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Bingjie Wanga, Dongya Chenga, Jigao Yana

aSchool of Mathematical Sciences, Soochow University, Suzhou 215006, China

Abstract. In this paper, we focus on a bidimensional risk model with heavy-tailed claims and geometric
Lévy price processes, in which the two claim-number processes generated by the two kinds of business
are not necessary to be identical and can be arbitrarily dependent. In this model, the claim size vectors
(X1,Y1) , (X2,Y2) , · · · are supposed to be independent and identically distributed random vectors, but for
i ≥ 1, each pair (Xi,Yi) follows the strongly asymptotic independence structure. Under the assumption that
the claims have consistently varying tails, an asymptotic formula for the infinite-time ruin probability is
established, which extends the existing results in the literature to some extent.

1. Introduction

We consider a bidimensional continuous-time risk model with two geometric Lévy price processes, in
which an insurer simultaneously operates two kinds of business. The vector of the discounted values of
the surplus processes can be expressed as

(
U1(t)
U2(t)

)
=

(
x
y

)
+

 ∫ t

0− e−R1(s)C1(ds)∫ t

0− e−R2(s)C2(ds)

 −  ∑N1(t)
i=1 Xie−R1(τ(1)

i )∑N2(t)
i=1 Yie−R2

(
τ(2)

i

)  , t ≥ 0, (1)

where (x, y)T denotes the initial surplus vector, (C1(t),C2(t))T =
( ∫ t

0 c1(s)ds,
∫ t

0 c2(s)ds
)T

the vector of the total
premiums accumulated up to time t and c1(t), c2(t) the density functions of premium income of the two kinds
of business at time t, {(X,Y)T, (Xi,Yi)T; i ≥ 1} the sequence of the independent and identically distributed
(i.i.d.) claim size vectors with marginal distributions F on [0,∞) and G on [0,∞), respectively. For k = 1, 2,{
τ(k)

i =
∑i

j=1 θ
(k)
j ; i ≥ 1

}
is the sequence of the claim arrival times, where θ(k)

j , j ≥ 1, are i.i.d. claim inter-arrival
times, forming a renewal process

Nk(t) = sup
{
i ≥ 1 : τ(k)

i ≤ t
}
, t ≥ 0.

2020 Mathematics Subject Classification. Primary 62E20; Secondary 62H20
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The price process of the investment portfolio is expressed as a geometric Lévy process
{
eRk(t), t ≥ 0

}
, i.e.,

{Rk(t), t ≥ 0} is a Lévy process with Rk(0) = 0, which is stochastically continuous and has independent
and stationary increments. This price process is widely applied to financial mathematics, see Paulsen [11],
Paulsen and Gjessing [5], Wang and Wu [13], Tang et al. [12], Yang et al. [16], and so on.

In the literature, usually two kinds of infinite-time ruin probabilities for the risk model (1) are defined:

ψand(x, y) = P
(
τ1 < ∞, τ2 < ∞ | (U1(0),U2(0)) = (x, y)

)
and

ψsim(x, y) = P
(
τsim < ∞ | (U1(0),U2(0)) = (x, y)

)
,

where

τk = inf {t ≥ 0 : Uk(t) < 0} , k = 1, 2

and

τsim = inf {t ≥ 0 : U1(t) ∨U2(t) < 0} .

Apparently, ψand(x, y) is the probability that ruin occurs in both business lines but not necessarily at the
same time over the time horizon [0,∞). While ψsim(x, y) represents the probability that ruin occurs in both
business lines simultaneously over the infinite time horizon.

In recent years, more and more attention has been paid to the asymptotic behavior of infinite-time ruin
probabilities ψand(x, y) and ψsim(x, y). More specifically, Li [6] focused on the infinite-time ruin probability
ψsim(x, y), in which the claim size vectors were i.i.d. random vectors with extended-regularly-varying-
tailed marginal distributions, and (X,Y) followed a common bivariate Farlie-Gumbel-Morgenstern (FGM)
distribution. Li [7] further considered ψsim(x, y) with each pair (X,Y) following the strongly asymptotic
independence structure (see Definition 2.1 below for detail). Both Li [6] and Li [7] were based on the fact
that two lines of business shared a common claim-number process. Yang and Li [14] studied ψsim(x, y)
by allowing arbitrary dependence between each pair of inter-arrival times of the two kinds of insurance
claims, but {Xi; i ≥ 1} and {Yi; i ≥ 1}were assumed to be two sequences of i.i.d. random variables (r.v.s), and
mutually independent. Yang et al. [16] extended the bidimensional risk model by adding two geometric
Lévy price processes and derived asymptotic formula for the infinite-time ruin probability ψand(x, y) with
pairwise negatively quadrant dependent (NQD) and consistently-varying-tailed claims, in which the two
claim-number processes were arbitrarily dependent.

We see that in the existing literature, most bidimensional risk models require nonnegative constant force
of interest, which means that insurance companies only make risk-free investments. But in reality, they
usually make both risk-free and risky investments simultaneously. In addition, most of the previous articles
assume that the two business lines have a common claim-number process, which is not the case in practical
situations. So in this paper, we aim to further study the infinite-time ruin probability ψand(x, y) for the risk
model (1), in which the Lévy price processes are introduced and can be arbitrarily dependent, and the two
claim-number processes are also allowed to be arbitrarily dependent, which enhances practicality of the
model. Besides, we assume the claim size vectors are i.i.d. random vectors with consistently-varying-tailed
marginal distributions, and (X,Y) follows the strongly asymptotic independence structure.

In the whole article, for each k = 1, 2, we suppose that the density function ck(t) is bounded, i.e.,
there exists some constant Mk > 0 such that 0 ≤ ck(t) ≤ Mk for all t ≥ 0. We further suppose that
{(X,Y) , (Xi,Yi); i ≥ 1}, {(C1(t),C2(t)); t ≥ 0}, {(R1(t),R2(t)); t ≥ 0} and {(N1(t),N2(t)); t ≥ 0} are mutually
independent. Denote the mean function by λk(t) = ENk(t) =

∑
∞

i=1 P
(
τ(k)

i ≤ t
)
, which is finite for any t > 0,

k = 1, 2.
The rest of this paper consists of three sections. The main result is presented after introducing some

preliminaries in Section 2. Some lemmas are derived in Section 3, and the proof of the main result is given
in Section 4.
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2. Preliminaries and the main result

Throughout the article, all limit relationships are for (x, y)→ (∞,∞) unless otherwise specified. For two
bivariate positive functions 11(·, ·) and 12(·, ·), we write 11 ≲ 12 or 12 ≳ 11 if lim sup 11/12 ≤ 1; write 11 ∼ 12
if lim 11/12 = 1; write 11 = o(12) if lim 11/12 = 0; write 11 = O(12) if lim sup 11/12 < ∞; and write 11 ≍ 12
if 0 < lim inf 11/12 ≤ lim sup 11/12 < ∞. For any a, b ∈ R, we write a ∨ b = max{a, b}, a ∧ b = min{a, b},
a+ = a ∨ 0, and a− = (−a) ∨ 0. Moreover, for an event A we denote its indicator function by I(A). To avoid
triviality, we always assume that a nonnegative r.v. is not degenerated at zero.

2.1. Heavy-tailed distributions and dependence structure
From a practical perspective, our discussion is based on heavy-tailed distributions. By definition, a

random variable X or its distribution V is said to be heavy-tailed, if EesX = ∞ for any s > 0. In the
following, we assume V(x) = 1 − V(x) > 0 for all x > 0. A distribution V on (−∞,∞) is said to belong to
the dominatedly-varying-tailed distribution class, denoted by V ∈ D, if for some (or, equivalently, for any)
0 < t < 1,

lim sup
x→∞

V(xt)

V(x)
< ∞.

A slightly smaller subclass is the consistently-varying-tailed distribution class, written as C. A distribution
V on (−∞,∞) belongs to C, if

lim
t↑1

lim sup
x→∞

V(xt)

V(x)
= 1, equivalently, lim

t↓1
lim inf

x→∞

V(xt)

V(x)
= 1.

The class C contains the class ERV of distributions with extended-regularly-varying tails. A distribution V
on (−∞,∞) is said to belong to ERV(−α,−β), if there are some constants 0 < α ≤ β < ∞ such that for any
0 < t < 1,

t−α ≤ lim inf
x→∞

V(xt)

V(x)
≤ lim sup

x→∞

V(xt)

V(x)
≤ t−β.

In particular, ifα = β, then V belongs to the classR−α of regularly-varying-tailed distributions with regularity
index −α. From Embrechts et al. [4], the following inclusion relationships are proper:

R−α ⊂ ERV(−α,−β) ⊂ C ⊂ D.

For a distribution V on [0,∞), we define its upper and lower Matuszewska indices, respectively, by

J+V = − lim
t→∞

log V∗(t)
log t

and J−V = − lim
t→∞

log V
∗

(t)
log t

,

where

V∗(t) = lim inf
x→∞

V(xt)

V(x)
and V

∗

(t) = lim sup
x→∞

V(xt)

V(x)
for t > 0.

Clearly, V ∈ D is equivalent to J+V < ∞. Besides, for a distribution V ∈ D with J−V > 0, by Proposition 2.2.1
of Bingham et al. [1], we know that for any 0 < p′V < J−V ≤ J+V < pV < ∞, there are two positive constants CV
and DV such that

1
CV

(t−p′V ∧ t−pV ) ≤
V(xt)

V(x)
≤ CV(t−p′V ∨ t−pV ), (2)
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whenever x ≥ DV and xt ≥ DV. From (2), it is not difficult to deduce that if V ∈ D, then for any p > J+V,

x−p = o(V(x)), x→∞. (3)

In practice, various dependence structures are used to model dependent relations among claim sizes. In
this paper, we adopt the strongly asymptotic independence structure, which is one of the most important
dependence structures.

Definition 2.1. Let X and Y be two real-valued r.v.s with distributions F and G, respectively. X and Y are said to be
strongly asymptotically independent (SAI) if

P
(
X− > x,Y > y

)
= O

(
F(−x)G(y)

)
, P

(
X > x,Y− > y

)
= O

(
F(x)G(−y)

)
,

and there exists some positive constant ρ such that

P(X > x,Y > y) ∼ ρF(x)G(y). (4)

In the case that X and Y are nonnegative, the definition of SAI only requires (4). For its properties and
applications, we refer the reader to Nelsen [10], Li [7, 8], Cheng et al. [2] and so on.

Remark 2.1. If r.v.s X with distribution F and Y with distribution G are SAI, F(x) > 0 and G(x) > 0 for all x > 0,
then there exists some positive constant C ≥ 1 such that for all x, y ∈ R,

P(X > x,Y > y) ≤ CF(x)G(y). (5)

In fact, by (4), there exists M > 0 such that

P(X > x,Y > y) ≤ (ρ + 1)P(X > x)P(Y > y) (6)

holds for x, y > M. When x ≤M, y > M,

P(X > x,Y > y) ≤
P(X > x)P(Y > y)

P(X > M)
. (7)

Similarly, when x > M, y ≤M,

P(X > x,Y > y) ≤
P(X > x)P(Y > y)

P(Y > M)
. (8)

When x ≤M, y ≤M,

P(X > x,Y > y) ≤
P(X > x)P(Y > y)

P(X > M)P(Y > M)
. (9)

Combining (6)-(9) yields the desired conclusion (5) with

C = max
{
ρ + 1,

1
P(X > M)

,
1

P(Y > M)
,

1
P(X > M)P(Y > M)

}
.

2.2. The main result
In the following, we assume that the two Lévy processes {R1(t), t ≥ 0} and {R2(t), t ≥ 0} in the risk model

(1) are right continuous with left limit. For k = 1, 2, let ERk(1) > 0 so that Rk(t)→∞ as t→∞ almost surely
(a.s.). The Laplace exponent of the Lévy process Rk(t) is defined as

ϕk(z) = log Ee−zRk(1), z ∈ R.
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If ϕk(z) is finite, then it follows from Proposition 3.14 of Cont and Tankov [3] that for any t ≥ 0,

Ee−zRk(t) = etϕk(z) < ∞. (10)

Recall that {(Xi,Yi); i ≥ 1}, {(C1(t),C2(t)); t ≥ 0}, {(R1(t),R2(t)); t ≥ 0} and {(N1(t),N2(t)); t ≥ 0} are mutually
independent. But the two Lévy processes {R1(t), t ≥ 0} and {R2(t), t ≥ 0} can be arbitrarily dependent, so are
the two counting processes {N1(t), t ≥ 0} and {N2(t), t ≥ 0}. Now, we are ready to present the main result of
this article.

Theorem 2.1. Consider the risk model (1) in which {(X,Y) , (Xi,Yi); i ≥ 1} is a sequence of i.i.d. random vectors
following the strongly asymptotic independence structure and

{
θ(k)

i ; i ≥ 1
}

is a sequence of i.i.d. claim inter-arrival
times for k = 1, 2. Assume that there exist some pF > J+F and pG > J+G such that ϕ1(2pF) < 0 and ϕ2(2pG) < 0,
respectively. Let F,G belong to C and J−F > 0, J−G > 0. Then

ψand(x, y) ∼
∞∑

i=1

∞∑
j=1

P
(
Xie−R1(τ(1)

i ) > x,Y je
−R2(τ(2)

j ) > y
)
. (11)

Remark 2.2. We see from Theorem 2.1 that if X and Y are independent, then we have

ψand(x, y) ∼
∫
∞

0−

∫
∞

0−
P
(
Xe−R1(s) > x,Ye−R2(t) > y

)
d(EN1(s) ·N2(t)),

which coincides with the result of Theorem 2.1 in Yang et al. [16].

3. Some lemmas

In this section, we prepare some lemmas, which will be used in the proof of the main result given in
Section 2. We start with some elementary results about geometric Lévy processes.

Lemma 3.1. Let τ be a nonnegative r.v. and {R(t), t ≥ 0} a Lévy process which is right continuous with left limit and
ER(1) > 0. Suppose that τ is independent of {R(t), t ≥ 0}. If ϕ(2a) < 0 and 0 < b < a, then

Ee−2aR(τ) = Eeτϕ(2a) < ∞

and

E
(
e−aR(τ) + e−bR(τ)

)2
< ∞.

Proof. Owing to the independence between τ and {R(t), t ≥ 0}, ϕ(2a) < 0 and (10), we have

Ee−2aR(τ) =

∫
∞

0
Ee−2aR(t)dP(τ ≤ t)

=

∫
∞

0
etϕ(2a)dP(τ ≤ t)

= Eeτϕ(2a) < ∞.

Thus by Cr inequality and Jensen’s inequality, for any 0 < b < a,

E
(
e−aR(τ) + e−bR(τ)

)2

≤ 2E
(
e−2aR(τ) + e−2bR(τ)

)
≤ 2

(
Ee−2aR(τ) +

(
Ee−2aR(τ)

) b
a

)
< ∞.

The proof of Lemma 3.1 is completed. □
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Lemma 3.2. Under the conditions of Theorem 2.1, for each i, j ≥ 1, there exists some constant C > 0 such that

P
(
Xie−R1(τ(1)

i ) > x,Y je
−R2(τ(2)

j ) > y
)
≳ CF(x)G(y). (12)

Proof. Let l(x) be an increasing function such that l(x) ↑ ∞ and xs/l(x) → ∞ for any s > 0, as x → ∞. For
pF, pG specified in Theorem 2.1 and any 0 < p′F < J−F , 0 < p′G < J−G, by (X,Y) being SAI, F,G ∈ D and (2), we
have for each i ≥ 1,

P
(
Xie−R1(τ(1)

i ) > x,Yie−R2(τ(2)
i ) > y

)
≥

∫ x
l(x)

0

∫ y
l(y)

0
P
(
Xi >

x
u
,Yi >

y
v

)
P
(
e−R1(τ(1)

i )
∈ du, e−R2(τ(2)

i )
∈ dv

)
∼ ρ

∫ x
l(x)

0

∫ y
l(y)

0
F
(x

u

)
G

( y
v

)
P
(
e−R1(τ(1)

i )
∈ du, e−R2(τ(2)

i )
∈ dv

)
≳

ρ

CFCG
F(x)G(y)

∫ x
l(x)

0

∫ y
l(y)

0
(upF ∧ up′F )(vpG ∧ vp′G )P

(
e−R1(τ(1)

i )
∈ du, e−R2(τ(2)

i )
∈ dv

)
≳

ρ

CFCG
E
(
e−pFR1(τ(1)

i )
∧ e−p′FR1(τ(1)

i )
) (

e−pGR2(τ(2)
i )
∧ e−p′GR2(τ(2)

i )
)

F(x)G(y).

Taking C = ρ
CFCG

E
(
e−pFR1(τ(1)

i )
∧ e−p′FR1(τ(1)

i )
) (

e−pGR2(τ(2)
i )
∧ e−p′GR2(τ(2)

i )
)
> 0 yields the relation (12) in the case of i = j.

For i , j, the conclusion follows by a similar but easier treatment. □

The next lemma is an analog of Lemma 3.2 of Yang et al. [16], in which for k = 1, 2, X(k)
i , i ≥ 1, are

pairwise NQD (see the definition of NQD in their paper) r.v.s.

Lemma 3.3. Under the conditions of Theorem 2.1, for each i, j ≥ 1, and any 0 < z1, z2 < 1,

P
(
Xie−R1(τ(1)

i ) > xz1,Y je
−R2(τ(2)

j ) > yz2

)
≲ F

∗

(z1)G
∗

(z2)P
(
Xie−R1(τ(1)

i ) > x,Y je
−R2(τ(2)

j ) > y
)
. (13)

Proof. Let ε = pF − J+F> 0 and l(x) be the same as the one in the proof of Lemma 3.2. For each i, j ≥ 1, by
Markov’s inequality, Lemma 3.1 and (3),

P
(
e−R1(τ(1)

i ) >
x

l(x)

)
≤ x−2pF (l(x))2pF Ee−2pFR1(τ(1)

i )

= x−2(pF−
ε
2 )

(
l(x)

x
ε

2pF

)2pF

Ee−2pFR1(τ(1)
i )

= o
(
(F(x))2

)
. (14)

Symmetrically, we have

P
(
e−R2(τ(2)

j ) >
y

l(y)

)
= o

(
(G(y))2

)
. (15)

Let ∆ ∈ (0, 1) be a sufficiently small constant such that

E
(
e−pFR1(τ(1)

i )
∧ e−pF′R1(τ(1)

i )
)
I
(
e−R2(τ(2)

j ) > ∆
)
> 0, (16)
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E
(
e−pGR2(τ(2)

j )
∧ e−pG′R2(τ(2)

j )
)
I
(
e−R1(τ(1)

i ) > ∆
)
> 0 (17)

and

P
(
e−R1(τ(1)

i ) > ∆, e−R2(τ(2)
j ) > ∆

)
> 0. (18)

Now we let i = j. For any 0 < z1, z2 < 1,

I :=
P
(
Xie−R1(τ(1)

i ) > xz1,Yie−R2(τ(2)
i ) > yz2

)
P
(
Xie−R1(τ(1)

i ) > x,Yie−R2(τ(2)
i ) > y

)
≤

∫ x
l(x)

0

∫ y
l(y)

0 P
(
Xi >

xz1
u ,Yi >

yz2

v

)
P
(
e−R1(τ(1)

i )
∈ du, e−R2(τ(2)

i )
∈ dv

)
∫ x

l(x)

0

∫ y
l(y)

0 P
(
Xi > x

u ,Yi >
y
v

)
P
(
e−R1(τ(1)

i )
∈ du, e−R2(τ(2)

i )
∈ dv

)
+

∫ x
l(x)

0

∫
∞

y
l(y)

P
(
Xi >

xz1
u ,Yi >

yz2

v

)
P
(
e−R1(τ(1)

i )
∈ du, e−R2(τ(2)

i )
∈ dv

)
∫ x

l(x)

0

∫ y
l(y)

∆
P
(
Xi > x

u ,Yi >
y
v

)
P
(
e−R1(τ(1)

i )
∈ du, e−R2(τ(2)

i )
∈ dv

)
+

∫
∞

x
l(x)

∫ y
l(y)

0 P
(
Xi >

xz1
u ,Yi >

yz2

v

)
P
(
e−R1(τ(1)

i )
∈ du, e−R2(τ(2)

i )
∈ dv

)
∫ x

l(x)

∆

∫ y
l(y)

0 P
(
Xi > x

u ,Yi >
y
v

)
P
(
e−R1(τ(1)

i )
∈ du, e−R2(τ(2)

i )
∈ dv

)
+

∫
∞

x
l(x)

∫
∞

y
l(y)

P
(
Xi >

xz1
u ,Yi >

yz2

v

)
P
(
e−R1(τ(1)

i )
∈ du, e−R2(τ(2)

i )
∈ dv

)
∫ x

l(x)

∆

∫ y
l(y)

∆
P
(
Xi > x

u ,Yi >
y
v

)
P
(
e−R1(τ(1)

i )
∈ du, e−R2(τ(2)

i )
∈ dv

)
=: I1 + I2 + I3 + I4. (19)

For I1, by (4), we have

I1 ∼

∫ x
l(x)

0

∫ y
l(y)

0 P
(
Xi >

xz1
u

)
P
(
Yi >

yz2

v

)
P
(
e−R1(τ(1)

i )
∈ du, e−R2(τ(2)

i )
∈ dv

)
∫ x

l(x)

0

∫ y
l(y)

0 P
(
Xi > x

u

)
P
(
Yi >

y
v

)
P
(
e−R1(τ(1)

i )
∈ du, e−R2(τ(2)

i )
∈ dv

)
≤ sup

z≥l(x)

F(zz1)

F(z)
· sup

z≥l(y)

G(zz1)

G(z)

→ F
∗

(z1)G
∗

(z2). (20)

Writing I2 =: I2n
I2d

, for I2n, by (2), we have

I2n ≤

∫ x
l(x)

0

∫
∞

y
l(y)

P
(
Xi >

xz1

u

)
P
(
e−R1(τ(1)

i )
∈ du, e−R2(τ(2)

i )
∈ dv

)
≲ CFF(x)

∫ x
l(x)

0

∫
∞

y
l(y)

( u
z1

)pF

∨

( u
z1

)p′F
P
(
e−R1(τ(1)

i )
∈ du, e−R2(τ(2)

i )
∈ dv

)
≤ CFF(x)z−pF

1 E
(
e−pFR1(τ(1)

i ) + e−p′FR1(τ(1)
i )

)
I

(
e−R2(τ(2)

i ) >
y

l(y)

)
. (21)
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For I2d, by (2) and (4) , we have

I2d ∼ ρ

∫ x
l(x)

0

∫ y
l(y)

∆

F
(x

u

)
G

( y
v

)
P
(
e−R1(τ(1)

i )
∈ du, e−R2(τ(2)

i )
∈ dv

)
≳

ρ

CF
F(x)G

( y
∆

) ∫ x
l(x)

0

∫ y
l(y)

∆

(upF ∧ up′F )P
(
e−R1(τ(1)

i )
∈ du, e−R2(τ(2)

i )
∈ dv

)
≳

ρ

CF
F(x)G

( y
∆

)
E
(
e−pFR1(τ(1)

i )
∧ e−p′FR1(τ(1)

i )
)
I
(
e−R2(τ(2)

i ) > ∆
)
. (22)

Combining (21) and (22), by Hölder’s inequality, Lemma 3.1, (15), (16) and G ∈ D, we know that

I2 ≲ ρ−1z−pF

1 C2
F

E
(
e−pFR1(τ(1)

i ) + e−p′FR1(τ(1)
i )

)
I
(
e−R2(τ(2)

i ) >
y

l(y)

)
G( y
∆ )E

(
e−pFR1(τ(1)

i )
∧ e−p′FR1(τ(1)

i )
)
I
(
e−R2(τ(2)

i ) > ∆
)

≤ ρ−1z−pF

1 C2
F

(
E
(
e−pFR1(τ(1)

i ) + e−p′FR1(τ(1)
i )

)2) 1
2 (

P
(
e−R2(τ(2)

i ) >
y

l(y)

)) 1
2

G( y
∆ )E

(
e−pFR1(τ(1)

i )
∧ e−p′FR1(τ(1)

i )
)
I
(
e−R2(τ(2)

i ) > ∆
)

≲ ρ−1z−pF

1 C2
F

(
E
(
e−pFR1(τ(1)

i ) + e−p′FR1(τ(1)
i )

)2) 1
2

E
(
e−pFR1(τ(1)

i )
∧ e−p′FR1(τ(1)

i )
)
I
(
e−R2(τ(2)

i ) > ∆
) · o

(
G(y)

)
G( y
∆ )

→ 0. (23)

Dealing with I3 with a similar idea, we get

I3 → 0. (24)

For I4, by (4) and Hölder’s inequality, we have

I4 ≲

∫
∞

x
l(x)

∫
∞

y
l(y)

P
(
e−R1(τ(1)

i )
∈ du, e−R2(τ(2)

i )
∈ dv

)
ρ
∫ x

l(x)

∆

∫ y
l(y)

∆
P
(
Xi > x

u

)
P
(
Yi >

y
v

)
P
(
e−R1(τ(1)

i )
∈ du, e−R2(τ(2)

i )
∈ dv

)
≲

P
(
e−R1(τ(1)

i ) > x
l(x) , e

−R2(τ(2)
i ) >

y
l(y)

)
ρF( x

∆ )G( y
∆ )P

(
e−R1(τ(1)

i ) > ∆, e−R2(τ(2)
i ) > ∆

)
≤

(
P
(
e−R1(τ(1)

i ) > x
l(x)

)
P
(
e−R2(τ(2)

i ) >
y

l(y)

)) 1
2

ρF( x
∆ )G( y

∆ )P
(
e−R1(τ(1)

i ) > ∆, e−R2(τ(2)
i ) > ∆

)
→ 0, (25)

where in the last step we used (14), (15), (18) and F,G ∈ D. Plugging (20), (23)-(25) into (19) yields the
inequality (13). If i , j, we can get the relation (13) in a similar way. □

The following conclusion can be easily obtained by applying variable substitution to Lemma 3.3.

Corollary 3.1. Under the conditions of Theorem 2.1, for each i, j ≥ 1 and any 1 < z1, z2 < ∞,

P
(
Xie−R1(τ(1)

i ) > xz1,Y je
−R2(τ(2)

j ) > yz2

)
≳ F∗(z1)G∗(z2)P

(
Xie−R1(τ(1)

i ) > x,Y je
−R2(τ(2)

j ) > y
)
.

The following lemma plays an important role in the proof of Lemma 3.6.
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Lemma 3.4. Under the conditions of Theorem 2.1, we get

lim
n0→∞

lim sup
P
(∑

∞

i=n0
Xie−R1(τ(1)

i ) > x,
∑
∞

j=1 Y je
−R2(τ(2)

j ) > y
)

F(x)G(y)

= lim
n0→∞

lim sup
∞∑

i=n0

∞∑
j=1

P
(
Xie−R1(τ(1)

i ) > x,Y je
−R2(τ(2)

j ) > y
)

F(x)G(y)

= 0.

Proof. Choose a constant A large enough such that
∑
∞

i=1
1
i2 < A. For any n0 ≥ 1, it is clear by Remark 2.1 that

there is some C ≥ 1 such that

J := P
( ∞∑

i=n0

Xie−R1(τ(1)
i ) > x,

∞∑
j=1

Y je
−R2(τ(2)

j ) > y
)

≤

∞∑
i=n0

∞∑
j=1

P
(
Xie−R1(τ(1)

i ) >
x

i2A
,Y je

−R2(τ(2)
j ) >

y
j2A

)

≤

∞∑
i=n0

∞∑
j=1

∫
∞

0

∫
∞

0
P
(
Xi >

x
i2Au

,Y j >
y

j2Av

)
×P

(
e−R1(τ(1)

i )
∈ du, e−R2(τ(2)

j )
∈ dv

)
≤ C

∞∑
i=n0

∞∑
j=1

( ∫ x
i2DFA

0

∫ y
j2DGA

0
+

∫ x
i2DFA

0

∫
∞

y
j2DGA

+

∫
∞

x
i2DFA

∫ y
j2DGA

0
+

∫
∞

x
i2DFA

∫
∞

y
j2DGA

)
F
( x

i2Au

)
G

(
y

j2Av

)
P
(
e−R1(τ(1)

i )
∈ du, e−R2(τ(2)

j )
∈ dv

)
=: J1 + J2 + J3 + J4.

For subsequent proof, please refer to that of Lemma 3.3 of Yang et al. (2019). □

The following two lemmas are the essential ingredients in the proof of the main result.

Lemma 3.5. Under the conditions of Theorem 2.1, it holds for any fixed n ≥ 1 that

P
( n∑

i=1

Xie−R1(τ(1)
i ) > x,

n∑
j=1

Y je
−R2(τ(2)

j ) > y
)

∼
n∑

i=1

n∑
j=1

P
(
Xie−R1(τ(1)

i ) > x,Y je
−R2(τ(2)

j ) > y
)
.

Proof. For any fixed n ≥ 1 and any 0 < ε < 1,

R := P
( n∑

i=1

Xie−R1(τ(1)
i ) > x,

n∑
j=1

Y je
−R2(τ(2)

j ) > y
)

≤ P
( n⋃

i=1

{
Xie−R1(τ(1)

i ) > (1 − ε)x
}
,

n⋃
j=1

{
Y je
−R2(τ(2)

j ) > (1 − ε)y
} )
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+P
( n∑

i=1

Xie−R1(τ(1)
i ) > x,

n∑
j=1

Y je
−R2(τ(2)

j ) > y,
n⋂

i=1

{
Xie−R1(τ(1)

i )
≤ (1 − ε)x

} )
+P

( n∑
i=1

Xie−R1(τ(1)
i ) > x,

n∑
j=1

Y je
−R2(τ(2)

j ) > y,
n⋂

j=1

{
Y je
−R2(τ(2)

j )
≤ (1 − ε)y

} )
=: R1 + R2 + R3.

For R1, using Lemma 3.3, we have

R1 ≤

n∑
i=1

n∑
j=1

P
(
Xie−R1(τ(1)

i ) > (1 − ε)x,Y je
−R2(τ(2)

j ) > (1 − ε)y
)

≲ F
∗

(1 − ε)G
∗

(1 − ε)
n∑

i=1

n∑
j=1

P
(
Xie−R1(τ(1)

i ) > x,Y je
−R2(τ(2)

j ) > y
)
.

For R2, it holds clearly that

R2 ≤

n∑
i=1

n∑
j=1

P

Xie−R1(τ(1)
i ) >

x
n
,Y je

−R2(τ(2)
j ) >

y
n
,

n∑
k=1,k,i

Xke−R1(τ(1)
k ) > εx


≤

n∑
i=1

n∑
k=1,k,i

 n∑
j=1, j,k

+

k∑
j=k

 P
(
Xie−R1(τ(1)

i ) >
x
n
,Y je

−R2(τ(2)
j ) >

y
n
,Xke−R1(τ(1)

k ) >
εx
n

)
=

n∑
i=1

n∑
k=1,k,i

n∑
j=1, j,k

∫
∞

0

∫
∞

0

∫
∞

0
P
(
Xi >

x
nu
,Y j >

y
nv

)
P
(
Xk >

εx
nt

)
×P

(
e−R1(τ(1)

i )
∈ du, e−R2(τ(2)

j )
∈ dv, e−R1(τ(1)

k )
∈ dt

)
+

n∑
i=1

n∑
k=1,k,i

∫
∞

0

∫
∞

0

∫
∞

0
P
(
Xi >

x
nu

)
P
(
Yk >

y
nv
,Xk >

εx
nt

)
×P

(
e−R1(τ(1)

i )
∈ du, e−R2(τ(2)

k )
∈ dv, e−R1(τ(1)

k )
∈ dt

)
≤ C

n∑
i=1

n∑
k=1,k,i

n∑
j=1

( ∫ x
nDF

0

∫ y
nDG

0
+

∫ x
nDF

0

∫
∞

y
nDG

+

∫
∞

x
nDF

∫ y
nDG

0
+

∫
∞

x
nDF

∫
∞

y
nDG

)
∫
∞

0
F
( x

nu

)
G

( y
nv

)
F
(
εx
nt

)
P
(
e−R1(τ(1)

i )
∈ du, e−R2(τ(2)

j )
∈ dv, e−R1(τ(1)

k )
∈ dt

)
=: R21 + R22 + R23 + R24,

where we used Remark 2.1 in the last but one step. We can complete subsequent proof by following the
same lines of the proof of Lemma 3.4 of Yang et al. [16].

The following lemma shows that the conclusion still holds as n replaced by∞.
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Lemma 3.6. Under the conditions of Lemma 3.5, it holds that

P

 ∞∑
i=1

Xie−R1(τ(1)
i ) > x,

∞∑
j=1

Y je
−R2(τ(2)

j ) > y


∼
∞∑

i=1

∞∑
j=1

P
(
Xie−R1(τ(1)

i ) > x,Y je
−R2(τ(2)

j ) > y
)
.

Proof. For any 0 < δ < 1
2 , by Lemmas 3.4 and 3.2, there exists some n0 large enough such that

P
( ∞∑

i=n0+1

Xie−R1(τ(1)
i ) > x,

∞∑
j=1

Y je
−R2(τ(2)

j ) > y
)

+

∞∑
i=n0+1

∞∑
j=1

P
(
Xie−R1(τ(1)

i ) > x,Y je
−R2(τ(2)

j ) > y
)

+ P
( ∞∑

i=1

Xie−R1(τ(1)
i ) > x,

∞∑
j=n0+1

Y je
−R2(τ(2)

j ) > y
)

+

∞∑
i=1

∞∑
j=n0+1

P
(
Xie−R1(τ(1)

i ) > x,Y je
−R2(τ(2)

j ) > y
)

≲ δP
(
X1e−R1(τ(1)

1 ) > x,Y2e−R2(τ(2)
2 ) > y

)
. (26)

On the one hand, by Lemma 3.5 and (26), it holds that

P
( ∞∑

i=1

Xie−R1(τ(1)
i ) > x,

∞∑
j=1

Y je
−R2(τ(2)

j ) > y
)

≥ P
( n0∑

i=1

Xie−R1(τ(1)
i ) > x,

n0∑
j=1

Y je
−R2(τ(2)

j ) > y
)

∼

( ∞∑
i=1

∞∑
j=1

−

∞∑
i=n0+1

∞∑
j=1

−

∞∑
i=1

∞∑
j=n0+1

+

∞∑
i=n0+1

∞∑
j=n0+1

)
P
(
Xie−R1(τ(1)

i ) > x,Y je
−R2(τ(2)

j ) > y
)

≳ (1 − 2δ)
∞∑

i=1

∞∑
j=1

P
(
Xie−R1(τ(1)

i ) > x,Y je
−R2(τ(2)

j ) > y
)
. (27)

On the other hand, for any 0 < v < 1, it holds that

P
( ∞∑

i=1

Xie−R1(τ(1)
i ) > x,

∞∑
j=1

Y je
−R2(τ(2)

j ) > y
)

≤ P
( n0∑

i=1

Xie−R1(τ(1)
i ) > (1 − v)x,

n0∑
j=1

Y je
−R2(τ(2)

j ) > (1 − v)y
)

+P
( n0∑

i=1

Xie−R1(τ(1)
i ) > (1 − v)x,

∞∑
j=n0+1

Y je
−R2(τ(2)

j ) > vy
)
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+P
( ∞∑

i=n0+1

Xie−R1(τ(1)
i ) > vx,

n0∑
j=1

Y je
−R2(τ(2)

j ) > (1 − v)y
)

+P
( ∞∑

i=n0+1

Xie−R1(τ(1)
i ) > vx,

∞∑
j=n0+1

Y je
−R2(τ(2)

j ) > vy
)

≲
(
F
∗

(1 − v)G
∗

(1 − v) + δF
∗

(1 − v)G
∗

(v) + δF
∗

(v)G
∗

(1 − v) + δF
∗

(v)G
∗

(v)
)

∞∑
i=1

∞∑
j=1

P
(
Xie−R1(τ(1)

i ) > x,Y je
−R2(τ(2)

j ) > y
)
, (28)

where we used Lemma 3.5, (26) and Lemma 3.3 in the last step. Letting δ ↓ 0 in (27) (28) and then v ↓ 0 in
(28) and noting F,G ∈ C completes the proof of Lemma 3.6. □

4. Proof of the main result

By mimicking the proof of Lemma 3.6, we can easily obtain the following result for a one-dimensional
risk model.

Lemma 4.1. Consider the one-dimensional risk model in which {Xi; i ≥ 1} is a sequence of i.i.d. r.v.s and {θi; i ≥ 1}
a sequence of i.i.d. inter-arrival times. Assume that there exists some pF > J+F such that ϕ(2pF) < 0. Let F ∈ C and
J−F > 0. Then it holds that

P
( ∞∑

i=1

Xie−R(τi) > x
)
∼
∞∑

i=1

P
(
Xie−R(τi) > x

)
.

Now we are ready to prove Theorem 2.1. The inspiration comes from Yang et al. [16].
Proof of Theorem 2.1. For the upper bound of ψand(x, y), by Lemma 3.6, it is clear that

ψand(x, y)

≤ P
( ∞∑

i=1

Xie−R1(τ(1)
i ) > x,

∞∑
j=1

Y je
−R2(τ(2)

j ) > y
)

∼

∞∑
i=1

∞∑
j=1

P
(
Xie−R1(τ(1)

i ) > x,Y je
−R2(τ(2)

j ) > y
)
.

Now we consider the lower bound. Let Mk = supt≥0 ck(t) and Zk =
∫
∞

0− e−Rk(s)ds, k = 1, 2. It follows from
Proposition 2.1 of Maulik and Zwart [9] that Zk < ∞ a.s.. For any ε > 0, we have

ψand(x, y)

≥ P

 ∞∑
i=1

Xie−R1(τ(1)
i ) > x +M1Z1,

∞∑
j=1

Y je
−R2(τ(2)

j ) > y +M2Z2


≥ P

 ∞∑
i=1

Xie−R1(τ(1)
i ) > (1 + ε)x,M1Z1 ≤ εx,

∞∑
j=1

Y je
−R2(τ(2)

j ) > (1 + ε)y,M2Z2 ≤ εy
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≥ P

 ∞∑
i=1

Xie−R1(τ(1)
i ) > (1 + ε)x,

∞∑
j=1

Y je
−R2(τ(2)

j ) > (1 + ε)y


−P

 ∞∑
i=1

Xie−R1(τ(1)
i ) > (1 + ε)x

 P
(
M2Z2 > εy

)
−P

 ∞∑
j=1

Y je
−R2(τ(2)

j ) > (1 + ε)y

 P (M1Z1 > εx)

=: K1 − K2 − K3. (29)

From Lemma 3.5, we get

K1 ≥ P
( n0∑

i=1

Xie−R1(τ(1)
i ) > (1 + ε)x,

n0∑
j=1

Y je
−R2(τ(2)

j ) > (1 + ε)y
)

∼

n0∑
i=1

n0∑
j=1

P
(
Xie−R1(τ(1)

i ) > (1 + ε)x,Y je
−R2(τ(2)

j ) > (1 + ε)y
)

≳ F∗(1 + ε)G∗(1 + ε)
n0∑
i=1

n0∑
j=1

P
(
Xie−R1(τ(1)

i ) > x,Y je
−R2(τ(2)

j ) > y
)

≳ F∗(1 + ε)G∗(1 + ε)(1 − 2δ)
∞∑

i=1

∞∑
j=1

P
(
Xie−R1(τ(1)

i ) > x,Y je
−R2(τ(2)

j ) > y
)
, (30)

where in the third and last steps we used Corollary 3.1 and (26), respectively. By Lemma 4.1, (2), Markov’s
inequality, (3), Jensen’s inequality, Lemma 3.1, θ(1)

i , i ≥ 1, being i.i.d., and the convergence of the series, we
have

P
( ∞∑

i=1

Xie−R1(τ(1)
i ) > (1 + ε)x

)
≲

∞∑
i=1

P
(
Xie−R1(τ(1)

i ) > x
)

≤

∞∑
i=1

( ∫ x
DF

0
F(x)CF(upF + up′F )P

(
e−R1(τ(1)

i )
∈ du

)
+ P

(
e−R1(τ(1)

i ) >
x

DF

) )
≤ F(x)CF

∞∑
i=1

E
(
e−pFR1(τ(1)

i ) + e−p′FR1(τ(1)
i )

)
+DpF

F x−pF

∞∑
i=1

Ee−pFR1(τ(1)
i )

= (1 + o(1))CFF(x)
∞∑

i=1

E
(
e−pFR1(τ(1)

i ) + e−p′FR1(τ(1)
i )

)
≤ (1 + o(1))CFF(x)

∞∑
i=1

(
(Eeθ

(1)
1 ϕ1(2pF))

i
2 + (Eeθ

(1)
1 ϕ1(2pF))

ip′F
2pF

)
= O(F(x)).

By ϕ2(2pG) < 0 and Lemma 3.2 of Yang et al. [15], know that EZ2pG

2 < ∞. By Markov’s inequality and (3), it
holds that
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P
(
M2Z2 > εy

)
≤ EZ2pG

2

(M2

ε

)2pG

y−2pG = o
(
G(y)

)
.

The two estimates above lead to K2 = o
(
F(x)G(y)

)
, which, by Lemma 3.2, further implies that

K2 = o(1)
∞∑

i=1

∞∑
j=1

P
(
Xie−R1(τ(1)

i ) > x,Y je
−R2(τ(2)

j ) > y
)
. (31)

Symmetrically,

K3 = o(1)
∞∑

i=1

∞∑
j=1

P
(
Xie−R1(τ(1)

i ) > x,Y je
−R2(τ(2)

j ) > y
)
. (32)

Plugging (30)-(32) into (29) and letting ε ↓ 0, δ ↓ 0, we have

ψand(x, y) ≳
∞∑

i=1

∞∑
j=1

P
(
Xie−R1(τ(1)

i ) > x,Y je
−R2(τ(2)

j ) > y
)
.

The proof of Theorem 2.1 is completed. □
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of Industrial & Management Optimization 15 (2019) 481-505.


