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Abstract. In this paper with the help of the idea of normal family we solve an open problem posed in the
last section of [12]. Also we exhibit some relevant examples to fortify our result.

1. Introduction, Definitions and Results

In the paper, by a meromorphic (resp. entire) function we shall always mean meromorphic (resp. entire)
function in the whole complex plane C. Also it is assumed that the reader is familiar with the standard
symbols and fundamental results of Nevanlinna value distribution theory of meromorphic functions. For
a meromorphic function f in C, we shall use the following standard notations of the value distribution
theory: T(r, f ), m(r,∞; f ), N(r,∞; f ), N(r,∞; f ),. . . (see, e.g., [8, 21]). We adopt the standard notation S(r, f )
for any quantity satisfying the relation S(r, f ) = o(T(r, f )) as r → ∞ except possibly a set of finite linear
measure. A meromorphic function a is said to be a small function of f if T(r, a) = S(r, f ). The order and the
hyper-order of a meromorphic function f are denoted and defined by

ρ( f ) = lim sup
r→∞

log T(r, f )
log r

and ρ1( f ) = lim sup
r→∞

log log T(r, f )
log r

respectively.
Let h be a meromorphic function in C. Then h is called a normal function if there exists a positive real

number M such that h#(z) ≤M ∀ z ∈ C, where

h#(z) =
|h′(z)|

1 + |h(z)|2

denotes the spherical derivative of h.
Let F be a family of meromorphic functions in a domain D ⊂ C. We say that F is normal in D if every

sequence { fn}n ⊆ F contains a subsequence which converges spherically and uniformly on the compact
subsets of D (see [17]).
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Let f be an entire function. We know that M(r, f ) = max
|z|=r
| f (z)| and f can be expressed by the power

series f (z) =
∞∑

n=0
anzn. We denote by

µ(r, f ) = max
n∈N,|z|=r

{|anzn
|} and ν(r, f ) = sup{n : |an|rn = µ(r, f )}.

Clearly for a polynomial P(z) = anzn + an−1zn−1 + . . . + a0, an , 0, we have

µ(r,P) = |an|rn and ν(r,P) = n

for all r sufficiently large.
In the general case, |an|rn

≤ µ(r, f ) for all n ≥ 0 and |an|rn < µ(r, f ) for all n > ν(r, f ).
Here it is enough to recall that

(1) µ(r, f ) is strictly increasing for all r sufficiently large, is continuous and tends to +∞ as r→∞;
(2) ν(r, f ) is increasing, piecewise constant, right-continuous and also tends to +∞ as r→∞.

Let f and 1 be two non-constant meromorphic functions and Q be a polynomial or a finite complex number.
If 1 −Q = 0 whenever f −Q = 0, we write f = Q⇒ 1 = Q.

Let f and 1 be two non-constant meromorphic functions and a be a small function with respect to f and
1. We say that f and 1 share a CM (counting multiplicities) if f − a and 1 − a have the same zeros with
the same multiplicities and if we do not consider the multiplicities, then we say that f and 1 share a IM
(ignoring multiplicities).

Rubel and Yang [16] first considered the uniqueness of an entire function when it shares two values CM
with its first derivative. In 1977, they proved if a non-constant entire function f shares two finite distinct
values CM with f ′, then f ≡ f ′. This result has been improved from sharing values CM to IM by Mues and
Steinmetz [15] and in the case when f is a non-constant meromorphic function by Gundersen [6]. Since
then the subject of sharing values between a meromorphic function and its derivative has been extensively
studied by many researchers and a lot of interesting results have been obtained (see [21]).

In the case of sharing one value, R. Brück [1] first discussed the possible relation between f and f ′ when
an entire function f and it’s derivative f ′ share only one finite value CM. The origin of the problem studied
in the paper goes back to the following conjecture of R. Brück [1]:

Conjecture 1.1. If f is a non-constant entire function such that ρ1( f ) is not a positive integer or infinity, and it
shares a finite value a CM with its derivative f ′, then f ′−a

f−a is a non-zero constant.

By the solutions of the differential equations
f ′(z)−a
f (z)−a = ezn

, where ρ1( f ) = n ∈N
f ′(z)−a
f (z)−a = eez

, where ρ1( f ) = +∞,

we see that the conjecture does not hold. The conjecture for the special cases (1) a = 0 and (2) N(r, 0; f ′) =
S(r, f ) had been confirmed by Brück [1]. In 1998, Gundersen and Yang [7] proved that if ρ( f ) < +∞, then
Conjecture 1.1 holds. For the case when ρ( f ) = +∞, Chen and Shon [4] and Cao [2] proved that Conjecture
1.1 is true if ρ1( f ) < 1

2 and ρ1( f ) = 1
2 respectively. Though Conjecture 1.1 is not settled in its full generality,

it gives rise to a long course of research on the uniqueness of entire and meromorphic functions sharing a
single value with its derivatives.

Specially, it was observed by L. Z. Yang and J. L. Zhang [19] that Brück’s conjecture holds if instead of
an entire function one considers its suitable power. They proved the following theorem.

Theorem 1.2. [19] Let f be a non-constant entire function, n ∈N such that n ≥ 7. If f n and ( f n)′ share 1 CM, then
f n
≡ ( f n)′ and f (z) = ce

1
n z, where c ∈ C \ {0}.
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In 2009, Zhang [23] improved and generalised Theorem 1.2 by considering higher order derivatives and by
lowering the power of the entire function and obtained the following result.

Theorem 1.3. [23] Let f be a non-constant entire function, k,n ∈ N such that n > k + 4 and a(. 0,∞) be a small
function of f . If f n

− a and ( f n)(k)
− a share 0 CM, then f n

≡ ( f n)(k) and f (z) = ce
λ
n z, where c ∈ C \ {0} and λk = 1.

In the same year, Zhang and Yang [24] further improved Theorem 1.3 by reducing the lower bound of n.
Actually they obtained the following result.

Theorem 1.4. [24] Let f be a non-constant entire function, k,n ∈ N such that n > k + 1 and a(. 0,∞) be a small
function of f . If f n

− a and ( f n)(k)
− a share 0 CM, then conclusion of Theorem 1.3 holds.

After one year, Zhang and Yang [25] again improved Theorem 1.4 by reducing the lower bound of n in the
following manner.

Theorem 1.5. [25] Let f be a non-constant entire function and k,n ∈N such that n ≥ k + 1. If f n and ( f n)(k) share
1 CM, then conclusion of Theorem 1.3 holds.

In 2011, Lü and Yi [11] generalized Theorem 1.5 by using the idea of sharing polynomial in the following
manner.

Theorem 1.6. [11] Let f be a transcendental entire function, k,n ∈ N such that n ≥ k + 1 and Q(. 0) be a
polynomial. If f n

−Q and ( f n)(k)
−Q share 0 CM, then conclusion of Theorem 1.3 holds.

Also in the same paper, Lü and Yi [11] exhibited two relevant examples to show that the hypothesis of the
transcendental of f in Theorem 1.6 is necessary and the condition n ≥ k + 1 in Theorem 1.6 is sharp.

Now motivated by Theorem 1.6, Lü, Li and Yang [12] gave rise to the following question:
Question 1. What will happen “if f n

− Q1 and ( f n)(k)
− Q2 share 0 CM, where Q1(. 0) and Q2(. 0) are

polynomials” ?
Lü, Li and Yang [12] answered Question 1 for the case when k = 1 by giving the transcendental entire

solutions of the equation

( f n)′ −Q1 = Reα( f n
−Q2), (1.1)

where R is a rational function and α is an entire function. Now we recall their results.

Theorem 1.7. [12] Let f be a transcendental entire function and n ∈ N \ {1}. If f n is a solution of equation (1.1),
then Q1

Q2
is a polynomial and f ′ ≡ Q1

nQ2
f .

Theorem 1.8. [12] Let f be a transcendental entire function, n ∈N \ {1} and Q(. 0) be a polynomial. If f n
−Q and

( f n)′ −Q share 0 CM, then f (z) = cez/n, where c ∈ C \ {0}.

In the same paper, Lü, Li and Yang proved that if Q1
Q2

is not a polynomial, then the differential equation (1.1)
has no transcendental entire solution when n ≥ 2. Also Lü, Li and Yang exhibited two relevant examples
to show that (i) the differential equation (1.1) has no polynomial solution and (ii) the condition n ≥ 2 in
Theorem 1.7 and Theorem 1.8 is sharp.

At the end of the paper, as an extension of Theorem 1.7, Lü, Li and Yang [12] gave rise to the following
conjecture:

Conjecture 1.9. Let f be a transcendental entire function, k,n ∈N such that n ≥ k+1 and Q1(. 0), Q2(. 0) be two
polynomials. If f n

−Q1 and ( f n)(k)
−Q2 share 0 CM, then ( f n)(k)

≡
Q2
Q1

f n. Furthermore, if Q1 ≡ Q2, then conclusion
of Theorem 1.3 holds.

Again Lü, Li and Yang [12] asked the following question.

Question 2. What will happen if “ f n” is replaced by “P( f )” in Conjecture 1.9, where P(z) =
n∑

i=0
aizi” ?

In 2016, the first author [13] fully resolved Conjecture 1.9. Therefore in the paper, our main aim is to
give an affirmative answer of Question 2. Next we consider the following example.
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Example 1.10. Let P(z) = zn + 2, n = 2, k = 1 and f (z) = e
1
2 z. Let Q1(z) = 4 and Q2(z) = 2. Note that

P( f (z)) −Q1(z) = ez
− 2 and

(
P( f (z))

)′
−Q2(z) = ez

− 2.

Clearly P( f ) −Q1 and
(
P( f )

)′
−Q2 share 0 CM, but

(
P( f )

)′ . Q2
Q1

P( f ).

Example 1.10 shows that the analogue conclusion
(
P( f )

)(k)
≡

Q2
Q1

P( f ) can not be obtained when “ f n” is

replaced by “P( f )”, where P(z) =
n∑

i=0
aizi such that a0 , 0 in Conjecture 1.9. Therefore our main motive is to

find out the specific form of the polynomial P(z) in order that we can able to give an affirmative answer of
Question 2.

In the paper, we always use P(z) denoting an arbitrary non-constant polynomial of degree n as follows:

P(z) =
n∑

i=0

aizi = (z − e)l
m∑

i=0

eizi, (1.2)

where ai ∈ C (i = 0, 1, . . . ,n), e, ei ∈ C (i = 0, 1, . . . ,m), an = em , 0 and l +m = n. Let z1 = z − e. We also use
P1(z1) as an arbitrary non-zero polynomial defined by

P1(z1) =
m∑

i=0

eizi =

m∑
i=0

ei(z1 + e)i =

m∑
i=0

bizi
1,

where bm = em = an. From (1.2), it is clear that

P(z) = zl
1P1(z1). (1.3)

Throughout the paper for a non-constant meromorphic f , we define f1 = f − e.
To the knowledge of authors Question 2 is still open. Our first objective to write this paper is to solve

the above Question 2 at the cost of considering the fact that P(z) = zl
1P1(z1), where l +m = n.

Our second objective to write this paper is to solve the following question.
Question 3. What happens if “ f n

− R1eQ and ( f n)(k)
− R2eQ share 0 CM, where Ri(. 0)(i = 1, 2) are rational

functions and Q is a polynomial in Conjecture 1.9 ?
In the paper, taking the possible answers of the above questions into back ground we obtain our main

result as follows.

Theorem 1.11. Let f be a transcendental meromorphic function having finitely many poles and let αi = RieQ,
i = 1, 2, where R1, R2 are non-zero rational functions and Q is a polynomial such that deg(Q) < ρ( f ). Let P(z)
be defined as in (1.3) and k, l ∈ N such that l > max{k,m}. If P( f ) − α1 and

(
P( f )

)(k)
− α2 share 0 CM, then(

P( f )
)(k)
≡

R2
R1

P( f ). Furthermore if R1 ≡ R2, then P(z) = anzn
1 and so f n

1 ≡ ( f n
1 )(k). In this case f assumes the form

f (z) = ce
λ
n z + e, where c ∈ C \ {0} and λk = 1.

From Theorem 1.11, we immediately have the following corollary.

Corollary 1.12. Let f be a transcendental meromorphic function having finitely many poles and let αi = RieQ,
i = 1, 2, where R1, R2 are non-zero rational functions and Q is a polynomial such that deg(Q) < ρ( f ). Let k,n ∈ N
such that n ≥ k + 1. If f n

− α1 and
(

f n)(k)
− α2 share 0 CM, then

(
f n)(k)

≡
R2
R1

f n. Furthermore if R1 ≡ R2, then f
assumes the form f (z) = ce

λ
n z, where c ∈ C \ {0} and λk = 1.

Remark 1.13. If Q is a constant polynomial, then Theorem 1.11 and Corollary 1.12 still hold without the assumption
that deg(Q) < ρ( f ).

Remark 1.14. It is easy to see that the conditions “ l > max{k,m} and deg(Q) < ρ( f )” in Theorem 1.11 are sharp
by the following examples.
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Example 1.15. Let P(z) = zn, l = n = k = 1, Q = 2πi and f (z) = e3z + 2z
3 +

2
9 . Note that

(P( f (z)))′ − z = 3(P( f (z)) − z).

Then P( f ) − α1 and (P( f ))′ − α2 share 0 CM and deg(Q) < ρ( f ), but (P( f ))′ . α2
α1

P( f ), where α1(z) = α2(z) = z.

Example 1.16. Let P(z) = zl(z + 1), l = 2, k = 1, Q(z) = 2
3 z2 and f (z) = e

1
3 z2 . Let α1(z) = 1

2z e
2
3 z2 and

α2(z) =
(
1 − 2

3 z
)

e
2
3 z2 . Clearly deg(Q) = ρ( f ). Note that

P( f (z)) − α1(z) =
2zez2

+ (2z − 1)e
2
3 z2

2z
and (

P( f (z)
)′
− α2(z) = 2zez2

+ (2z − 1)e
2
3 z2
.

Obviously P( f ) − α1 and
(
P( f )

)′
− α2 share 0 CM, but

(
P( f )

)′ . α2
α1

P( f ).

Example 1.17. Let P(z) = zn, l = n = k = 1, Q(z) = z2 and f (z) = ez2 . Let α1(z) = 4zez2 and α2(z) = 1
2 ez2 . Clearly

deg(Q) = ρ( f ). Note that

P( f (z)) − α1(z) = (1 − 4z)ez2

and (
P( f (z)

)′
− α2(z) =

1
2

(4z − 1)ez2
.

Obviously P( f ) − α1 and
(
P( f )

)′
− α2 share 0 CM, but

(
P( f )

)′ . α2
α1

P( f ).

Example 1.18. Let P(z) = zn, l = n = k = 1, Q(z) = −z and f (z) = e−z
− e−z2 . Let α1(z) = 1

2z e−z and
α2(z) = 2(z − 1)e−z. Clearly deg(Q) < ρ( f ). Note that

P( f (z)) − α1(z) =
(2z − 1)e−z

− 2ze−z2

2z
and (

P( f (z)
)′
− α2(z) = −

[
(2z − 1)e−z

− 2ze−z2
]
.

Obviously P( f ) − α1 and
(
P( f )

)′
− α2 share 0 CM, but

(
P( f )

)′ . α2
α1

P( f ).

Remark 1.19. By the following example, it is easy to see that the hypothesis of the transcendental of f in Theorem
1.11 is necessary.

Example 1.20. Let P(z) = zn, l = n = 2, k = 1, Q(z) ≡ 2nπi and f (z) = z. Let α1(z) = 2z2 + z and α2(z) = 2z2 + 4z.
Clearly P( f ) − α1 and (P( f ))′ − α2 share 0 CM, but (P( f ))′ . α2

α1
P( f ).

Generally speaking, solving any non-linear differential equation is a very difficult task. As an application
of our result, we now consider the following non-linear differential equation:(

P( f )
)(k)
− R1eQ = Reη

(
P( f ) − R1eQ

)
, (1.4)

where P(z) is defined as in (1.3), k, l ∈ N, Q is a polynomial, η is an entire function and R, R1 are rational
functions. Note that if f is a non-constant meromorphic solution of the non-linear differential equation
(1.4), then one can easily conclude from (1.4) that f has only finitely many poles. Therefore as a solution of
the non-linear differential equation (1.4), we present the following result.

Theorem 1.21. If f is a transcendental meromorphic solution of the non-linear differential equation (1.4), l >
max{k,m} and deg(Q) < ρ( f ), then η reduces to a constant and f (z) = ce

λ
n z + e, where c ∈ C \ {0} and λk = 1.
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2. Lemmas

In this section we introduce the following lemmas which will be needed in the paper.

Lemma 2.1. [18] Let f be a non-constant meromorphic function and let an(. 0), an−1, ... , a0 be meromorphic
functions such that T(r, ai) = S(r, f ) for i = 0, 1, 2, ...,n. Then

T(r, an f n + an−1 f n−1 + ... + a1 f + a0) = nT(r, f ) + S(r, f ).

Lemma 2.2. ([9], Lemma 1.3.1.) P(z) =
∑n

i=1 aizi where an , 0. Then for all ε > 0, there exists r0 > 0 such that ∀
r = |z| > r0 the inequalities (1 − ε)|an|rn

≤ |P(z)| ≤ (1 + ε)|an|rn hold.

Lemma 2.3. ([9], Theorem 3.1.) If f is an entire function of order ρ( f ), then

ρ( f ) = lim sup
r−→∞

log ν(r, f )
log r

.

Lemma 2.4. [14] Let f be a transcendental entire function and let E ⊂ [1,+∞) be a set having finite logarithmic
measure. Then there exists {z j = r jeı̇θ j } such that | f (z j)| = M(r j, f ), θ j ∈ [0, 2π), lim

j→+∞
θ j = θ0 ∈ [0, 2π), r j < E and

if 0 < ρ( f ) < +∞, then for any given ε > 0 and sufficiently large r j,

rρ( f )−ε
j < ν(r j, f ) < rρ( f )+ε

j .

If ρ( f ) = +∞, then for any given large M > 0 and sufficiently large r j, ν(r j, f ) > rM
j .

Lemma 2.5. ([9], Theorem 3.2.) Let f be a transcendental entire function, ν(r, f ) be the central index of f . Then there
exists a set E ⊂ (1,+∞) with finite logarithmic measure, we choose z satisfying |z| = r < [0, 1]∪E and | f (z)| =M(r, f ),
such that

f ( j)(z)
f (z)

=

(
ν(r, f )

z

) j

(1 + o(1)), f or j ∈N.

Lemma 2.6. ([8], Lemma 3.5.) Let F be meromorphic in a domain D and n ∈N. Then

F(n)

F
= f n +

n(n − 1)
2

f n−2 f ′ + an f n−3 f ′′ + bn f n−4( f ′)2 + Pn−3( f ),

where f = F′
F , an =

1
6 n(n − 1)(n − 2), bn =

1
8 n(n − 1)(n − 2)(n − 3) and Pn−3( f ) is a differential polynomial with

constant coefficients, which vanishes identically for n ≤ 3 and has degree n − 3 when n > 3.

Lemma 2.7. [22] Let F be a family of meromorphic functions in the unit disc ∆ such that all zeros of functions in F
have multiplicity greater than or equal to l and all poles of functions in F have multiplicity greater than or equal to
j and α be a real number satisfying −l < α < j. Then F is not normal in any neighborhood of z0 ∈ ∆, if and only if
there exist

(i) points zn ∈ ∆, zn → z0,
(ii) positive numbers ρn, ρn → 0+ and

(iii) functions fn ∈ F ,

such that ρ−αn fn(zn+ρnζ)→ 1(ζ) spherically locally uniformly inC, where 1 is a non-constant meromorphic function.
The function 1 may be taken to satisfy the normalisation 1#(ζ) ≤ 1#(0) = 1(ζ ∈ C).

Remark 2.8. Clearly if all functions in F are holomorphic (so that the condition on the poles is satisfied vacuously
for arbitrary j), we may take −1 < α < ∞.

Lemma 2.9. [3] Let f be a meromorphic function onCwith finitely many poles. If f has bounded spherical derivative
on C, then f is of order at most 1.

Lemma 2.10. [10] Let f be a meromorphic function of infinite order on C. Then there exist points zn →∞ such that
for every N > 0, f #(zn) > |zn|

N, if n is sufficiently large.

Lemma 2.11. [5] Let f be a non-constant entire function and k ∈ N \ {1}. If f f (k) , 0, then f (z) = eaz+b, where
a(, 0), b ∈ C.
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3. Proof of the theorem

Proof. Suppose R1 =
Q1
Q2

and R2 =
Q3
Q4

, where Qi(i = 1, 2, 3, 4) are polynomials. Also we define P1 = Q1Q4

and P2 = Q2Q3. Let F = H
α1

and G = H(k)

α2
, where H = P( f ). Now we consider following two cases.

Case 1. Suppose H(k) . α2
α1

H. Following sub-cases are immediately.
Sub-case 1.1. Suppose ρ( f ) < +∞. It is clear that ρ(H(k)) = ρ(H) = ρ( f ) < +∞. Let

α =
H(k)
− α2

H − α1
.

Since H−α1 and H(k)
−α2 share 0 CM except for the zeros and poles of αi for i = 1, 2 and H has finitely many

poles, we deduce that α has finite many zeros and poles. Also we see that α is of finite order. Therefore we
can assume that α = βeγ,where β is a rational function and γ is a polynomial. Hence

H(k)
− α2

H − α1
= βeγ. (3.1)

Now we consider following two sub-cases.
Sub-case 1.1.1. Suppose ρ( f ) < 1. Clearly ρ(H) = ρ( f ) < 1. Since deg(Q) < ρ( f ), it follows that Q reduces
to a constant. Then from (3.1), we see that ρ (eγ) < 1 and so γ is a constant. Without loss of generality we
assume that

H(k)
− α2 ≡ β(H − α1),

i.e., H(k)
≡ βH + α2 − α1β. (3.2)

If α2 −α1β ≡ 0, then from (3.2), we have H(k)
≡
α2
α1

H, which contradicts our supposition. Hence α2 −α1β . 0.
Let z0 be a zero of f1 of multiplicity p0 such that β(z0) , ∞. Then z0 will be a zero of H and H(k) of multiplicities
at least r(≥ lp0) and r − k respectively. Clearly from (3.2), we see that z0 must be a zero of α2 − α1β. Thus f1
has finitely many zeros. Note that f1 has finitely many poles. Since ρ( f1) < 1, one can conclude that f1 is a
non-zero rational function, which is a contradiction.
Sub-case 1.1.2. Suppose ρ( f ) ≥ 1. We claim that γ is a constant polynomial. If not, suppose γ is a
non-constant polynomial. Without loss of generality, we may assume that deg(γ) = m ≥ 1. Let γ(z) =
cmzm + cm−1zm−1 + . . . + c0 where ci ∈ C for i = 0, 1, . . . ,m and cm , 0. Now from (3.1), we have

βeγ =
H(k)

H −
R2

e−QH

1 − R1
e−QH

, i.e., γ = log
1
β

H(k)

H −
R2

e−QH

1 − R1
e−QH

,

where log h is the principle branch of the logarithm. Therefore by Lemma 2.2, we have

|cm|rm(1 + o(1)) =
∣∣∣γ(z)

∣∣∣ =
∣∣∣∣∣∣∣∣log

1
β(z)

H(k)(z)
H(z) −

R2(z)
e−Q(z)H(z)

1 − R1(z)
e−Q(z)H(z)

∣∣∣∣∣∣∣∣ . (3.3)

Now by Hadamard factorization theorem, we obtain H = 1δ , where 1 is a transcendental entire function and
δ is a non-zero polynomial. Let F1 =

H′
H . Then F1 =

1′

1
−
δ′

δ and so by Lemma 2.6, we have

H(k)

H
= Fk

1 +
k(k − 1)

2
Fk−2

1 F′1 + akFk−3
1 F′′1 + bkFk−4

1 (F′1)2 + Pk−3(F1), (3.4)

where ak =
1
6 k(k − 1)(k − 2), bk =

1
8 k(k − 1)(k − 2)(k − 3) and Pk−3(F) is a differential polynomial with constant

coefficients, which vanishes identically for k ≤ 3 and has degree k − 3 when k > 3. Note that(
1′

1

)′
=
1′′

1
−

(
1′

1

)2

,

(
1′

1

)′′
=
1′′′

1
− 3
1′′

1

1′

1
+ 2

(
1′

1

)3

,
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1′

1

)′′′
=
1(4)

1
− 4
1′′′

1

1′

1
− 3

(
1′′

1

)2

+ 12
1′′

1

(
1′

1

)2

− 6
(
1′

1

)4

and so on. Thus in general we have(
1′

1

)(i)

= Ai
i+1

(
1′

1

)i+1

+
∑
λ

Ai
λM

i
λ

(
1′

1

)
, (3.5)

where Mi
λ

(
1′

1

)
=

(
1′

1

)qλi
1 . . .

(
1(i+1)

1

)qλi
i+1

and qλi
1 , . . . , q

λi
i+1 are non-negative integers satisfying

i+1∑
j=1

qλi
j ≤ i and Ai

λ ∈ R.

Similarly we have(
δ′

δ

)(i)

= Ai
i+1

(
δ′

δ

)i+1

+
∑
λ

Ai
λM

i
λ

(
δ′

δ

)
. (3.6)

Now from (3.4), (3.5) and (3.6), we have

H(k)(z)
H(z)

(3.7)

= Bk
k

(
1′(z)
1(z)

)k

+
∑
λ

Bk
λ

(
δ′(z)
δ(z)

)s
λk
1

. . .

(
δ(k)(z)
δ(z)

)s
λk
k

(
1′(z)
1(z)

)r
λk
1

. . .

(
1(k)(z)
1(z)

)r
λk
k

+ Ck
k

(
δ′(z)
δ(z)

)k

,

where rλk
1 , . . . , r

λk
k ∈N ∪ {0} and sλk

1 , . . . , s
λk
k ∈N ∪ {0} satisfying

k∑
j=1

rλi
j ≤ k − 1,

k∑
j=1

sλi
j ≤ k − 1 and Bk

λ,C
k
k ∈ R.

Since 1 is a transcendental entire function, it follows that M(r, 1)→∞ as r→∞. Again we let

M(r, 1) =
∣∣∣1(zr)

∣∣∣ , where zr = reiθ and θ ∈ [0, 2π). (3.8)

Then from (3.8) and Lemma 2.5, there exists a subset E ⊂ (1,+∞) with finite logarithmic measure such that
for some point zr = reiθ(θ ∈ [0, 2π)) satisfying |zr| = r < E and M(r, 1) = |1(zr)|, we have

1( j)(zr)
1(zr)

=

(
ν(r, 1)

zr

) j

(1 + o(1)) as r→∞ (1 ≤ j ≤ k). (3.9)

Therefore from (3.7) and (3.9), we have

H(k)(zr)
H(zr)

(3.10)

= Bk
k

(
ν(r, 1)

zr

)k

(1 + o(1)) +
∑
λ

Bk
λ

(
δ′(zr)
δ(zr)

)s
λk
1

. . .

(
δ(k)(zr)
δ(zr)

)s
λk
k

(
ν(r, 1)

zr

)nλ

(1 + o(1)) + Ck
k

(
δ′(zr)
δ(zr)

)k

=
1 + o(1)

zk
r

Bk
k ν(r, 1)

k +
∑
λ

Bk
λ

(
zrδ′(zr)
δ(zr)

)s
λk
1

. . .

(
zrδ(k)(zr)
δ(zr)

)s
λk
k

zk−nλ−sλ
r ν(r, 1)nλ +Ck

k

(
zrδ′(z)
δ(zr)

)k ,
where 1 ≤ sλ =

k∑
j=1

sλk
j ≤ k − 1 and 1 ≤ nλ =

k∑
j=1

rλk
j ≤ k − 1.

Let δRi =
a1i
a2i

, where a1i and a2i(. 0) are polynomials for i = 1, 2. Let aimi zmi and bini zni denote the leading
terms in the polynomials a1i(z) and a2i(z) respectively for i = 1, 2. Taking ε = 1

2 , we get from Lemma 2.2 that

1
2
|aimi |r

mi ≤ |a1i(zr)| ≤
3
2
|aimi |r

mi and
1
2
|bini |r

ni ≤ |a2i(zr)| ≤
3
2
|bini |r

ni
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for i = 1, 2. Therefore

|δ(zr)Ri(zr)| ≤ 3
|aimi |rmi

|bini |rni

for i = 1, 2. Since 1 is a transcendental entire function, we know that M(r, 1) increases faster than the
maximum modulus of any polynomial and hence faster than any power of r.
First we suppose Q is a constant polynomial. Then from (3.8), we have

lim
r→+∞

∣∣∣∣∣∣ δ(zr)Ri(zr)
e−Q(zr)1(zr)

∣∣∣∣∣∣ ≤ lim
r→+∞

3
|aimi |rmi

|bini |rni M(r, 1)
= 0 (i = 1, 2).

Next we suppose Q is a non-constant polynomial. We claim that e−Q1 is a transcendental entire function. If
possible suppose that e−Q1 = p, where p is a non-zero polynomial. Therefore 1 = peQ and so by Lemma 2.1,
we have T(r, 1) = T

(
r, eQ

)
+ S

(
r, eQ

)
. This shows that ρ(1) = ρ

(
eQ

)
. On the other hand we have H = 1δ , i.e.,

P( f ) = 1δ and so by Lemma 2.1, we have n T(r, f ) + S(r, f ) = T(r, 1) + S(r, 1). This shows that ρ( f ) = ρ(1) and
so ρ( f ) = ρ

(
eQ

)
= deg(Q), which contradicts the fact that deg(Q) < ρ( f ). Hence e−Q1 is a transcendental

entire function. Again since e−Q is a transcendental entire function, it follows that
∣∣∣e−Q(z)

∣∣∣ > C|z|k1 as |z| → ∞,
where C ∈ R+ and k1 ∈N. Then from (3.8), we have

lim
r→+∞

∣∣∣∣∣∣ δ(zr)Ri(zr)
e−Q(zr)1(zr)

∣∣∣∣∣∣ ≤ lim
r→+∞

|δ(zr)Ri(zr)|
C|zr|

k1 |1(zr)|
≤ lim

r→+∞

3
C

|aimi |rmi

|bini |rni rk1 M(r, 1)
= 0 (i = 1, 2).

Therefore in either case one may conclude that

lim
r→+∞

∣∣∣∣∣ Ri(zr)
e−Q(zr)H(zr)

∣∣∣∣∣ = lim
r→+∞

∣∣∣∣∣∣ δ(zr)Ri(zr)
e−Q(zr)1(zr)

∣∣∣∣∣∣ ≤ 0 (i = 1, 2). (3.11)

Also we have∣∣∣∣∣∣zrδ(i)(zr)
δ(zr)

∣∣∣∣∣∣ ≤ C0 as |zr| = r→∞ (i = 1, 2, . . . , k). (3.12)

Now from Lemma 2.4, there exists {z j = r jeiθ j } such that |1(z j)| = M(r j, 1), θ j ∈ [0, 2π), lim
j→∞
θ j = θ0 ∈

[0, 2π), r j < E. Then for any given ε satisfying

0 < ε < min
λ

(k − nλ)(ρ(1) − 1) + sλ
nλ + k

and sufficiently large r j, we have

rρ(1)−ε
j < ν(r j, 1) < rρ(1)+ε

j . (3.13)

Then from (3.12) and (3.13), we have∣∣∣∣∣∣∣∣Bk
λ

(
z jδ′(z j)
δ(z j)

)s
λk
1

. . .

z jδ(k)(z j)
δ(z j)

s
λk
k

zk−nλ−sλ
j ν(r, 1)nλ (1 + o(1))

∣∣∣∣∣∣∣∣ (3.14)

≤ |Bk
λ|C

sλ
0 rk−nλ−sλ

j × r(ρ(1)+ε)nλ
j

= |Bk
λ|C

sλ
0 rnλρ(1)+nλε+k−nλ−sλ

j .
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Since nλρ(1) + nλε + k − nλ − sλ < k(ρ(1) − ε), it follows from (3.13) and (3.14) that∣∣∣∣∣∣∣∣Bk
λ

(
z jδ′(z j)
δ(z j)

)s
λk
1

. . .

z j
δ(k)(z j)
δ(z j)

s
λk
k

zk−nλ−sλ
j ν(r, 1)nλ (1 + o(1))

∣∣∣∣∣∣∣∣ (3.15)

< C1rk(ρ(1)−2ε)
j = O

(
ν(r j, 1)k

)
as r j → +∞, r j < E, where C1 > 0. Also from (3.12) and (3.13), we have∣∣∣∣∣∣∣Ck

k

(
z jδ′(z j)
δ(z j)

)k
∣∣∣∣∣∣∣ ≤ C2 < C2rk(ρ(1)−ε)

j = O
(
ν(r j, 1)k

)
(3.16)

as r j → +∞, r j < E, where C2 > 0. Since 1 is of finite order, from Lemma 2.3, we have

log ν(r, 1) = O(log r). (3.17)

Therefore from (3.3), (3.10), (3.11), (3.15), (3.16) and (3.17), we get

|cm|rm
j (1 + o(1)) = |γ(z j)| =

∣∣∣∣∣∣∣∣∣∣log
1
β(z j)

H(k)(z j)
H(z j)

−
R2(z j)

e−Q(zj )H(z j)

1 − R2(z j)

e−Q(zj )H(z j)

∣∣∣∣∣∣∣∣∣∣ = O(log r j),

for |z j| = r j → +∞, r j < E, which is impossible. Hence γ is a constant polynomial. Without loss of generality
we assume that

H(k)
− α2 ≡ β(H − α1),

i.e., H(k)
≡ βH + α2 − α1β. (3.18)

If α2−α1β ≡ 0, then from (3.18), we have H(k)
≡
α2
α1

H, which contradicts our supposition. Hence α2−α1β . 0.
In this case also one can easily conclude that f1 has only finite number of zeros. Since f1 is of finite order,
we can take f1 = P1eQ1 , where P1 is a non-zero rational function and Q1 is a non-constant polynomial such
that deg(Q1) ≥ 1. Then by induction we get

bi

((
f l+i
1

)(k)
− β f l+i

1

)
= Pie(l+i)Q1 , (3.19)

where Pi (i = 0, 1, 2, . . . ,m) are rational functions. Since H(k)
− βH . 0, it follows that Pi . 0 for at least one

i (= 0, 1, . . . ,m). Now from (3.18) and (3.19), we obtain

Pme(l+m)Q1 + . . . +P1e(l+1)Q1 +P0elQ1 ≡ α2 − α1β. (3.20)

Then from (3.20) and Lemma 2.1, we have (l +m)T
(
r, eQ1

)
= S

(
r, eQ1

)
, which is impossible.

Sub-case 1.2. Suppose ρ( f ) = +∞. Obviously ρ(H) = +∞. Since ρ(α1) < +∞, it follows that ρ(F) = +∞. Let

Hi =
f l+i
1
α1

, where i = 0, 1, 2, . . . ,m. Then clearly Hi is of infinite order for i = 0, 1, . . . ,m. Now by Lemma 2.10,
there exist {w j} j →∞( j→∞) such that for every N > 0, if j is sufficiently large

H#
i (w j) > |w j|

N, for i = 0, 1, . . . ,m. (3.21)

Note that α1 has finitely many poles and zeros. Since f1 is a transcendental meromorphic with finitely many
poles, it follows that Hi has finitely many poles, where i = 0, 1, . . . ,m. So there exists a r > 0 such that Hi(z)
is analytic and α1(z) , 0,∞ in D = {z : |z| ≥ r}, where i = 0, 1, . . . ,m. Also since w j → ∞ as j → ∞, without
loss of generality we may assume that |w j| ≥ r + 1 for all j. Let D1 = {z : |z| < 1} and

Hi, j(z) = Hi(w j + z) =
f l+i
1 (w j + z)

α1(w j + z)
, for i = 0, 1, . . . ,m.
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Since |w j + z| ≥ |w j| − |z|, it follows that w j + z ∈ D for all z ∈ D1. Also since Hi(z) is analytic in D, it follows
that Hi, j(z) is analytic in D1 for all j and for i = 0, 1, . . . ,m. Thus we have structured a family (Hi, j) j of
holomorphic functions for i = 0, 1, . . . ,m. Note that H#

i, j(0) = H#
i (w j) → ∞ as j → ∞, where i = 0, 1, . . . ,m.

Now it follows from Marty’s criterion that (Hi, j) j is not normal at z = 0 for i = 0, 1, . . . ,m. Therefore by
Lemma 2.7, there exist

(i) points z j ∈ D1 such that z j → 0 as j→∞,
(ii) positive numbers ρ j, ρ j → 0+,

(iii) a subsequence {Hi(ω j + z j + ρ jζ) = Hi, j(z j + ρ jζ)} of {Hi(ω j + z)}

such that

1i, j(ζ) = Hi, j(z j + ρ jζ) =
f l+i
1 (w j + z j + ρ jζ)

α1(w j + z j + ρ jζ)
→ 1i(ζ) (3.22)

spherically locally uniformly in C, where 1i(ζ) is a non-constant meromorphic function such that 1#
i (ζ) ≤

1#
i (0) = 1 for i = 0, 1, . . . ,m. Now from Lemma 2.9, we see that ρ(1i) ≤ 1 for i = 0, 1, . . . ,m. Also in the proof

of Zalcman’s lemma we have

ρ j ≤
M

H#
i (w j)

(3.23)

for a positive number M, where i = 0, 1, . . . ,m. By Hurwitz’s theorem we see that the multiplicity of every
zero of 1i is a multiple of l+ i for i = 0, 1, . . . ,m. Hence we can take 1i = hl+i

i , where hi is a non-constant entire
function of order at least one for i = 0, 1, . . . ,m. Now from (3.21) and (3.23), we deduce that for every N > 0,

ρ j ≤M|w j|
−N (3.24)

for sufficiently large values of j. We now want prove that

ρk
j

(
f l+i
1

)(k)
(w j + z j + ρ jζ)

α1(w j + z j + ρ jζ)
→ 1

(k)
i (ζ) =

(
hl+i

i

)(k)
, for i = 0, 1, . . . ,m. (3.25)

From (3.22), we see that

ρ j

(
f l+i
1

)′
(w j + z j + ρ jζ)

α1(w j + z j + ρ jζ)
= 1′i, j(ζ) + ρ j

α′1(w j + z j + ρ jζ)

α2
1(w j + z j + ρ jζ)

f l+i
1 (w j + z j + ρ jζ) (3.26)

= 1′i, j(ζ) + ρ j
α′1(w j + z j + ρ jζ)
α1(w j + z j + ρ jζ)

1i, j(ζ).

Also we see that
α′1(w j + z j + ρ jζ)
α1(w j + z j + ρ jζ)

=
P′1(w j + z j + ρ jζ)
P1(w j + z j + ρ jζ)

+Q′(w j + z j + ρ jζ). (3.27)

Observe that

P′1(w j + z j + ρ jζ)
P1(w j + z j + ρ jζ)

→ 0 as j→∞.

Suppose N > s, where s = deg(Q′). Therefore from (3.24), we have

lim
j→∞
ρ j|w j|

s
≤ lim

j→∞
M|w j|

s−N = 0. (3.28)

Note that |Q′(w j + z j + ρ jζ)| = O(|w j|
s) and so from (3.28), we have

ρ j|Q′(w j + z j + ρ jζ)| = O(ρ j|w j|
s)→ 0 (as j→∞). (3.29)
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Now from (3.27) and (3.29), we conclude that

ρ j
α′1(w j + z j + ρ jζ)
α1(w j + z j + ρ jζ)

→ 0 (as j→∞). (3.30)

Also from (3.22), (3.26) and (3.30), we observe that

ρ j

(
f l+i
1

)′
(w j + z j + ρ jζ)

α1(w j + z j + ρ jζ)
→ 1′i (ζ) for i = 0, 1, 2, . . . ,m.

Suppose

ρp
j

(
f l+i
1

)(p)
(w j + z j + ρ jζ)

α1(w j + z j + ρ jζ)
→ 1

(p)
i (ζ) for i = 0, 1, . . . ,m.

Let

Gi, j(ζ) = ρ
p
j

(
f l+i
1

)(p)
(w j + z j + ρ jζ)

α1(w j + z j + ρ jζ)
for i = 0, 1, . . . ,m.

Then Gi, j(ζ)→ 1
(p)
i (ζ) for i = 0, 1, . . . ,m. Note that

ρp+1
j

(
f l+i
1

)(p+1)
(w j + z j + ρ jζ)

α1(w j + z j + ρ jζ)
(3.31)

= G′i, j(ζ) + ρ
p+1
j

α′1(w j + z j + ρ jζ)

α2
1(w j + z j + ρ jζ)

(
f l+i
1

)(p)
(w j + z j + ρ jζ)

= G′i, j(ζ) + ρ j
α′1(w j + z j + ρ jζ)
α1(w j + z j + ρ jζ)

Gi, j(ζ) for i = 0, 1, . . . ,m.

Now from (3.30) and (3.31), we see that

ρp+1
j

(
f l+i
1

)(p+1)
(w j + z j + ρ jζ)

α1(w j + z j + ρ jζ)
→ G′i, j(ζ),

i.e., ρp+1
j

(
f l+i
1

)(p+1)
(w j + z j + ρ jζ)

α1(w j + z j + ρ jζ)
→ 1

(p+1)
i, j (ζ) for i = 0, 1, . . . ,m.

Then by mathematical induction we get the desired result (3.25).
By Hadamard’s factorization theorem we have h0(ζ) = G(ζ)eQ0(ζ), where G(ζ) is the canonical product
formed with the zeros of h0(ζ) and Q0(ζ) is a polynomial such that deg(Q0) ≤ 1. Suppose that h0(ζ0) = 0.
Then clearly 10(ζ0) = 0. Therefore by Hurwitz’s theorem there exists a sequence (ζ j) j, ζ j → ζ0 such that (for
sufficiently large j)

10, j(ζ j) = H0, j(z j + ρ jζ j) = 0.

Consequently f l
1(w j + z j + ρ jζ j) = 0 and so f l+i

1 (w j + z j + ρ jζ j) = 0, i.e., 1i, j(ζ j) = 0 for i = 0, 1, . . . ,m. Then
from (3.22), we have for i = 1, 2, . . . ,m

hl+i
i (ζ0) = 1i(ζ0) = lim

j→∞
1i, j(ζ j) = 0.

Consequently h0, h1, . . . , hm have the same zeros with same multiplicities. Therefore we can easily conclude
that

hi(ζ) = G0(ζ)eQi(ζ),
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where Qi(ζ) is a polynomial such that deg(Qi(ζ)) ≤ 1 for i = 1, 2, . . . ,m. Again from (3.22), we have

H(w j+z j+ρ jζ)
α1(w j+z j+ρ jζ)

=
m∑

i=0
bi

( f l+i
1 )(w j+z j+ρ jζ)
α1(w j+z j+ρ jζ)

→

m∑
i=0

bi1i(ζ) =
m∑

i=0
bihl+i

i (ζ) = 1(ζ), say. (3.32)

Note that (
H(w j + z j + ρ jζ)
α1(w j + z j + ρ jζ)

)′
=

m∑
i=0

bi


(

f l+i
1

)
(w j + z j + ρ jζ)

α1(w j + z j + ρ jζ)


′

,

i.e., ρ j
H′(w j + z j + ρ jζ)
α1(w j + z j + ρ jζ)

− ρ j
α′1(w j + z j + ρ jζ)
α1(w j + z j + ρ jζ)

H(w j + z j + ρ jζ)
α1(w j + z j + ρ jζ)

=

m∑
i=0

biρ j
( f l+i

1 )′(w j + z j + ρ jζ)

α1(w j + z j + ρ jζ)
− ρ j
α′1(w j + z j + ρ jζ)
α1(w j + z j + ρ jζ)

f l+i
1 (w j + z j + ρ jζ)

α1(w j + z j + ρ jζ)


and so from (3.25), (3.30) and (3.32), we have

H′(w j + z j + ρ jζ)
α1(w j + z j + ρ jζ)

→

m∑
i=0

bi1
′

i (ζ) =
m∑

i=0

bi

(
hl+i

i

)′
(ζ) = 1′(ζ).

Therefore by mathematical induction we have

H(k)(w j + z j + ρ jζ)
α1(w j + z j + ρ jζ)

→

m∑
i=0

bi1
(k)
i (ζ) =

m∑
i=0

bi

(
hl+i

i

)(k)
(ζ) = 1(k)(ζ). (3.33)

First we prove that 1(k) = 0⇒ 1 = 1. Note that∣∣∣∣α2(w j + z j + ρ jζ)
α1(w j + z j + ρ jζ)

∣∣∣∣ = ∣∣∣∣R2(w j + z j + ρ jζ)
R1(w j + z j + ρ jζ)

∣∣∣∣ = ∣∣∣∣P2(w j + z j + ρ jζ)
P1(w j + z j + ρ jζ)

∣∣∣∣ (3.34)

=

{
O(1), if deg(P2) ≤ deg(P1)

O(|w j|
t), if deg(P2) > deg(P1),

where t = deg(P2) − deg(P1) > 0. Now let kN > t. Therefore from (3.24), we have

lim
j→∞
ρk

j |w j|
t
≤ lim

j→∞
Mk
|w j|

t−kN = 0. (3.35)

Since ρ j → 0 as j→∞, from (3.34) and (3.35), we have

ρk
j

∣∣∣∣α2(w j + z j + ρ jζ)
α1(w j + z j + ρ jζ)

∣∣∣∣→ 0 (as j→∞). (3.36)

Now from (3.25) and (3.36), we see that

ρk
j

H(k)(w j + z j + ρ jζ) − α2(w j + z j + ρ jζ)
α1(w j + z j + ρ jζ)

→ 1(k)(ζ). (3.37)

Suppose that 1(k)(ξ0) = 0. Then by (3.37) and Hurwitz’s Theorem there exists a sequence (ξ j) j, ξ j → ξ0

such that (for sufficiently large j) H(k)(w j + z j + ρ jξ j) = α2(w j + z j + ρ jξ j). By the given condition we have
H(w j + z j + ρ jξ j) = α1(w j + z j + ρ jξ j). Therefore from (3.22), we have

1(ξ0) = lim
j→∞

H(w j + z j + ρ jξ j)
α1(w j + z j + ρ jξ j)

= 1.

Thus 1(k) = 0 ⇒ 1 = 1. Note that G0 = 0 ⇒ 1 = 0. Since l ≥ k + 1, it follows that G0 = 0 ⇒ 1(k) = 0. Since
1(k) = 0 ⇒ 1 = 1, it follows that G0 = 0 ⇒ 1 = 1. Therefore we arrive at a contradiction. Hence one can
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easily conclude that G0 , 0. Therefore hi , 0 and so 1i , 0 for i = 0, 1, . . . ,m. Hence by Hurwitz’s theorem
one can easily conclude that f1 , 0.

Since ρ( f1) = +∞, then for any given large M0 > 0 and sufficiently large r, we have T(r, f1) > rM0 . Let
Q(z) =

∑t
j=0 e1 jz j, where e1t , 0. Clearly T(r, eQ) ∼ |e1t |

π rt. Let us take M0 > t. Then T(r,eQ)
T(r, f1) → 0 as r→ ∞. This

shows that eQ is a small function f1 and so αi is a small function of H for i = 1, 2. Note that

N(r, 1; F) ≤ N
(
r, 0;

G − F
F

)
+ S(r, f1) (3.38)

≤ T
(
r,

G − F
F

)
+ S(r, f1)

≤ T
(
r,

G
F

)
+ S(r, f1)

= N
(
r,∞;

R1

R2

H(k)

H

)
+m

(
r,∞;

R1

R2

H(k)

H

)
+ S(r, f1)

≤ N(r, 0; P1( f1)) + S(r, f1)
≤ mT(r, f1) + S(r, f1).

Now from (3.38), Lemma 2.1 and using the second fundamental theorem for small function (see [20]), we
have

(l +m)T(r, f1) ≤ N(r, 0; F) +N(r,∞; F) +N(r, 1; F) + S(r, f1) ≤ 2m T(r, f1) + S(r, f1),

which is impossible as l > m.
Case 2. Suppose H(k)

≡
α2
α1

H. If furthermore α1 ≡ α2, then we have

(
P( f )

)(k)
≡ P( f ), i.e.,

m∑
i=0

bi

(
f l+i
1 −

(
f l+i
1

)(k)
)
≡ 0. (3.39)

If z1 is a pole of f1 of multiplicity p1, then z1 will be a pole of
(
P( f )

)(k) of multiplicity np1 + k whereas z1
will be a pole of P( f ) of multiplicity np1. Therefore from (3.39), we arrive at a contradiction. Hence f1 is a
transcendental entire function. let z2 be a zero of f1 of multiplicity p2. Then z2 will be a zero of P( f ) and(
P( f )

)(k) of multiplicities lp2 and lp2 − k respectively. Since l ≥ k+ 1, from (3.39), we arrive at a contradiction.
Therefore we conclude that f1 , 0. Since f1 is a transcendental entire function having no zeros, we may
take f1 = eα, where α is a non-constant entire function. Let

Gi = f l+i
1 = eδi , i = 0, 1, . . . ,m,

where δi = (n + i)α. By Lemma 2.1, we have T(r,Gi) = (l + i)T(r, f1) + S(r, f1) and so S(r,Gi) = S(r, f1),
i = 0, 1, . . . ,m. Let

Hi =
G′i
Gi
= δ′i , i = 0, 1, . . . ,m.

Clearly

T(r,Hi) = N
(
r,∞;

G′i
Gi

)
+m

(
r,

G′i
Gi

)
= N(r,∞; Gi) +N(r, 0; Gi) + S(r,Gi) = S(r, f1)

for i = 0, 1, . . . ,m. Therefore T(r,H (p)
i ) ≤ (p + 1)T(r,Hi) + S(r,Hi) = S(r, f1), where p ∈ N and i = 0, 1, . . . ,m.

Consequently from Lemma 2.1 we obtain T(r, (H (p)
i )q) = q T(r,H (p)

i ) + S(r,Hi) = S(r, f1), where q ∈ N and
i = 0, 1, . . . ,m. Now using Lemma 2.6, we have

G(k)
i = Q1iGi, i.e., G(k)

i = Q1i eδi , (3.40)
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where

Q1i = H
k
i +

k(k − 1)
2
H

k−2
i H

′

i + A1H
k−3
i H

′′

i + B1H
k−4
i (H ′i )2 +Pk−3(Hi)

and i = 0, 1, . . . ,m. Also we see that

T(r,Q1i)

= T
(
r,H k

i +
k(k − 1)

2
H

k−2
i H

′

i + A1H
k−3
i H

′′

i + B1H
k−4
i (H ′i )2 +Pk−3(Hi)

)
≤ T(r,H k

i ) + T(r,H k−2
i ) + T(r,H ′i ) + T(r,H k−3

i ) + T(r,H ′′i )

+T(r,H k−4
i ) + T(r, (H ′i )2)) + T(r,Pk−3(Hi)) = S(r, f1),

for i = 0, 1, . . . ,m. Therefore we get

Gi − G(k)
i = f l+i

1 − ( f l+i
1 )(k) = Qie(l+i)Q1 , (3.41)

where Qi = 1 −Q1i (i = 0, 1, 2, . . . ,m). Now from (3.39) and (3.41), we obtain

bmQmemQ1 + . . . + b1Q1eQ1 ≡ −b0Q0. (3.42)

If possible suppose Qi ≡ 0, for some i ∈ {i = 0, 1, . . . ,m}. Then from (3.41), we have

f l+i
1 ≡ ( f l+i

1 )(k). (3.43)

Therefore from (3.43), we conclude that ( f l+i
1 )(k) , 0 and so f l+i

1 ( f l+i
1 )(k) , 0. If k ≥ 2, then by Lemma 2.11, we

have f1(z) = ce
λ

l+i z, where c ∈ C \ {0} and λk = 1. Next we suppose k = 1. Now from (3.43), we have

α′(z) =
1

l + i
, i.e., α(z) =

1
l + i

z + c0,

where c0 ∈ C. Consequently f1(z) = ce
1

l+i z, where c = ec0 .
Now we want to show that Qi ≡ 0 can not hold for at least two values of i ∈ {0, 1, . . . ,m}. If not suppose

Qs ≡ 0 and Qt ≡ 0, where s , t and s, t ∈ {0, 1, . . . ,m}. Therefore we have

f l+s
1 ≡ ( f l+s

1 )(k) and f l+t
1 ≡ ( f l+t

1 )(k).

Consequently we have f1(z) = cse
λ

l+s z = cte
λ

l+t z, where cs, ct ∈ C \ {0} and λk = 1, which is impossible here.
We now prove that P1(z1) = bmzm

1 = anzm
1 . If not, we may assume that P1(z1) = bmzm

1 + bm−1zm−1
1 + . . . +

b1z1 + b0, where at least one of b0, b1, . . . , bm−1 is non-zero. Without loss of generality, we assume that b0 , 0.
Suppose Qm . 0. Then since bm , 0, from (3.42), we have mT

(
r, eQ1

)
= S

(
r, eQ1

)
, which is impossible.

Next we suppose Qm ≡ 0. In this case Q0 . 0. Now from (3.42), we get b0Q0 ≡ 0, which is impossible here
as b0 , 0.

Hence P1(z1) = bmzm
1 , i.e., P(z) = anzn

1 . So from (3.39), we get f n
1 ≡

(
f n
1

)(k)
. In this case f1(z) assumes the

form f1(z) = ce
λ
n z, where c ∈ C \ {0} and λk = 1. Therefore f (z) = ce

λ
n z + e, where c ∈ C \ {0} and λk = 1.
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[12] W. Lü, Q. Li, C. Yang, On the transcendental entire solutions of a class of differential equations, Bull. Korean Math. Soc., 51 (5)
(2014), 1281-1289.
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