problem studied in the paper goes back to the following conjecture of R. Brück [1]:

Conjecture 1.1. If f is a non-constant entire function such that $\rho_{1}(f)$ is not a positive integer or infinity, and it shares a finite value a CM with its derivative f^{\prime}, then $\frac{f^{\prime}-a}{f-a}$ is a non-zero constant.

By the solutions of the differential equations

$$
\left\{\begin{array}{l}
\frac{f^{\prime}(z)-a}{f(z)-a}=e^{z^{n}}, \quad \text { where } \rho_{1}(f)=n \in \mathbb{N} \\
\frac{f^{\prime}(z)-a}{f(z)-a}=e^{e^{z}}, \quad \text { where } \rho_{1}(f)=+\infty
\end{array}\right.
$$

we see that the conjecture does not hold. The conjecture for the special cases (1) $a=0$ and (2) $N\left(r, 0 ; f^{\prime}\right)=$ $S(r, f)$ had been confirmed by Brück [1]. In 1998, Gundersen and Yang [7] proved that if $\rho(f)<+\infty$, then Conjecture 1.1 holds. For the case when $\rho(f)=+\infty$, Chen and Shon [4] and Cao [2] proved that Conjecture 1.1 is true if $\rho_{1}(f)<\frac{1}{2}$ and $\rho_{1}(f)=\frac{1}{2}$ respectively. Though Conjecture 1.1 is not settled in its full generality, it gives rise to a long course of research on the uniqueness of entire and meromorphic functions sharing a single value with its derivatives.

Specially, it was observed by L. Z. Yang and J. L. Zhang [19] that Brück's conjecture holds if instead of an entire function one considers its suitable power. They proved the following theorem.

Theorem 1.2. [19] Let f be a non-constant entire function, $n \in \mathbb{N}$ such that $n \geq 7$. If f^{n} and $\left(f^{n}\right)^{\prime}$ share $1 C M$, then $f^{n} \equiv\left(f^{n}\right)^{\prime}$ and $f(z)=c e^{\frac{1}{n} z}$, where $c \in \mathbb{C} \backslash\{0\}$.

In 2009, Zhang [23] improved and generalised Theorem 1.2 by considering higher order derivatives and by lowering the power of the entire function and obtained the following result.
Theorem 1.3. [23] Let f be a non-constant entire function, $k, n \in \mathbb{N}$ such that $n>k+4$ and $a(\not \equiv 0, \infty)$ be a small function of f. If $f^{n}-a$ and $\left(f^{n}\right)^{(k)}$ - a share $0 C M$, then $f^{n} \equiv\left(f^{n}\right)^{(k)}$ and $f(z)=c e^{\frac{\lambda}{n} z}$, where $c \in \mathbb{C} \backslash\{0\}$ and $\lambda^{k}=1$.
In the same year, Zhang and Yang [24] further improved Theorem 1.3 by reducing the lower bound of n. Actually they obtained the following result.
Theorem 1.4. [24] Let f be a non-constant entire function, $k, n \in \mathbb{N}$ such that $n>k+1$ and $a(\not \equiv 0, \infty)$ be a small function of f. If $f^{n}-a$ and $\left(f^{n}\right)^{(k)}-a$ share $0 C M$, then conclusion of Theorem 1.3 holds.
After one year, Zhang and Yang [25] again improved Theorem 1.4 by reducing the lower bound of n in the following manner.
Theorem 1.5. [25] Let f be a non-constant entire function and $k, n \in \mathbb{N}$ such that $n \geq k+1$. If f^{n} and $\left(f^{n}\right)^{(k)}$ share 1 CM, then conclusion of Theorem 1.3 holds.
In 2011, Lü and Yi [11] generalized Theorem 1.5 by using the idea of sharing polynomial in the following manner.

Theorem 1.6. [11] Let f be a transcendental entire function, $k, n \in \mathbb{N}$ such that $n \geq k+1$ and $Q(\not \equiv 0)$ be a polynomial. If $f^{n}-Q$ and $\left(f^{n}\right)^{(k)}-Q$ share $0 C M$, then conclusion of Theorem 1.3 holds.

Also in the same paper, Lü and Yi [11] exhibited two relevant examples to show that the hypothesis of the transcendental of f in Theorem 1.6 is necessary and the condition $n \geq k+1$ in Theorem 1.6 is sharp.

Now motivated by Theorem 1.6, Lü, Li and Yang [12] gave rise to the following question:
Question 1. What will happen "if $f^{n}-Q_{1}$ and $\left(f^{n}\right)^{(k)}-Q_{2}$ share $0 C M$, where $Q_{1}(\not \equiv 0)$ and $Q_{2}(\not \equiv 0)$ are polynomials" ?

Lü, Li and Yang [12] answered Question 1 for the case when $k=1$ by giving the transcendental entire solutions of the equation

$$
\begin{equation*}
\left(f^{n}\right)^{\prime}-Q_{1}=R e^{\alpha}\left(f^{n}-Q_{2}\right), \tag{1.1}
\end{equation*}
$$

where R is a rational function and α is an entire function. Now we recall their results.
Theorem 1.7. [12] Let f be a transcendental entire function and $n \in \mathbb{N} \backslash\{1\}$. If f^{n} is a solution of equation (1.1), then $\frac{Q_{1}}{Q_{2}}$ is a polynomial and $f^{\prime} \equiv \frac{Q_{1}}{n Q_{2}} f$.
Theorem 1.8. [12] Let f be a transcendental entire function, $n \in \mathbb{N} \backslash\{1\}$ and $Q(\equiv \equiv 0)$ be a polynomial. If $f^{n}-Q$ and $\left(f^{n}\right)^{\prime}-Q$ share $0 C M$, then $f(z)=c e^{z / n}$, where $c \in \mathbb{C} \backslash\{0\}$.

In the same paper, Lu, Li and Yang proved that if $\frac{Q_{1}}{Q_{2}}$ is not a polynomial, then the differential equation (1.1) has no transcendental entire solution when $n \geq 2$. Also $\mathrm{Lü}, \mathrm{Li}$ and Yang exhibited two relevant examples to show that (i) the differential equation (1.1) has no polynomial solution and (ii) the condition $n \geq 2$ in Theorem 1.7 and Theorem 1.8 is sharp.

At the end of the paper, as an extension of Theorem 1.7, Lü, Li and Yang [12] gave rise to the following conjecture:
Conjecture 1.9. Let f be a transcendental entire function, $k, n \in \mathbb{N}$ such that $n \geq k+1$ and $Q_{1}(\not \equiv 0), Q_{2}(\not \equiv 0)$ be two polynomials. If $f^{n}-Q_{1}$ and $\left(f^{n}\right)^{(k)}-Q_{2}$ share $0 C M$, then $\left(f^{n}\right)^{(k)} \equiv \frac{Q_{2}}{Q_{1}} f^{n}$. Furthermore, if $Q_{1} \equiv Q_{2}$, then conclusion of Theorem 1.3 holds.
Again Lü, Li and Yang [12] asked the following question.
Question 2. What will happen if " $f n$ " is replaced by " $P(f)$ " in Conjecture 1.9, where $P(z)=\sum_{i=0}^{n} a_{i} z^{i}$ " ?
In 2016, the first author [13] fully resolved Conjecture 1.9. Therefore in the paper, our main aim is to give an affirmative answer of Question 2. Next we consider the following example.

Example 1.10. Let $P(z)=z^{n}+2, n=2, k=1$ and $f(z)=e^{\frac{1}{2} z}$. Let $Q_{1}(z)=4$ and $Q_{2}(z)=2$. Note that

$$
P(f(z))-Q_{1}(z)=e^{z}-2 \text { and }(P(f(z)))^{\prime}-Q_{2}(z)=e^{z}-2 .
$$

Clearly $P(f)-Q_{1}$ and $(P(f))^{\prime}-Q_{2}$ share $0 C M$, but $(P(f))^{\prime} \not \equiv \frac{Q_{2}}{Q_{1}} P(f)$.
Example 1.10 shows that the analogue conclusion $(P(f))^{(k)} \equiv \frac{Q_{2}}{Q_{1}} P(f)$ can not be obtained when " f^{n} " is replaced by " $P(f)$ ", where $P(z)=\sum_{i=0}^{n} a_{i} z^{i}$ such that $a_{0} \neq 0$ in Conjecture 1.9. Therefore our main motive is to find out the specific form of the polynomial $P(z)$ in order that we can able to give an affirmative answer of

Question 2.

In the paper, we always use $P(z)$ denoting an arbitrary non-constant polynomial of degree n as follows:

$$
\begin{equation*}
P(z)=\sum_{i=0}^{n} a_{i} z^{i}=(z-e)^{l} \sum_{i=0}^{m} e_{i} z^{i} \tag{1.2}
\end{equation*}
$$

where $a_{i} \in \mathbb{C}(i=0,1, \ldots, n), e, e_{i} \in \mathbb{C}(i=0,1, \ldots, m), a_{n}=e_{m} \neq 0$ and $l+m=n$. Let $z_{1}=z-e$. We also use $P_{1}\left(z_{1}\right)$ as an arbitrary non-zero polynomial defined by

$$
P_{1}\left(z_{1}\right)=\sum_{i=0}^{m} e_{i} z^{i}=\sum_{i=0}^{m} e_{i}\left(z_{1}+e\right)^{i}=\sum_{i=0}^{m} b_{i} z_{1}^{i},
$$

where $b_{m}=e_{m}=a_{n}$. From (1.2), it is clear that

$$
\begin{equation*}
P(z)=z_{1}^{l} P_{1}\left(z_{1}\right) \tag{1.3}
\end{equation*}
$$

Throughout the paper for a non-constant meromorphic f, we define $f_{1}=f-e$.
To the knowledge of authors Question 2 is still open. Our first objective to write this paper is to solve the above Question 2 at the cost of considering the fact that $P(z)=z_{1}^{l} P_{1}\left(z_{1}\right)$, where $l+m=n$.

Our second objective to write this paper is to solve the following question.
Question 3. What happens if " $f^{n}-R_{1} e^{Q}$ and $\left(f^{n}\right)^{(k)}-R_{2} e^{Q}$ share 0 CM , where $R_{i}(\not \equiv 0)(i=1,2)$ are rational functions and Q is a polynomial in Conjecture 1.9?

In the paper, taking the possible answers of the above questions into back ground we obtain our main result as follows.

Theorem 1.11. Let f be a transcendental meromorphic function having finitely many poles and let $\alpha_{i}=R_{i} e^{e}$, $i=1,2$, where R_{1}, R_{2} are non-zero rational functions and Q is a polynomial such that $\operatorname{deg}(Q)<\rho(f)$. Let $P(z)$ be defined as in (1.3) and $k, l \in \mathbb{N}$ such that $l>\max \{k, m\}$. If $P(f)-\alpha_{1}$ and $(P(f))^{(k)}-\alpha_{2}$ share $0 C M$, then $(P(f))^{(k)} \equiv \frac{R_{2}}{R_{1}} P(f)$. Furthermore if $R_{1} \equiv R_{2}$, then $P(z)=a_{n} z_{1}^{n}$ and so $f_{1}^{n} \equiv\left(f_{1}^{n}\right)^{(k)}$. In this case f assumes the form $f(z)=c e^{\frac{\lambda}{n} z}+e$, where $c \in \mathbb{C} \backslash\{0\}$ and $\lambda^{k}=1$.
From Theorem 1.11, we immediately have the following corollary.
Corollary 1.12. Let f be a transcendental meromorphic function having finitely many poles and let $\alpha_{i}=R_{i} e^{e}$, $i=1,2$, where R_{1}, R_{2} are non-zero rational functions and Q is a polynomial such that $\operatorname{deg}(Q)<\rho(f)$. Let $k, n \in \mathbb{N}$ such that $n \geq k+1$. If $f^{n}-\alpha_{1}$ and $\left(f^{n}\right)^{(k)}-\alpha_{2}$ share $0 C M$, then $\left(f^{n}\right)^{(k)} \equiv \frac{R_{2}}{R_{1}} f^{n}$. Furthermore if $R_{1} \equiv R_{2}$, then f assumes the form $f(z)=c e^{\frac{\lambda}{n} z}$, where $c \in \mathbb{C} \backslash\{0\}$ and $\lambda^{k}=1$.

Remark 1.13. If Q is a constant polynomial, then Theorem 1.11 and Corollary 1.12 still hold without the assumption that $\operatorname{deg}(Q)<\rho(f)$.

Remark 1.14. It is easy to see that the conditions " $l>\max \{k, m\}$ and $\operatorname{deg}(Q)<\rho(f)$ " in Theorem 1.11 are sharp by the following examples.

Example 1.15. Let $P(z)=z^{n}, l=n=k=1, Q=2 \pi i$ and $f(z)=e^{3 z}+\frac{2 z}{3}+\frac{2}{9}$. Note that

$$
(P(f(z)))^{\prime}-z=3(P(f(z))-z)
$$

Then $P(f)-\alpha_{1}$ and $(P(f))^{\prime}-\alpha_{2}$ share 0 CM and $\operatorname{deg}(Q)<\rho(f)$, but $(P(f))^{\prime} \not \equiv \frac{\alpha_{2}}{\alpha_{1}} P(f)$, where $\alpha_{1}(z)=\alpha_{2}(z)=z$.
Example 1.16. Let $P(z)=z^{l}(z+1), l=2, k=1, Q(z)=\frac{2}{3} z^{2}$ and $f(z)=e^{\frac{1}{3} z^{2}}$. Let $\alpha_{1}(z)=\frac{1}{2 z} e^{\frac{2}{3} z^{2}}$ and $\alpha_{2}(z)=\left(1-\frac{2}{3} z\right) e^{\frac{2}{3} z^{2}}$. Clearly $\operatorname{deg}(Q)=\rho(f)$. Note that

$$
P(f(z))-\alpha_{1}(z)=\frac{2 z e^{z^{2}}+(2 z-1) e^{\frac{2}{3} z^{2}}}{2 z}
$$

and

$$
\left(P(f(z))^{\prime}-\alpha_{2}(z)=2 z e^{z^{2}}+(2 z-1) e^{\frac{2}{3} z^{2}}\right.
$$

Obviously $P(f)-\alpha_{1}$ and $(P(f))^{\prime}-\alpha_{2}$ share $0 C M$, but $(P(f))^{\prime} \not \equiv \frac{\alpha_{2}}{\alpha_{1}} P(f)$.
Example 1.17. Let $P(z)=z^{n}, l=n=k=1, Q(z)=z^{2}$ and $f(z)=e^{z^{2}}$. Let $\alpha_{1}(z)=4 z e^{z^{2}}$ and $\alpha_{2}(z)=\frac{1}{2} e^{z^{2}}$. Clearly $\operatorname{deg}(Q)=\rho(f)$. Note that

$$
P(f(z))-\alpha_{1}(z)=(1-4 z) e^{z^{2}}
$$

and

$$
\left(P(f(z))^{\prime}-\alpha_{2}(z)=\frac{1}{2}(4 z-1) e^{z^{2}}\right.
$$

Obviously $P(f)-\alpha_{1}$ and $(P(f))^{\prime}-\alpha_{2}$ share $0 C M$, but $(P(f))^{\prime} \not \equiv \frac{\alpha_{2}}{\alpha_{1}} P(f)$.
Example 1.18. Let $P(z)=z^{n}, l=n=k=1, Q(z)=-z$ and $f(z)=e^{-z}-e^{-z^{2}}$. Let $\alpha_{1}(z)=\frac{1}{2 z} e^{-z}$ and $\alpha_{2}(z)=2(z-1) e^{-z}$. Clearly $\operatorname{deg}(Q)<\rho(f)$. Note that

$$
P(f(z))-\alpha_{1}(z)=\frac{(2 z-1) e^{-z}-2 z e^{-z^{2}}}{2 z}
$$

and

$$
\left(P(f(z))^{\prime}-\alpha_{2}(z)=-\left[(2 z-1) e^{-z}-2 z e^{-z^{2}}\right]\right.
$$

Obviously $P(f)-\alpha_{1}$ and $(P(f))^{\prime}-\alpha_{2}$ share $0 C M$, but $(P(f))^{\prime} \not \equiv \frac{\alpha_{2}}{\alpha_{1}} P(f)$.
Remark 1.19. By the following example, it is easy to see that the hypothesis of the transcendental of f in Theorem 1.11 is necessary.

Example 1.20. Let $P(z)=z^{n}, l=n=2, k=1, Q(z) \equiv 2 n \pi i$ and $f(z)=z$. Let $\alpha_{1}(z)=2 z^{2}+z$ and $\alpha_{2}(z)=2 z^{2}+4 z$. Clearly $P(f)-\alpha_{1}$ and $(P(f))^{\prime}-\alpha_{2}$ share $0 C M$, but $(P(f))^{\prime} \not \equiv \frac{\alpha_{2}}{\alpha_{1}} P(f)$.
Generally speaking, solving any non-linear differential equation is a very difficult task. As an application of our result, we now consider the following non-linear differential equation:

$$
\begin{equation*}
(P(f))^{(k)}-R_{1} e^{Q}=\operatorname{Re}^{\eta}\left(P(f)-R_{1} e^{Q}\right) \tag{1.4}
\end{equation*}
$$

where $P(z)$ is defined as in (1.3), $k, l \in \mathbb{N}, Q$ is a polynomial, η is an entire function and R, R_{1} are rational functions. Note that if f is a non-constant meromorphic solution of the non-linear differential equation (1.4), then one can easily conclude from (1.4) that f has only finitely many poles. Therefore as a solution of the non-linear differential equation (1.4), we present the following result.

Theorem 1.21. If f is a transcendental meromorphic solution of the non-linear differential equation (1.4), $l>$ $\max \{k, m\}$ and $\operatorname{deg}(Q)<\rho(f)$, then η reduces to a constant and $f(z)=c e^{\frac{\lambda}{n} z}+e$, where $c \in \mathbb{C} \backslash\{0\}$ and $\lambda^{k}=1$.

2. Lemmas

In this section we introduce the following lemmas which will be needed in the paper.
Lemma 2.1. [18] Let f be a non-constant meromorphic function and let $a_{n}(\not \equiv 0), a_{n-1}, \ldots, a_{0}$ be meromorphic functions such that $T\left(r, a_{i}\right)=S(r, f)$ for $i=0,1,2, \ldots, n$. Then

$$
T\left(r, a_{n} f^{n}+a_{n-1} f^{n-1}+\ldots+a_{1} f+a_{0}\right)=n T(r, f)+S(r, f) .
$$

Lemma 2.2. ([9], Lemma 1.3.1.) $P(z)=\sum_{i=1}^{n} a_{i} z^{i}$ where $a_{n} \neq 0$. Then for all $\varepsilon>0$, there exists $r_{0}>0$ such that \forall $r=|z|>r_{0}$ the inequalities $(1-\varepsilon)\left|a_{n}\right| r^{n} \leq|P(z)| \leq(1+\varepsilon)\left|a_{n}\right| r^{n}$ hold.
Lemma 2.3. ([9], Theorem 3.1.) If f is an entire function of order $\rho(f)$, then

$$
\rho(f)=\limsup _{r \rightarrow \infty} \frac{\log v(r, f)}{\log r}
$$

Lemma 2.4. [14] Let f be a transcendental entire function and let $E \subset[1,+\infty)$ be a set having finite logarithmic measure. Then there exists $\left\{z_{j}=r_{j} e^{\mathrm{i} \theta_{j}}\right\}$ such that $\left|f\left(z_{j}\right)\right|=M\left(r_{j}, f\right), \theta_{j} \in[0,2 \pi), \lim _{j \rightarrow+\infty} \theta_{j}=\theta_{0} \in[0,2 \pi), r_{j} \notin E$ and if $0<\rho(f)<+\infty$, then for any given $\varepsilon>0$ and sufficiently large r_{j},

$$
r_{j}^{\rho(f)-\varepsilon}<v\left(r_{j}, f\right)<r_{j}^{\rho(f)+\varepsilon}
$$

If $\rho(f)=+\infty$, then for any given large $M>0$ and sufficiently large $r_{j}, v\left(r_{j}, f\right)>r_{j}^{M}$.
Lemma 2.5. ([9], Theorem 3.2.) Let f be a transcendental entire function, $v(r, f)$ be the central index of f. Then there exists a set $E \subset(1,+\infty)$ with finite logarithmic measure, we choose z satisfying $|z|=r \notin[0,1] \cup E$ and $|f(z)|=M(r, f)$, such that

$$
\frac{f^{(j)}(z)}{f(z)}=\left(\frac{v(r, f)}{z}\right)^{j}(1+o(1)), \quad \text { for } j \in \mathbb{N}
$$

Lemma 2.6. ([8], Lemma 3.5.) Let F be meromorphic in a domain D and $n \in \mathbb{N}$. Then

$$
\frac{F^{(n)}}{F}=f^{n}+\frac{n(n-1)}{2} f^{n-2} f^{\prime}+a_{n} f^{n-3} f^{\prime \prime}+b_{n} f^{n-4}\left(f^{\prime}\right)^{2}+P_{n-3}(f)
$$

where $f=\frac{F^{\prime}}{F}, a_{n}=\frac{1}{6} n(n-1)(n-2), b_{n}=\frac{1}{8} n(n-1)(n-2)(n-3)$ and $P_{n-3}(f)$ is a differential polynomial with constant coefficients, which vanishes identically for $n \leq 3$ and has degree $n-3$ when $n>3$.
Lemma 2.7. [22] Let \mathcal{F} be a family of meromorphic functions in the unit disc Δ such that all zeros of functions in \mathcal{F} have multiplicity greater than or equal to l and all poles of functions in \mathcal{F} have multiplicity greater than or equal to j and α be a real number satisfying $-l<\alpha<j$. Then \mathcal{F} is not normal in any neighborhood of $z_{0} \in \Delta$, if and only if there exist
(i) points $z_{n} \in \Delta, z_{n} \rightarrow z_{0}$,
(ii) positive numbers $\rho_{n}, \rho_{n} \rightarrow 0^{+}$and
(iii) functions $f_{n} \in \mathcal{F}$,
such that $\rho_{n}^{-\alpha} f_{n}\left(z_{n}+\rho_{n} \zeta\right) \rightarrow g(\zeta)$ spherically locally uniformly in \mathbb{C}, where g is a non-constant meromorphic function. The function g may be taken to satisfy the normalisation $g^{\#}(\zeta) \leq g^{\#}(0)=1(\zeta \in \mathbb{C})$.
Remark 2.8. Clearly if all functions in \mathcal{F} are holomorphic (so that the condition on the poles is satisfied vacuously for arbitrary j), we may take $-1<\alpha<\infty$.
Lemma 2.9. [3] Let f be a meromorphic function on \mathbb{C} with finitely many poles. If f has bounded spherical derivative on \mathbb{C}, then f is of order at most 1 .
Lemma 2.10. [10] Let f be a meromorphic function of infinite order on \mathbb{C}. Then there exist points $z_{n} \rightarrow \infty$ such that for every $N>0, f^{\#}\left(z_{n}\right)>\left|z_{n}\right|^{N}$, if n is sufficiently large.
Lemma 2.11. [5] Let f be a non-constant entire function and $k \in \mathbb{N} \backslash\{1\}$. If $f f^{(k)} \neq 0$, then $f(z)=e^{a z+b}$, where $a(\neq 0), b \in \mathbb{C}$.

3. Proof of the theorem

Proof. Suppose $R_{1}=\frac{Q_{1}}{Q_{2}}$ and $R_{2}=\frac{Q_{3}}{Q_{4}}$, where $Q_{i}(i=1,2,3,4)$ are polynomials. Also we define $P_{1}=Q_{1} Q_{4}$ and $P_{2}=Q_{2} Q_{3}$. Let $F=\frac{H}{\alpha_{1}}$ and $G=\frac{H^{(k)}}{\alpha_{2}}$, where $H=P(f)$. Now we consider following two cases.
Case 1. Suppose $H^{(k)} \not \equiv \frac{\alpha_{2}}{\alpha_{1}} H$. Following sub-cases are immediately.
Sub-case 1.1. Suppose $\rho(f)<+\infty$. It is clear that $\rho\left(H^{(k)}\right)=\rho(H)=\rho(f)<+\infty$. Let

$$
\alpha=\frac{H^{(k)}-\alpha_{2}}{H-\alpha_{1}}
$$

Since $H-\alpha_{1}$ and $H^{(k)}-\alpha_{2}$ share $0 C M$ except for the zeros and poles of α_{i} for $i=1,2$ and H has finitely many poles, we deduce that α has finite many zeros and poles. Also we see that α is of finite order. Therefore we can assume that $\alpha=\beta e^{\gamma}$, where β is a rational function and γ is a polynomial. Hence

$$
\begin{equation*}
\frac{H^{(k)}-\alpha_{2}}{H-\alpha_{1}}=\beta e^{\gamma} \tag{3.1}
\end{equation*}
$$

Now we consider following two sub-cases.
Sub-case 1.1.1. Suppose $\rho(f)<1$. Clearly $\rho(H)=\rho(f)<1$. Since $\operatorname{deg}(Q)<\rho(f)$, it follows that Q reduces to a constant. Then from (3.1), we see that $\rho\left(e^{\gamma}\right)<1$ and so γ is a constant. Without loss of generality we assume that

$$
\begin{align*}
& H^{(k)}-\alpha_{2} \equiv \beta\left(H-\alpha_{1}\right) \\
\text { i.e., } & H^{(k)} \equiv \beta H+\alpha_{2}-\alpha_{1} \beta . \tag{3.2}
\end{align*}
$$

If $\alpha_{2}-\alpha_{1} \beta \equiv 0$, then from (3.2), we have $H^{(k)} \equiv \frac{\alpha_{2}}{\alpha_{1}} H$, which contradicts our supposition. Hence $\alpha_{2}-\alpha_{1} \beta \not \equiv 0$. Let z_{0} be a zero of f_{1} of multiplicity p_{0} such that $\beta\left(z_{0}\right) \neq \infty$. Then z_{0} will be a zero of H and $H^{(k)}$ of multiplicities at least $r\left(\geq l p_{0}\right)$ and $r-k$ respectively. Clearly from (3.2), we see that z_{0} must be a zero of $\alpha_{2}-\alpha_{1} \beta$. Thus f_{1} has finitely many zeros. Note that f_{1} has finitely many poles. Since $\rho\left(f_{1}\right)<1$, one can conclude that f_{1} is a non-zero rational function, which is a contradiction.
Sub-case 1.1.2. Suppose $\rho(f) \geq 1$. We claim that γ is a constant polynomial. If not, suppose γ is a non-constant polynomial. Without loss of generality, we may assume that $\operatorname{deg}(\gamma)=m \geq 1$. Let $\gamma(z)=$ $c_{m} z^{m}+c_{m-1} z^{m-1}+\ldots+c_{0}$ where $c_{i} \in \mathbb{C}$ for $i=0,1, \ldots, m$ and $c_{m} \neq 0$. Now from (3.1), we have

$$
\beta e^{\gamma}=\frac{\frac{H^{(k)}}{H}-\frac{R_{2}}{e^{-} Q_{1}}}{1-\frac{R_{1}}{e^{-Q} H}}, \text { i.e., } \gamma=\log \frac{1}{\beta} \frac{\frac{H^{(k)}}{H}-\frac{R_{2}}{e^{-Q} H}}{1-\frac{R_{1}}{e^{-Q} H}},
$$

where $\log h$ is the principle branch of the logarithm. Therefore by Lemma 2.2, we have

$$
\begin{equation*}
\left|c_{m}\right| r^{m}(1+o(1))=|\gamma(z)|=\left|\log \frac{1}{\beta(z)} \frac{\frac{H^{(k)}(z)}{H(z)}-\frac{R_{2}(z)}{e^{-Q(z)} H(z)}}{1-\frac{R_{1}(z)}{e^{-Q(z)} H(z)}}\right| . \tag{3.3}
\end{equation*}
$$

Now by Hadamard factorization theorem, we obtain $H=\frac{g}{\delta}$, where g is a transcendental entire function and δ is a non-zero polynomial. Let $F_{1}=\frac{H^{\prime}}{H}$. Then $F_{1}=\frac{g^{\prime}}{g}-\frac{\delta^{\prime}}{\delta}$ and so by Lemma 2.6, we have

$$
\begin{equation*}
\frac{H^{(k)}}{H}=F_{1}^{k}+\frac{k(k-1)}{2} F_{1}^{k-2} F_{1}^{\prime}+a_{k} F_{1}^{k-3} F_{1}^{\prime \prime}+b_{k} F_{1}^{k-4}\left(F_{1}^{\prime}\right)^{2}+P_{k-3}\left(F_{1}\right), \tag{3.4}
\end{equation*}
$$

where $a_{k}=\frac{1}{6} k(k-1)(k-2), b_{k}=\frac{1}{8} k(k-1)(k-2)(k-3)$ and $P_{k-3}(F)$ is a differential polynomial with constant coefficients, which vanishes identically for $k \leq 3$ and has degree $k-3$ when $k>3$. Note that

$$
\left(\frac{g^{\prime}}{g}\right)^{\prime}=\frac{g^{\prime \prime}}{g}-\left(\frac{g^{\prime}}{g}\right)^{2},\left(\frac{g^{\prime}}{g}\right)^{\prime \prime}=\frac{g^{\prime \prime \prime}}{g}-3 \frac{g^{\prime \prime}}{g} \frac{g^{\prime}}{g}+2\left(\frac{g^{\prime}}{g}\right)^{3}
$$

$$
\left(\frac{g^{\prime}}{g}\right)^{\prime \prime \prime}=\frac{g^{(4)}}{g}-4 \frac{g^{\prime \prime \prime}}{g} \frac{g^{\prime}}{g}-3\left(\frac{g^{\prime \prime}}{g}\right)^{2}+12 \frac{g^{\prime \prime}}{g}\left(\frac{g^{\prime}}{g}\right)^{2}-6\left(\frac{g^{\prime}}{g}\right)^{4}
$$

and so on. Thus in general we have

$$
\begin{equation*}
\left(\frac{g^{\prime}}{g}\right)^{(i)}=A_{i+1}^{i}\left(\frac{g^{\prime}}{g}\right)^{i+1}+\sum_{\lambda} A_{\lambda}^{i} M_{\lambda}^{i}\left(\frac{g^{\prime}}{g}\right) \tag{3.5}
\end{equation*}
$$

where $M_{\lambda}^{i}\left(\frac{g^{\prime}}{g}\right)=\left(\frac{g^{\prime}}{g}\right)^{q_{1}^{\lambda_{i}}} \ldots\left(\frac{g^{(i+1)}}{g}\right)^{q_{i+1}^{\lambda_{i}}}$ and $q_{1}^{\lambda_{i}}, \ldots, q_{i+1}^{\lambda_{i}}$ are non-negative integers satisfying $\sum_{j=1}^{i+1} q_{j}^{\lambda_{i}} \leq i$ and $A_{\lambda}^{i} \in \mathbb{R}$. Similarly we have

$$
\begin{equation*}
\left(\frac{\delta^{\prime}}{\delta}\right)^{(i)}=A_{i+1}^{i}\left(\frac{\delta^{\prime}}{\delta}\right)^{i+1}+\sum_{\lambda} A_{\lambda}^{i} M_{\lambda}^{i}\left(\frac{\delta^{\prime}}{\delta}\right) \tag{3.6}
\end{equation*}
$$

Now from (3.4), (3.5) and (3.6), we have

$$
\begin{align*}
& \frac{H^{(k)}(z)}{H(z)} \tag{3.7}\\
= & B_{k}^{k}\left(\frac{g^{\prime}(z)}{g(z)}\right)^{k}+\sum_{\lambda} B_{\lambda}^{k}\left(\frac{\delta^{\prime}(z)}{\delta(z)}\right)^{s_{1}^{\lambda_{k}}} \ldots\left(\frac{\delta^{(k)}(z)}{\delta(z)}\right)^{s_{k}^{\lambda_{k}}}\left(\frac{g^{\prime}(z)}{g(z)}\right)^{r_{1}^{\lambda_{k}}} \ldots\left(\frac{g^{(k)}(z)}{g(z)}\right)^{r_{k}^{\lambda_{k}}}+C_{k}^{k}\left(\frac{\delta^{\prime}(z)}{\delta(z)}\right)^{k},
\end{align*}
$$

where $r_{1}^{\lambda_{k}}, \ldots, r_{k}^{\lambda_{k}} \in \mathbb{N} \cup\{0\}$ and $s_{1}^{\lambda_{k}}, \ldots, s_{k}^{\lambda_{k}} \in \mathbb{N} \cup\{0\}$ satisfying $\sum_{j=1}^{k} r_{j}^{\lambda_{i}} \leq k-1, \sum_{j=1}^{k} s_{j}^{\lambda_{i}} \leq k-1$ and $B_{\lambda}^{k}, C_{k}^{k} \in \mathbb{R}$. Since g is a transcendental entire function, it follows that $M(r, g) \rightarrow \infty$ as $r \rightarrow \infty$. Again we let

$$
\begin{equation*}
M(r, g)=\left|g\left(z_{r}\right)\right|, \text { where } z_{r}=r e^{i \theta} \text { and } \theta \in[0,2 \pi) \tag{3.8}
\end{equation*}
$$

Then from (3.8) and Lemma 2.5, there exists a subset $E \subset(1,+\infty)$ with finite logarithmic measure such that for some point $z_{r}=r e^{i \theta}(\theta \in[0,2 \pi))$ satisfying $\left|z_{r}\right|=r \notin E$ and $M(r, g)=\left|g\left(z_{r}\right)\right|$, we have

$$
\begin{equation*}
\frac{g^{(j)}\left(z_{r}\right)}{g\left(z_{r}\right)}=\left(\frac{v(r, g)}{z_{r}}\right)^{j}(1+o(1)) \text { as } r \rightarrow \infty(1 \leq j \leq k) . \tag{3.9}
\end{equation*}
$$

Therefore from (3.7) and (3.9), we have

$$
\begin{align*}
& \frac{H^{(k)}\left(z_{r}\right)}{H\left(z_{r}\right)} \tag{3.10}\\
= & B_{k}^{k}\left(\frac{v(r, g)}{z_{r}}\right)^{k}(1+o(1))+\sum_{\lambda} B_{\lambda}^{k}\left(\frac{\delta^{\prime}\left(z_{r}\right)}{\delta\left(z_{r}\right)}\right)^{s_{1}{\lambda_{k}}_{1}} \ldots\left(\frac{\delta^{(k)}\left(z_{r}\right)}{\delta\left(z_{r}\right)}\right)^{s_{k}^{\lambda_{k}}}\left(\frac{v(r, g)}{z_{r}}\right)^{n_{\lambda}}(1+o(1))+C_{k}^{k}\left(\frac{\delta^{\prime}\left(z_{r}\right)}{\delta\left(z_{r}\right)}\right)^{k} \\
= & \frac{1+o(1)}{z_{r}^{k}}\left[B_{k}^{k} v(r, g)^{k}+\sum_{\lambda} B_{\lambda}^{k}\left(\frac{z_{r} \delta^{\prime}\left(z_{r}\right)}{\delta\left(z_{r}\right)}\right)^{s_{1}{ }_{1}^{k}} \ldots\left(\frac{z_{r} \delta^{(k)}\left(z_{r}\right)}{\delta\left(z_{r}\right)}\right)^{s_{k}^{\lambda_{k}}} z_{r}^{k-n_{\lambda}-s_{\lambda}} v(r, g)^{n_{\lambda}}+C_{k}^{k}\left(\frac{z_{r} \delta^{\prime}(z)}{\delta\left(z_{r}\right)}\right)^{k}\right],
\end{align*}
$$

where $1 \leq s_{\lambda}=\sum_{j=1}^{k} s_{j}^{\lambda_{k}} \leq k-1$ and $1 \leq n_{\lambda}=\sum_{j=1}^{k} r_{j}^{\lambda_{k}} \leq k-1$.
Let $\delta R_{i}=\frac{a_{1 i}}{a_{2 i}}$, where $a_{1 i}$ and $a_{2 i}(\not \equiv 0)$ are polynomials for $i=1,2$. Let $a_{i m_{i}} z^{m_{i}}$ and $b_{i n_{i}} z^{n_{i}}$ denote the leading terms in the polynomials $a_{1 i}(z)$ and $a_{2 i}(z)$ respectively for $i=1,2$. Taking $\varepsilon=\frac{1}{2}$, we get from Lemma 2.2 that

$$
\frac{1}{2}\left|a_{i m_{i}}\right| r^{m_{i}} \leq\left|a_{1 i}\left(z_{r}\right)\right| \leq \frac{3}{2}\left|a_{i m_{i}}\right| r^{m_{i}} \quad \text { and } \quad \frac{1}{2}\left|b_{i n_{i}}\right| r^{n_{i}} \leq\left|a_{2 i}\left(z_{r}\right)\right| \leq \frac{3}{2}\left|b_{i n_{i}}\right| r^{n_{i}}
$$

for $i=1,2$. Therefore

$$
\left|\delta\left(z_{r}\right) R_{i}\left(z_{r}\right)\right| \leq 3 \frac{\left|a_{i m_{i}}\right| r^{m_{i}}}{\left.\left|b_{i n_{i}}\right|\right|^{n_{i}}}
$$

for $i=1,2$. Since g is a transcendental entire function, we know that $M(r, g)$ increases faster than the maximum modulus of any polynomial and hence faster than any power of r.
First we suppose Q is a constant polynomial. Then from (3.8), we have

$$
\lim _{r \rightarrow+\infty}\left|\frac{\delta\left(z_{r}\right) R_{i}\left(z_{r}\right)}{e^{-Q\left(z_{r}\right)} g\left(z_{r}\right)}\right| \leq \lim _{r \rightarrow+\infty} 3 \frac{\left|a_{i m_{i} \mid}\right| r^{m_{i}}}{\left|b_{i n_{i}}\right| r^{n_{i}} M(r, g)}=0(i=1,2)
$$

Next we suppose Q is a non-constant polynomial. We claim that $e^{-Q} g$ is a transcendental entire function. If possible suppose that $e^{-Q} g=p$, where p is a non-zero polynomial. Therefore $g=p e^{Q}$ and so by Lemma 2.1, we have $T(r, g)=T\left(r, e^{Q}\right)+S\left(r, e^{Q}\right)$. This shows that $\rho(g)=\rho\left(e^{Q}\right)$. On the other hand we have $H=\frac{g}{\delta}$, i.e., $P(f)=\frac{g}{\delta}$ and so by Lemma 2.1, we have $n T(r, f)+S(r, f)=T(r, g)+S(r, g)$. This shows that $\rho(f)=\rho(g)$ and so $\rho(f)=\rho\left(e^{Q}\right)=\operatorname{deg}(Q)$, which contradicts the fact that $\operatorname{deg}(Q)<\rho(f)$. Hence $e^{-Q} g$ is a transcendental entire function. Again since e^{-Q} is a transcendental entire function, it follows that $\left|e^{-Q(z)}\right|>C|z|^{k_{1}}$ as $|z| \rightarrow \infty$, where $C \in \mathbb{R}^{+}$and $k_{1} \in \mathbb{N}$. Then from (3.8), we have

$$
\lim _{r \rightarrow+\infty}\left|\frac{\delta\left(z_{r}\right) R_{i}\left(z_{r}\right)}{e^{-Q\left(z_{r}\right)} g\left(z_{r}\right)}\right| \leq \lim _{r \rightarrow+\infty} \frac{\left|\delta\left(z_{r}\right) R_{i}\left(z_{r}\right)\right|}{C\left|z_{r}\right|^{k_{1}}\left|g\left(z_{r}\right)\right|} \leq \lim _{r \rightarrow+\infty} \frac{3}{C} \frac{\left|a_{i m_{i}}\right| r^{m_{i}}}{\left|b_{i n_{i}}\right| r^{n_{i}} r^{k_{1}} M(r, g)}=0(i=1,2)
$$

Therefore in either case one may conclude that

$$
\begin{equation*}
\lim _{r \rightarrow+\infty}\left|\frac{R_{i}\left(z_{r}\right)}{e^{-Q\left(z_{r}\right)} H\left(z_{r}\right)}\right|=\lim _{r \rightarrow+\infty}\left|\frac{\delta\left(z_{r}\right) R_{i}\left(z_{r}\right)}{e^{-Q\left(z_{r}\right)} g\left(z_{r}\right)}\right| \leq 0(i=1,2) . \tag{3.11}
\end{equation*}
$$

Also we have

$$
\begin{equation*}
\left|\frac{z_{r} \delta^{(i)}\left(z_{r}\right)}{\delta\left(z_{r}\right)}\right| \leq C_{0} \text { as }\left|z_{r}\right|=r \rightarrow \infty \quad(i=1,2, \ldots, k) \tag{3.12}
\end{equation*}
$$

Now from Lemma 2.4, there exists $\left\{z_{j}=r_{j} e^{i \theta_{j}}\right\}$ such that $\left|g\left(z_{j}\right)\right|=M\left(r_{j}, g\right), \theta_{j} \in[0,2 \pi), \lim _{j \rightarrow \infty} \theta_{j}=\theta_{0} \in$ $[0,2 \pi), r_{j} \notin E$. Then for any given ε satisfying

$$
0<\varepsilon<\min _{\lambda} \frac{\left(k-n_{\lambda}\right)(\rho(g)-1)+s_{\lambda}}{n_{\lambda}+k}
$$

and sufficiently large r_{j}, we have

$$
\begin{equation*}
r_{j}^{\rho(g)-\varepsilon}<v\left(r_{j}, g\right)<r_{j}^{\rho(g)+\varepsilon} . \tag{3.13}
\end{equation*}
$$

Then from (3.12) and (3.13), we have

$$
\begin{align*}
& \left|B_{\lambda}^{k}\left(\frac{z_{j} \delta^{\prime}\left(z_{j}\right)}{\delta\left(z_{j}\right)}\right)^{s_{1}^{\lambda_{k}}} \cdots\left(\frac{z_{j} \delta^{(k)}\left(z_{j}\right)}{\delta\left(z_{j}\right)}\right)^{s_{k}^{\lambda_{k}}} z_{j}^{k-n_{\lambda}-s_{\lambda}} v(r, g)^{n_{\lambda}}(1+o(1))\right| \tag{3.14}\\
\leq & \left|B_{\lambda}^{k}\right| C_{0}^{s_{\lambda}} r_{j}^{k-n_{\lambda}-s_{\lambda}} \times r_{j}^{(\rho(g)+\varepsilon) n_{\lambda}} \\
= & \left|B_{\lambda}^{k}\right| C_{0}^{s_{\lambda}} r_{j}^{n_{\lambda} \rho(g)+n_{\lambda} \varepsilon+k-n_{\lambda}-s_{\lambda}} .
\end{align*}
$$

Since $n_{\lambda} \rho(g)+n_{\lambda} \varepsilon+k-n_{\lambda}-s_{\lambda}<k(\rho(g)-\varepsilon)$, it follows from (3.13) and (3.14) that

$$
\begin{align*}
& \left|B_{\lambda}^{k}\left(\frac{z_{j} \delta^{\prime}\left(z_{j}\right)}{\delta\left(z_{j}\right)}\right)^{s_{1}^{\lambda_{k}}} \cdots\left(z_{j} \frac{\delta^{(k)}\left(z_{j}\right)}{\delta\left(z_{j}\right)}\right)^{s_{k}^{\lambda_{k}}} z_{j}^{k-n_{\lambda}-s_{\lambda}} v(r, g)^{n_{\lambda}}(1+o(1))\right| \tag{3.15}\\
< & C_{1} r_{j}^{k(\rho(g)-2 \varepsilon)}=O\left(v\left(r_{j}, g\right)^{k}\right)
\end{align*}
$$

as $r_{j} \rightarrow+\infty, r_{j} \notin E$, where $C_{1}>0$. Also from (3.12) and (3.13), we have

$$
\begin{equation*}
\left|C_{k}^{k}\left(\frac{z_{j} \delta^{\prime}\left(z_{j}\right)}{\delta\left(z_{j}\right)}\right)^{k}\right| \leq C_{2}<C_{2} r_{j}^{k(\rho(g)-\varepsilon)}=O\left(v\left(r_{j}, g\right)^{k}\right) \tag{3.16}
\end{equation*}
$$

as $r_{j} \rightarrow+\infty, r_{j} \notin E$, where $C_{2}>0$. Since g is of finite order, from Lemma 2.3, we have

$$
\begin{equation*}
\log v(r, g)=O(\log r) \tag{3.17}
\end{equation*}
$$

Therefore from (3.3), (3.10), (3.11), (3.15), (3.16) and (3.17), we get

$$
\left|c_{m}\right| r_{j}^{m}(1+o(1))=\left|\gamma\left(z_{j}\right)\right|=\left|\log \frac{1}{\beta\left(z_{j}\right)} \frac{\frac{H^{(k)}\left(z_{j}\right)}{H\left(z_{j}\right)}-\frac{R_{2}\left(z_{j}\right)}{e^{-Q\left(z_{j}\right)} H\left(z_{j}\right)}}{1-\frac{R_{2}\left(z_{j}\right)}{e^{-Q\left(z_{j}\right)} H\left(z_{j}\right)}}\right|=O\left(\log r_{j}\right)
$$

for $\left|z_{j}\right|=r_{j} \rightarrow+\infty, r_{j} \notin E$, which is impossible. Hence γ is a constant polynomial. Without loss of generality we assume that

$$
\begin{align*}
& H^{(k)}-\alpha_{2} \equiv \beta\left(H-\alpha_{1}\right) \\
\text { i.e., } & H^{(k)} \equiv \beta H+\alpha_{2}-\alpha_{1} \beta . \tag{3.18}
\end{align*}
$$

If $\alpha_{2}-\alpha_{1} \beta \equiv 0$, then from (3.18), we have $H^{(k)} \equiv \frac{\alpha_{2}}{\alpha_{1}} H$, which contradicts our supposition. Hence $\alpha_{2}-\alpha_{1} \beta \not \equiv 0$. In this case also one can easily conclude that f_{1} has only finite number of zeros. Since f_{1} is of finite order, we can take $f_{1}=P_{1} e^{Q_{1}}$, where P_{1} is a non-zero rational function and Q_{1} is a non-constant polynomial such that $\operatorname{deg}\left(Q_{1}\right) \geq 1$. Then by induction we get

$$
\begin{equation*}
b_{i}\left(\left(f_{1}^{l+i}\right)^{(k)}-\beta f_{1}^{l+i}\right)=\mathcal{P}_{i} e^{(l+i) Q_{1}} \tag{3.19}
\end{equation*}
$$

where $\mathcal{P}_{i}(i=0,1,2, \ldots, m)$ are rational functions. Since $H^{(k)}-\beta H \not \equiv 0$, it follows that $\mathcal{P}_{i} \not \equiv 0$ for at least one $i(=0,1, \ldots, m)$. Now from (3.18) and (3.19), we obtain

$$
\begin{equation*}
\mathcal{P}_{m} e^{(l+m) Q_{1}}+\ldots+\mathcal{P}_{1} e^{(l+1) Q_{1}}+\mathcal{P}_{0} e^{l Q_{1}} \equiv \alpha_{2}-\alpha_{1} \beta \tag{3.20}
\end{equation*}
$$

Then from (3.20) and Lemma 2.1, we have $(l+m) T\left(r, e^{Q_{1}}\right)=S\left(r, e^{Q_{1}}\right)$, which is impossible.
Sub-case 1.2. Suppose $\rho(f)=+\infty$. Obviously $\rho(H)=+\infty$. Since $\rho\left(\alpha_{1}\right)<+\infty$, it follows that $\rho(F)=+\infty$. Let $H_{i}=\frac{f_{1}^{l+i}}{\alpha_{1}}$, where $i=0,1,2, \ldots, m$. Then clearly H_{i} is of infinite order for $i=0,1, \ldots, m$. Now by Lemma 2.10, there exist $\left\{w_{j}\right\}_{j} \rightarrow \infty(j \rightarrow \infty)$ such that for every $N>0$, if j is sufficiently large

$$
\begin{equation*}
H_{i}^{\#}\left(w_{j}\right)>\left|w_{j}\right|^{N}, \text { for } i=0,1, \ldots, m \tag{3.21}
\end{equation*}
$$

Note that α_{1} has finitely many poles and zeros. Since f_{1} is a transcendental meromorphic with finitely many poles, it follows that H_{i} has finitely many poles, where $i=0,1, \ldots, m$. So there exists a $r>0$ such that $H_{i}(z)$ is analytic and $\alpha_{1}(z) \neq 0, \infty$ in $D=\{z:|z| \geq r\}$, where $i=0,1, \ldots, m$. Also since $w_{j} \rightarrow \infty$ as $j \rightarrow \infty$, without loss of generality we may assume that $\left|w_{j}\right| \geq r+1$ for all j. Let $D_{1}=\{z:|z|<1\}$ and

$$
H_{i, j}(z)=H_{i}\left(w_{j}+z\right)=\frac{f_{1}^{l+i}\left(w_{j}+z\right)}{\alpha_{1}\left(w_{j}+z\right)}, \text { for } i=0,1, \ldots, m
$$

Since $\left|w_{j}+z\right| \geq\left|w_{j}\right|-|z|$, it follows that $w_{j}+z \in D$ for all $z \in D_{1}$. Also since $H_{i}(z)$ is analytic in D, it follows that $H_{i, j}(z)$ is analytic in D_{1} for all j and for $i=0,1, \ldots, m$. Thus we have structured a family $\left(H_{i, j}\right)_{j}$ of holomorphic functions for $i=0,1, \ldots, m$. Note that $H_{i, j}^{\#}(0)=H_{i}^{\#}\left(w_{j}\right) \rightarrow \infty$ as $j \rightarrow \infty$, where $i=0,1, \ldots, m$. Now it follows from Marty's criterion that $\left(H_{i, j}\right)_{j}$ is not normal at $z=0$ for $i=0,1, \ldots, m$. Therefore by Lemma 2.7, there exist
(i) points $z_{j} \in D_{1}$ such that $z_{j} \rightarrow 0$ as $j \rightarrow \infty$,
(ii) positive numbers $\rho_{j}, \rho_{j} \rightarrow 0^{+}$,
(iii) a subsequence $\left\{H_{i}\left(\omega_{j}+z_{j}+\rho_{j} \zeta\right)=H_{i, j}\left(z_{j}+\rho_{j} \zeta\right)\right\}$ of $\left\{H_{i}\left(\omega_{j}+z\right)\right\}$
such that

$$
\begin{equation*}
g_{i, j}(\zeta)=H_{i, j}\left(z_{j}+\rho_{j} \zeta\right)=\frac{f_{1}^{l+i}\left(w_{j}+z_{j}+\rho_{j} \zeta\right)}{\alpha_{1}\left(w_{j}+z_{j}+\rho_{j} \zeta\right)} \rightarrow g_{i}(\zeta) \tag{3.22}
\end{equation*}
$$

spherically locally uniformly in \mathbb{C}, where $g_{i}(\zeta)$ is a non-constant meromorphic function such that $g_{i}^{\#}(\zeta) \leq$ $g_{i}^{\#}(0)=1$ for $i=0,1, \ldots, m$. Now from Lemma 2.9, we see that $\rho\left(g_{i}\right) \leq 1$ for $i=0,1, \ldots, m$. Also in the proof of Zalcman's lemma we have

$$
\begin{equation*}
\rho_{j} \leq \frac{M}{H_{i}^{\#}\left(w_{j}\right)} \tag{3.23}
\end{equation*}
$$

for a positive number M, where $i=0,1, \ldots, m$. By Hurwitz's theorem we see that the multiplicity of every zero of g_{i} is a multiple of $l+i$ for $i=0,1, \ldots, m$. Hence we can take $g_{i}=h_{i}^{l+i}$, where h_{i} is a non-constant entire function of order at least one for $i=0,1, \ldots, m$. Now from (3.21) and (3.23), we deduce that for every $N>0$,

$$
\begin{equation*}
\rho_{j} \leq M\left|w_{j}\right|^{-N} \tag{3.24}
\end{equation*}
$$

for sufficiently large values of j. We now want prove that

$$
\begin{equation*}
\rho_{j}^{k} \frac{\left(f_{1}^{l+i}\right)^{(k)}\left(w_{j}+z_{j}+\rho_{j} \zeta\right)}{\alpha_{1}\left(w_{j}+z_{j}+\rho_{j} \zeta\right)} \rightarrow g_{i}^{(k)}(\zeta)=\left(h_{i}^{l+i}\right)^{(k)}, \text { for } i=0,1, \ldots, m \tag{3.25}
\end{equation*}
$$

From (3.22), we see that

$$
\begin{align*}
\rho_{j} \frac{\left(f_{1}^{l+i}\right)^{\prime}\left(w_{j}+z_{j}+\rho_{j} \zeta\right)}{\alpha_{1}\left(w_{j}+z_{j}+\rho_{j} \zeta\right)} & =g_{i, j}^{\prime}(\zeta)+\rho_{j} \frac{\alpha_{1}^{\prime}\left(w_{j}+z_{j}+\rho_{j} \zeta\right)}{\alpha_{1}^{2}\left(w_{j}+z_{j}+\rho_{j} \zeta\right)} f_{1}^{l+i}\left(w_{j}+z_{j}+\rho_{j} \zeta\right) \tag{3.26}\\
& =g_{i, j}^{\prime}(\zeta)+\rho_{j} \frac{\alpha_{1}^{\prime}\left(w_{j}+z_{j}+\rho_{j} \zeta\right)}{\alpha_{1}\left(w_{j}+z_{j}+\rho_{j} \zeta\right)} g_{i, j}(\zeta) .
\end{align*}
$$

Also we see that

$$
\begin{equation*}
\frac{\alpha_{1}^{\prime}\left(w_{j}+z_{j}+\rho_{j} \zeta\right)}{\alpha_{1}\left(w_{j}+z_{j}+\rho_{j} \zeta\right)}=\frac{P_{1}^{\prime}\left(w_{j}+z_{j}+\rho_{j} \zeta\right)}{P_{1}\left(w_{j}+z_{j}+\rho_{j} \zeta\right)}+Q^{\prime}\left(w_{j}+z_{j}+\rho_{j} \zeta\right) \tag{3.27}
\end{equation*}
$$

Observe that

$$
\frac{P_{1}^{\prime}\left(w_{j}+z_{j}+\rho_{j} \zeta\right)}{P_{1}\left(w_{j}+z_{j}+\rho_{j} \zeta\right)} \rightarrow 0 \text { as } j \rightarrow \infty
$$

Suppose $N>s$, where $s=\operatorname{deg}\left(Q^{\prime}\right)$. Therefore from (3.24), we have

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \rho_{j}\left|w_{j}\right|^{s} \leq \lim _{j \rightarrow \infty} M\left|w_{j}\right|^{s-N}=0 \tag{3.28}
\end{equation*}
$$

Note that $\left|Q^{\prime}\left(w_{j}+z_{j}+\rho_{j} \zeta\right)\right|=O\left(\left|w_{j}\right|^{s}\right)$ and so from (3.28), we have

$$
\begin{equation*}
\rho_{j}\left|Q^{\prime}\left(w_{j}+z_{j}+\rho_{j} \zeta\right)\right|=O\left(\rho_{j}\left|w_{j}\right|^{s}\right) \rightarrow 0(\text { as } j \rightarrow \infty) \tag{3.29}
\end{equation*}
$$

Now from (3.27) and (3.29), we conclude that

$$
\begin{equation*}
\rho_{j} \frac{\alpha_{1}^{\prime}\left(w_{j}+z_{j}+\rho_{j} \zeta\right)}{\alpha_{1}\left(w_{j}+z_{j}+\rho_{j} \zeta\right)} \rightarrow 0 \quad(\text { as } j \rightarrow \infty) . \tag{3.30}
\end{equation*}
$$

Also from (3.22), (3.26) and (3.30), we observe that

$$
\rho_{j} \frac{\left(f_{1}^{l+i}\right)^{\prime}\left(w_{j}+z_{j}+\rho_{j} \zeta\right)}{\alpha_{1}\left(w_{j}+z_{j}+\rho_{j} \zeta\right)} \rightarrow g_{i}^{\prime}(\zeta) \text { for } i=0,1,2, \ldots, m
$$

Suppose

$$
\rho_{j}^{p} \frac{\left(f_{1}^{l+i}\right)^{(p)}\left(w_{j}+z_{j}+\rho_{j} \zeta\right)}{\alpha_{1}\left(w_{j}+z_{j}+\rho_{j} \zeta\right)} \rightarrow g_{i}^{(p)}(\zeta) \text { for } i=0,1, \ldots, m
$$

Let

$$
G_{i, j}(\zeta)=\rho_{j}^{p} \frac{\left(f_{1}^{l+i}\right)^{(p)}\left(w_{j}+z_{j}+\rho_{j} \zeta\right)}{\alpha_{1}\left(w_{j}+z_{j}+\rho_{j} \zeta\right)} \text { for } i=0,1, \ldots, m
$$

Then $G_{i, j}(\zeta) \rightarrow g_{i}^{(p)}(\zeta)$ for $i=0,1, \ldots, m$. Note that

$$
\begin{align*}
& \rho_{j}^{p+1} \frac{\left(f_{1}^{l+i}\right)^{(p+1)}}{\alpha_{1}\left(w_{j}+z_{j}+\rho_{j} \zeta\right)} \tag{3.31}\\
= & G_{i, j}^{\prime}(\zeta)+\rho_{j}^{p+1} \frac{\alpha_{1}^{\prime}\left(w_{j}+z_{j}+\rho_{j} \zeta\right)}{\alpha_{1}^{2}\left(w_{j}+z_{j}+\rho_{j} \zeta\right)}\left(f_{1}^{l+i}\right)^{(p)}\left(w_{j}+z_{j}+\rho_{j} \zeta\right) \\
= & G_{i, j}^{\prime}(\zeta)+\rho_{j} \frac{\alpha_{1}^{\prime}\left(w_{j}+z_{j}+\rho_{j} \zeta\right)}{\alpha_{1}\left(w_{j}+z_{j}+\rho_{j} \zeta\right)} G_{i, j}(\zeta) \text { for } i=0,1, \ldots, m .
\end{align*}
$$

Now from (3.30) and (3.31), we see that

$$
\rho_{j}^{p+1} \frac{\left(f_{1}^{l+i}\right)^{(p+1)}\left(w_{j}+z_{j}+\rho_{j} \zeta\right)}{\alpha_{1}\left(w_{j}+z_{j}+\rho_{j} \zeta\right)} \rightarrow G_{i, j}^{\prime}(\zeta),
$$

$$
\text { i.e., } \quad \rho_{j}^{p+1} \frac{\left(f_{1}^{l+i}\right)^{(p+1)}\left(w_{j}+z_{j}+\rho_{j} \zeta\right)}{\alpha_{1}\left(w_{j}+z_{j}+\rho_{j} \zeta\right)} \rightarrow g_{i, j}^{(p+1)}(\zeta) \text { for } i=0,1, \ldots, m \text {. }
$$

Then by mathematical induction we get the desired result (3.25).
By Hadamard's factorization theorem we have $h_{0}(\zeta)=\mathcal{G}(\zeta) e^{Q_{0}(\zeta)}$, where $\mathcal{G}(\zeta)$ is the canonical product formed with the zeros of $h_{0}(\zeta)$ and $Q_{0}(\zeta)$ is a polynomial such that $\operatorname{deg}\left(Q_{0}\right) \leq 1$. Suppose that $h_{0}\left(\zeta_{0}\right)=0$. Then clearly $g_{0}\left(\zeta_{0}\right)=0$. Therefore by Hurwitz's theorem there exists a sequence $\left(\zeta_{j}\right)_{j}, \zeta_{j} \rightarrow \zeta_{0}$ such that (for sufficiently large j)

$$
g_{0, j}\left(\zeta_{j}\right)=H_{0, j}\left(z_{j}+\rho_{j} \zeta_{j}\right)=0 .
$$

Consequently $f_{1}^{l}\left(w_{j}+z_{j}+\rho_{j} \zeta_{j}\right)=0$ and so $f_{1}^{l+i}\left(w_{j}+z_{j}+\rho_{j} \zeta_{j}\right)=0$, i.e., $g_{i, j}\left(\zeta_{j}\right)=0$ for $i=0,1, \ldots, m$. Then from (3.22), we have for $i=1,2, \ldots, m$

$$
h_{i}^{l+i}\left(\zeta_{0}\right)=g_{i}\left(\zeta_{0}\right)=\lim _{j \rightarrow \infty} g_{i, j}\left(\zeta_{j}\right)=0
$$

Consequently $h_{0}, h_{1}, \ldots, h_{m}$ have the same zeros with same multiplicities. Therefore we can easily conclude that

$$
h_{i}(\zeta)=\mathcal{G}_{0}(\zeta) e^{Q_{i}(\zeta)}
$$

where $Q_{i}(\zeta)$ is a polynomial such that $\operatorname{deg}\left(Q_{i}(\zeta)\right) \leq 1$ for $i=1,2, \ldots, m$. Again from (3.22), we have

$$
\begin{equation*}
\frac{H\left(w_{j}+z_{j}+\rho_{j} \zeta\right)}{\alpha_{1}\left(w_{j}+z_{j}+\rho_{j} \zeta\right)}=\sum_{i=0}^{m} b_{i} \frac{\left(f_{1}^{l+i}\right)\left(w_{j}+z_{j}+\rho_{j} \zeta\right)}{\alpha_{1}\left(w_{j}+z_{j}+\rho_{j} \zeta\right)} \rightarrow \sum_{i=0}^{m} b_{i} g_{i}(\zeta)=\sum_{i=0}^{m} b_{i} h_{i}^{l+i}(\zeta)=g(\zeta), \text { say. } \tag{3.32}
\end{equation*}
$$

Note that

$$
\begin{array}{ll}
& \left(\frac{H\left(w_{j}+z_{j}+\rho_{j} \zeta\right)}{\alpha_{1}\left(w_{j}+z_{j}+\rho_{j} \zeta\right)}\right)^{\prime}=\sum_{i=0}^{m} b_{i}\left(\frac{\left(f_{1}^{l+i}\right)\left(w_{j}+z_{j}+\rho_{j} \zeta\right)}{\alpha_{1}\left(w_{j}+z_{j}+\rho_{j} \zeta\right)}\right)^{\prime} \\
\text { i.e., } \quad & \rho_{j} \frac{H^{\prime}\left(w_{j}+z_{j}+\rho_{j} \zeta\right)}{\alpha_{1}\left(w_{j}+z_{j}+\rho_{j} \zeta\right)}-\rho_{j} \frac{\alpha_{1}^{\prime}\left(w_{j}+z_{j}+\rho_{j} \zeta\right)}{\alpha_{1}\left(w_{j}+z_{j}+\rho_{j} \zeta\right)} \frac{H\left(w_{j}+z_{j}+\rho_{j} \zeta\right)}{\alpha_{1}\left(w_{j}+z_{j}+\rho_{j} \zeta\right)} \\
= & \sum_{i=0}^{m}\left(b_{i} \rho_{j} \frac{\left(f_{1}^{l+i}\right)^{\prime}\left(w_{j}+z_{j}+\rho_{j} \zeta\right)}{\alpha_{1}\left(w_{j}+z_{j}+\rho_{j} \zeta\right)}-\rho_{j} \frac{\alpha_{1}^{\prime}\left(w_{j}+z_{j}+\rho_{j} \zeta\right)}{\alpha_{1}\left(w_{j}+z_{j}+\rho_{j} \zeta\right)} \frac{f_{1}^{l+i}\left(w_{j}+z_{j}+\rho_{j} \zeta\right)}{\alpha_{1}\left(w_{j}+z_{j}+\rho_{j} \zeta\right)}\right)
\end{array}
$$

and so from (3.25), (3.30) and (3.32), we have

$$
\frac{H^{\prime}\left(w_{j}+z_{j}+\rho_{j} \zeta\right)}{\alpha_{1}\left(w_{j}+z_{j}+\rho_{j} \zeta\right)} \rightarrow \sum_{i=0}^{m} b_{i} g_{i}^{\prime}(\zeta)=\sum_{i=0}^{m} b_{i}\left(h_{i}^{l+i}\right)^{\prime}(\zeta)=g^{\prime}(\zeta) .
$$

Therefore by mathematical induction we have

$$
\begin{equation*}
\frac{H^{(k)}\left(w_{j}+z_{j}+\rho_{j} \zeta\right)}{\alpha_{1}\left(w_{j}+z_{j}+\rho_{j} \zeta\right)} \rightarrow \sum_{i=0}^{m} b_{i} g_{i}^{(k)}(\zeta)=\sum_{i=0}^{m} b_{i}\left(h_{i}^{l+i}\right)^{(k)}(\zeta)=g^{(k)}(\zeta) \tag{3.33}
\end{equation*}
$$

First we prove that $g^{(k)}=0 \Rightarrow g=1$. Note that

$$
\begin{align*}
\left|\frac{\alpha_{2}\left(w_{j}+z_{j}+\rho_{j} \zeta\right)}{\alpha_{1}\left(w_{j}+z_{j}+\rho_{j} \zeta\right)}\right| & =\left|\frac{R_{2}\left(w_{j}+z_{j}+\rho_{j} \zeta\right)}{R_{1}\left(w_{j}+z_{j}+\rho_{j} \zeta\right)}\right|=\left|\frac{P_{2}\left(w_{j}+z_{j}+\rho_{j} \zeta\right)}{P_{1}\left(w_{j}+z_{j}+\rho_{j} \zeta\right)}\right| \tag{3.34}\\
& =\left\{\begin{array}{c}
O(1), \quad \text { if } \operatorname{deg}\left(P_{2}\right) \leq \operatorname{deg}\left(P_{1}\right) \\
O\left(\left|w_{j}\right|^{t}\right), \quad \text { if } \operatorname{deg}\left(P_{2}\right)>\operatorname{deg}\left(P_{1}\right),
\end{array}\right.
\end{align*}
$$

where $t=\operatorname{deg}\left(P_{2}\right)-\operatorname{deg}\left(P_{1}\right)>0$. Now let $k N>t$. Therefore from (3.24), we have

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \rho_{j}^{k}\left|w_{j}\right|^{t} \leq \lim _{j \rightarrow \infty} M^{k}\left|w_{j}\right|^{t-k N}=0 \tag{3.35}
\end{equation*}
$$

Since $\rho_{j} \rightarrow 0$ as $j \rightarrow \infty$, from (3.34) and (3.35), we have

$$
\begin{equation*}
\rho_{j}^{k}\left|\frac{\alpha_{2}\left(w_{j}+z_{j}+\rho_{j} \zeta\right)}{\alpha_{1}\left(w_{j}+z_{j}+\rho_{j} \zeta\right)}\right| \rightarrow 0 \quad(\text { as } j \rightarrow \infty) \tag{3.36}
\end{equation*}
$$

Now from (3.25) and (3.36), we see that

$$
\begin{equation*}
\rho_{j}^{k} \frac{H^{(k)}\left(w_{j}+z_{j}+\rho_{j} \zeta\right)-\alpha_{2}\left(w_{j}+z_{j}+\rho_{j} \zeta\right)}{\alpha_{1}\left(w_{j}+z_{j}+\rho_{j} \zeta\right)} \rightarrow g^{(k)}(\zeta) . \tag{3.37}
\end{equation*}
$$

Suppose that $g^{(k)}\left(\xi_{0}\right)=0$. Then by (3.37) and Hurwitz's Theorem there exists a sequence $\left(\xi_{j}\right)_{j}, \xi_{j} \rightarrow \xi_{0}$ such that (for sufficiently large j) $H^{(k)}\left(w_{j}+z_{j}+\rho_{j} \xi_{j}\right)=\alpha_{2}\left(w_{j}+z_{j}+\rho_{j} \xi_{j}\right)$. By the given condition we have $H\left(w_{j}+z_{j}+\rho_{j} \xi_{j}\right)=\alpha_{1}\left(w_{j}+z_{j}+\rho_{j} \xi_{j}\right)$. Therefore from (3.22), we have

$$
g\left(\xi_{0}\right)=\lim _{j \rightarrow \infty} \frac{H\left(w_{j}+z_{j}+\rho_{j} \xi_{j}\right)}{\alpha_{1}\left(w_{j}+z_{j}+\rho_{j} \xi_{j}\right)}=1
$$

Thus $g^{(k)}=0 \Rightarrow g=1$. Note that $\mathcal{G}_{0}=0 \Rightarrow g=0$. Since $l \geq k+1$, it follows that $\mathcal{G}_{0}=0 \Rightarrow g^{(k)}=0$. Since $g^{(k)}=0 \Rightarrow g=1$, it follows that $\mathcal{G}_{0}=0 \Rightarrow g=1$. Therefore we arrive at a contradiction. Hence one can
easily conclude that $\mathcal{G}_{0} \neq 0$. Therefore $h_{i} \neq 0$ and so $g_{i} \neq 0$ for $i=0,1, \ldots, m$. Hence by Hurwitz's theorem one can easily conclude that $f_{1} \neq 0$.

Since $\rho\left(f_{1}\right)=+\infty$, then for any given large $M_{0}>0$ and sufficiently large r, we have $T\left(r, f_{1}\right)>r^{M_{0}}$. Let $Q(z)=\sum_{j=0}^{t} e_{1 j} z^{j}$, where $e_{1 t} \neq 0$. Clearly $T\left(r, e^{Q}\right) \sim \frac{\mid e_{1 t} r^{t}}{\pi} r^{t}$ Let us take $M_{0}>t$. Then $\frac{T\left(r, e^{Q}\right)}{T\left(r, f_{1}\right)} \rightarrow 0$ as $r \rightarrow \infty$. This shows that e^{Q} is a small function f_{1} and so α_{i} is a small function of H for $i=1,2$. Note that

$$
\begin{align*}
\bar{N}(r, 1 ; F) & \leq \bar{N}\left(r, 0 ; \frac{G-F}{F}\right)+S\left(r, f_{1}\right) \tag{3.38}\\
& \leq T\left(r, \frac{G-F}{F}\right)+S\left(r, f_{1}\right) \\
& \leq T\left(r, \frac{G}{F}\right)+S\left(r, f_{1}\right) \\
& =N\left(r, \infty ; \frac{R_{1}}{R_{2}} \frac{H^{(k)}}{H}\right)+m\left(r, \infty ; \frac{R_{1}}{R_{2}} \frac{H^{(k)}}{H}\right)+S\left(r, f_{1}\right) \\
& \leq N\left(r, 0 ; P_{1}\left(f_{1}\right)\right)+S\left(r, f_{1}\right) \\
& \leq m T\left(r, f_{1}\right)+S\left(r, f_{1}\right)
\end{align*}
$$

Now from (3.38), Lemma 2.1 and using the second fundamental theorem for small function (see [20]), we have

$$
(l+m) T\left(r, f_{1}\right) \leq \bar{N}(r, 0 ; F)+\bar{N}(r, \infty ; F)+\bar{N}(r, 1 ; F)+S\left(r, f_{1}\right) \leq 2 m T\left(r, f_{1}\right)+S\left(r, f_{1}\right)
$$

which is impossible as $l>m$.
Case 2. Suppose $H^{(k)} \equiv \frac{\alpha_{2}}{\alpha_{1}} H$. If furthermore $\alpha_{1} \equiv \alpha_{2}$, then we have

$$
\begin{equation*}
(P(f))^{(k)} \equiv P(f) \text {, i.e., } \sum_{i=0}^{m} b_{i}\left(f_{1}^{l+i}-\left(f_{1}^{l+i}\right)^{(k)}\right) \equiv 0 \tag{3.39}
\end{equation*}
$$

If z_{1} is a pole of f_{1} of multiplicity p_{1}, then z_{1} will be a pole of $(P(f))^{(k)}$ of multiplicity $n p_{1}+k$ whereas z_{1} will be a pole of $P(f)$ of multiplicity $n p_{1}$. Therefore from (3.39), we arrive at a contradiction. Hence f_{1} is a transcendental entire function. let z_{2} be a zero of f_{1} of multiplicity p_{2}. Then z_{2} will be a zero of $P(f)$ and $(P(f))^{(k)}$ of multiplicities $l p_{2}$ and $l p_{2}-k$ respectively. Since $l \geq k+1$, from (3.39), we arrive at a contradiction. Therefore we conclude that $f_{1} \neq 0$. Since f_{1} is a transcendental entire function having no zeros, we may take $f_{1}=e^{\alpha}$, where α is a non-constant entire function. Let

$$
G_{i}=f_{1}^{l+i}=e^{\delta_{i}}, i=0,1, \ldots, m
$$

where $\delta_{i}=(n+i) \alpha$. By Lemma 2.1, we have $T\left(r, G_{i}\right)=(l+i) T\left(r, f_{1}\right)+S\left(r, f_{1}\right)$ and so $S\left(r, G_{i}\right)=S\left(r, f_{1}\right)$, $i=0,1, \ldots, m$. Let

$$
\mathcal{H}_{i}=\frac{G_{i}^{\prime}}{G_{i}}=\delta_{i}^{\prime}, i=0,1, \ldots, m
$$

Clearly

$$
T\left(r, \mathcal{H}_{i}\right)=N\left(r, \infty ; \frac{G_{i}^{\prime}}{G_{i}}\right)+m\left(r, \frac{G_{i}^{\prime}}{G_{i}}\right)=\bar{N}\left(r, \infty ; G_{i}\right)+\bar{N}\left(r, 0 ; G_{i}\right)+S\left(r, G_{i}\right)=S\left(r, f_{1}\right)
$$

for $i=0,1, \ldots, m$. Therefore $T\left(r, \mathcal{H}_{i}^{(p)}\right) \leq(p+1) T\left(r, \mathcal{H}_{i}\right)+S\left(r, \mathcal{H}_{i}\right)=S\left(r, f_{1}\right)$, where $p \in \mathbb{N}$ and $i=0,1, \ldots, m$. Consequently from Lemma 2.1 we obtain $T\left(r,\left(\mathcal{H}_{i}^{(p)}\right)^{q}\right)=q T\left(r, \mathcal{H}_{i}^{(p)}\right)+S\left(r, \mathcal{H}_{i}\right)=S\left(r, f_{1}\right)$, where $q \in \mathbb{N}$ and $i=0,1, \ldots, m$. Now using Lemma 2.6, we have

$$
\begin{equation*}
G_{i}^{(k)}=Q_{1 i} G_{i}, \text { i.e., } G_{i}^{(k)}=Q_{1 i} e^{\delta_{i}} \tag{3.40}
\end{equation*}
$$

where

$$
Q_{1 i}=\mathcal{H}_{i}^{k}+\frac{k(k-1)}{2} \mathcal{H}_{i}^{k-2} \mathcal{H}_{i}^{\prime}+A_{1} \mathcal{H}_{i}^{k-3} \mathcal{H}_{i}^{\prime \prime}+B_{1} \mathcal{H}_{i}^{k-4}\left(\mathcal{H}_{i}^{\prime}\right)^{2}+\mathcal{P}_{k-3}\left(\mathcal{H}_{i}\right)
$$

and $i=0,1, \ldots, m$. Also we see that

$$
\begin{aligned}
& T\left(r, Q_{1 i}\right) \\
= & T\left(r, \mathcal{H}_{i}^{k}+\frac{k(k-1)}{2} \mathcal{H}_{i}^{k-2} \mathcal{H}_{i}^{\prime}+A_{1} \mathcal{H}_{i}^{k-3} \mathcal{H}_{i}^{\prime \prime}+B_{1} \mathcal{H}_{i}^{k-4}\left(\mathcal{H}_{i}^{\prime}\right)^{2}+\mathcal{P}_{k-3}\left(\mathcal{H}_{i}\right)\right) \\
\leq & T\left(r, \mathcal{H}_{i}^{k}\right)+T\left(r, \mathcal{H}_{i}^{k-2}\right)+T\left(r, \mathcal{H}_{i}^{\prime}\right)+T\left(r, \mathcal{H}_{i}^{k-3}\right)+T\left(r, \mathcal{H}_{i}^{\prime \prime}\right) \\
& \left.+T\left(r, \mathcal{H}_{i}^{k-4}\right)+T\left(r,\left(\mathcal{H}_{i}^{\prime}\right)^{2}\right)\right)+T\left(r, \mathcal{P}_{k-3}\left(\mathcal{H}_{i}\right)\right)=S\left(r, f_{1}\right),
\end{aligned}
$$

for $i=0,1, \ldots, m$. Therefore we get

$$
\begin{equation*}
G_{i}-G_{i}^{(k)}=f_{1}^{l+i}-\left(f_{1}^{l+i}\right)^{(k)}=Q_{i} e^{(l+i) Q_{1}}, \tag{3.41}
\end{equation*}
$$

where $Q_{i}=1-Q_{1 i}(i=0,1,2, \ldots, m)$. Now from (3.39) and (3.41), we obtain

$$
\begin{equation*}
b_{m} Q_{m} e^{m Q_{1}}+\ldots+b_{1} Q_{1} e^{Q_{1}} \equiv-b_{0} Q_{0} \tag{3.42}
\end{equation*}
$$

If possible suppose $Q_{i} \equiv 0$, for some $i \in\{i=0,1, \ldots, m\}$. Then from (3.41), we have

$$
\begin{equation*}
f_{1}^{l+i} \equiv\left(f_{1}^{l+i}\right)^{(k)} \tag{3.43}
\end{equation*}
$$

Therefore from (3.43), we conclude that $\left(f_{1}^{l+i}\right)^{(k)} \neq 0$ and so $f_{1}^{l+i}\left(f_{1}^{l+i}\right)^{(k)} \neq 0$. If $k \geq 2$, then by Lemma 2.11, we have $f_{1}(z)=c e^{\frac{\lambda}{1+i} z}$, where $c \in \mathbb{C} \backslash\{0\}$ and $\lambda^{k}=1$. Next we suppose $k=1$. Now from (3.43), we have

$$
\alpha^{\prime}(z)=\frac{1}{l+i}, \text { i.e., } \alpha(z)=\frac{1}{l+i} z+c_{0}
$$

where $c_{0} \in \mathbb{C}$. Consequently $f_{1}(z)=c e^{\frac{1}{1+i} z}$, where $c=e^{c_{0}}$.
Now we want to show that $Q_{i} \equiv 0$ can not hold for at least two values of $i \in\{0,1, \ldots, m\}$. If not suppose $Q_{s} \equiv 0$ and $Q_{t} \equiv 0$, where $s \neq t$ and $s, t \in\{0,1, \ldots, m\}$. Therefore we have

$$
f_{1}^{l+s} \equiv\left(f_{1}^{l+s}\right)^{(k)} \text { and } f_{1}^{l+t} \equiv\left(f_{1}^{l+t}\right)^{(k)}
$$

Consequently we have $f_{1}(z)=c_{s} e^{\frac{\lambda}{1+s} z}=c_{t} e^{\frac{\lambda}{1+t} z}$, where $c_{s}, c_{t} \in \mathbb{C} \backslash\{0\}$ and $\lambda^{k}=1$, which is impossible here.
We now prove that $P_{1}\left(z_{1}\right)=b_{m} z_{1}^{m}=a_{n} z_{1}^{m}$. If not, we may assume that $P_{1}\left(z_{1}\right)=b_{m} z_{1}^{m}+b_{m-1} z_{1}^{m-1}+\ldots+$ $b_{1} z_{1}+b_{0}$, where at least one of $b_{0}, b_{1}, \ldots, b_{m-1}$ is non-zero. Without loss of generality, we assume that $b_{0} \neq 0$.

Suppose $Q_{m} \not \equiv 0$. Then since $b_{m} \neq 0$, from (3.42), we have $m T\left(r, e^{Q_{1}}\right)=S\left(r, e^{Q_{1}}\right)$, which is impossible. Next we suppose $Q_{m} \equiv 0$. In this case $Q_{0} \not \equiv 0$. Now from (3.42), we get $b_{0} Q_{0} \equiv 0$, which is impossible here as $b_{0} \neq 0$.

Hence $P_{1}\left(z_{1}\right)=b_{m} z_{1}^{m}$, i.e., $P(z)=a_{n} z_{1}^{n}$. So from (3.39), we get $f_{1}^{n} \equiv\left(f_{1}^{n}\right)^{(k)}$. In this case $f_{1}(z)$ assumes the form $f_{1}(z)=c e^{\frac{\lambda}{n} z}$, where $c \in \mathbb{C} \backslash\{0\}$ and $\lambda^{k}=1$. Therefore $f(z)=c e^{\frac{\lambda}{n} z}+e$, where $c \in \mathbb{C} \backslash\{0\}$ and $\lambda^{k}=1$.

Acknowledgement

The authors are grateful to the referee for his/her valuable comments and suggestions to-wards the improvement of the paper.

References

[1] R. Brück, On entire functions which share one value CM with their first derivative, Results Math., 30 (1996), 21-24.
[2] T. B. Cao, On the Brück conjecture, Bull. Aust. Math. Soc., 93 (2016), 248-259.
[3] J. M. Chang and L. Zalcman, Meromorphic functions that share a set with their derivatives, J. Math. Anal. Appl., 338 (2008), 1191-1205.
[4] Z. X. Chen and K. H. Shon, On conjecture of R. Brück concerning the entire function sharing one value CM with its derivative, Taiwanese J. Math., 8 (2) (2004), 235-244.
[5] G. Frank, Eine Vermutung Von Hayman über Nullslellen meromorphic Funktion, Math. Z., 149 (1976), 29-36.
[6] G. G. Gundersen, Meromorphic functions that share two finite values with their derivative, Pacific J. Math., 105 (1983), $299-309$.
[7] G. G. Gundersen and L. Z. Yang, Entire functions that share one value with one or two of their derivatives, J. Math. Anal. Appl., 223 (1998), 88-95.
[8] W. K. Hayman, Meromorphic Functions, Clarendon Press, Oxford (1964).
[9] I. Laine, Nevanlinna theory and complex differential equations, Walter de Gruyter, Berlin, 1993.
[10] X. J. Liu, S. Nevo, X. C. Pang, On the k th derivative of meromorphic functions with zeros of multiplicity at least $k+1$, J. Math. Anal. Appl., 348 (2008), 516-529.
[11] F. Lü, H. X. Yi, The Brück conjecture and entire functions sharing polynomials with their k-th derivatives, J. Korean Math. Soc., 48 (3) (2011), 499-512.
[12] W. Lü, Q. Li, C. Yang, On the transcendental entire solutions of a class of differential equations, Bull. Korean Math. Soc., 51 (5) (2014), 1281-1289.
[13] S. Majumder, A Result On A Conjecture of W. Lü, Q. Li and C. Yang, Bull. Korean Math. Soc., 53 (2) (2016), 411-421.
[14] Z. Q. Mao, Uniqueness theorems on entire functions and their linear differential polynomials, Results Math., 55 (2009), 447-456.
[15] E. Mues, N. Steinmetz, Meromorphe Funktionen, die mit ihrer Ableitung Werte teilen, Manuscripta Math., 29 (1979), 195-206.
[16] L. A. Rubel, C. C. Yang, Values shared by an entire function and its derivative, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 599 (1977), 101-103.
[17] J. Schiff, Normal families, Berlin, 1993.
[18] C. C. Yang, On deficiencies of differential polynomials II, Math. Z., 125 (1972), 107-112.
[19] L. Z. Yang and J. L. Zhang, Non-existence of meromorphic solutions of Fermat type functional equation, Aequations Math., 76 (1-2) (2008), 140-150.
[20] K. Yamanoi, The second main theorem for small functions and related problems, Acta Math., 192 (2004) 225-294.
[21] H. X. Yi and C. C. Yang, Uniqueness theory of meromorphic functions, Science Press, Beijing, 1995.
[22] L. Zalcman, Normal families, new perspectives, Bull. Amer. Math. Soc., 35 (1998), 215-230.
[23] J. L. Zhang, Meromorphic functions sharing a small function with their derivatives, Kyungpook Math. J., 49 (2009), 143-154.
[24] J. L. Zhang and L. Z. Yang, A power of a meromorphic function sharing a small function with its derivative, Annales Academiæ Scientiarum Fennicæ Mathematica, 34 (2009), 249-260.
[25] J. L. Zhang and L. Z. Yang, A power of an entire function sharing one value with its derivative, Comput. Math. Appl., 60 (2010), 2153-2160.

[^0]: 2020 Mathematics Subject Classification. 30D35
 Keywords. Meromorphic function, derivative, small function.
 Received: 16 September 2020; Revised: 29 November 2021; Accepted: 18 February 2022
 Communicated by Miodrag Mateljević
 Email addresses: sujoy.katwa@gmail.com, sm05math@gmail.com, smajumder05@yahoo.in (Sujoy Majumder), arupdam123@gmail.com (Arup Dam)

