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Abstract. In this paper, we study the following variational inequality
uek,

(Au,v—u) + fg(x,u)(v —u) > ff(x, u, Vu)(v — u),Yo € K,

Q Q

where K = {u € W(l)’p (Q) : u(x) > 0}, A is the p- Laplacian and the function g is increasing in the second
variable.

By constructing the solution operator for an associate variational inequality, we reduce the problem to a
fixed point equation. Then, we apply the fixed point index to prove the existence of the nontrivial solution
of the problem.

1. Introduction

We consider the following problem

uek,

(Au,v—uy + fg(x, u)(v—u) > ff(x, u,Vu)(v —u), Vo € K, 1.1)
Q Q

where Qis abounded domain with smooth boundary in R, f, g are Caratheodory functions satisfying some

suitable conditions which will be clarified later, K = {u € W(l)’p (Q):u>0}and < Au, ¢ >= f [VulP=2Vy - Vo
Q
is the p-Laplacian.
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The problem (1.1) is a natural extension of the following generalized logistic equation
—Apu = f(x,u,Vu) — g(x,u) in Q,u = 0 on JQ2,

which has received a great deal of attention from mathematicians due to many important applications in
reaction - diffusion processes and biological models. See for example [6-9, 12, 13, 17] and references therein.
Elliptic variational inequalities of the form

u €Ky,

(Aju,v—u) > fFl (x, u, Vu)(v — u)dx, Vv € K, (1.2)
Q

in which A; : Wé’p (Q) > W¥(Q) is an operator of Leray - Lions type, F; : QX RXx RN — Ris a
Caratheodory function and K; C W(l)’p (Q) is a convex set have arisen in Physics, mechanics, engineering,
control, optimization and other fields and have been widely studied. To investigate them, mathematicians
have applied different methods such as approximations, variational, sub - supersolution, bifurcation,
topological index methods. See [2, 3, 10, 11, 14, 15, 18].

In this paper, we will restrict our attention to the problem (1.1) (thus Fi(x,u,v) = f(x,u,v) — g(x,u) in
(1.2)) when the function g(x, u) is increasing in the second variable. This condition includes, as a special
case, the following condition which has been imposed in the literature [3].

e There is a positive number M such that the function F;(x, #,v) + Mu is increasing with respect to the
variable u, for every v € RN,

It is also closely related to the following condition of [10]

o Fi(x,u) = F(x,u, u) with the function F be increasing in the second variable and decreasing in the third
variable.

In those cases, the existence of a nontrivial solution can be proved by sub - supersolution method or
by the fixed point theorems for increasing operators in ordered spaces. In studying problem (1.1) we do
not impose any monotonicity condition on the function f, hence, we can not apply fixed point theorem
of increasing operators. Also, unboundedness in x- variable of f, g makes it difficult to construct sub
- supersolution of the problem. In present paper we shall use the solution operator of an associated
variational inequality to reduce the problem (1.1) to a fixed point equation and then we apply the theory
of fixed point index to prove the existence of nontrivial solutions of the problem. We consider the case of
(p — 1)— sublinear growth of the function f in Theorem 3.1 and the case of asymptotically (p — 1)— linear
growth in Theorem 3.2 and Theorem 3.3. In Example and Remark 4 we give some simple cases of the
functions f and g for Theorems 3.1, 3.2, 3.3 to hold and for compairing of our results with the some previous
results in the literature.

2. A reduction to fixed point problem

We shall use the following theorems due to L. Boccardo et al. [1]
Theorem 2.1. Suppose that g : QO X R — IR is a Caratheodory function satisfying the following conditions
(i) g(x,0) =0, u +— g(x, u) is increasing function, for a.e x € ();

(ii) for all t > O there exists a function @; € LY(Q) such that SUP 906, 1) < @i(x).
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Then, for any z € W=7 (Q), the problem

uek glxu)e LY(Q), ug(x,u) € LY(Q),

(Au,v—u) + fg(x, u)(v—u) > {(z,v—u),Yo € KNL*(Q), 21
Q
has a unique solution u satisfying
(Au,u) + fg(x, wu =z, u). (2.2)
Q

In addition, if uy, uy are two solutions with respect to z1,zy in (2.1) then u1g(x, up) and upg(x, u1) belong to LY(Q)
and

(Auy — Aup, uy — up) + f[!](x, uy) — g(x, Mz)](u1 —Up) < {21 — 22, U1 — U2). (2.3)
0

Theorem 2.2. Let ug € W(l)’p (Q) and u be a positive Radon measure. Suppose that h € L}(Q) satisfying
w+he W (Q),up > 6,hug = 0 € LY(Q).
Then, we have hug € LY(Q), ug € LYQ, p), and

(W+hu) = fuody > fhuodx.

Q Q
We also recall the following properties of the operator A = —A,, (see [16]).

Proposition 2.3. 1. The mapping A is continuous, strictly monotone, bounded and of type S*, that is, if (u,) C
W(l)’p (Q) such that

Uy = uand lim sup{Auy,, u, —u) <0,
then u, — u strongly in Wé’p Q).
2. Ifu,ve W(l)’p(Q) and satisfying (Au — Av, (u —v)*) <0 then u < va.e. in Q. Here, u™ = max{u, 6}.

Lemma 2.4. Suppose that u is a solution of the problem (2.1) and v € K. We have

(i) <Au -z, (tu — v)+> + fg(x, u)(tu —o0)* <0, Vt > 0;
Q

(ii) (Au—z,(tv—u)*) + f g u)to—u)* >0 if ovg(x,u) € LNQ);
Q

(iii) (Au—z,0—u) + fg(x, wE-u)>0 if og(x,u)eLNQ).
Q

Proof. We will prove that all assumptions in Theorem 2.2 hold true with p = Au —z + g(x, u),h = —g(x, u)
and a suitable u.



B. T. Quan, N. B. Huy / Filomat 36:12 (2022), 4055-4068 4058
(i) Choosing ug = tu — (tu — v)* = min{tu, v}, we then have
hug = —g(x, ) min{tu, v} > —g(x, u)tu € L'(Q).
It follows from Theorem 2.2 that
(Au—z,tu — (tu —v)*) + fg(x, w[tu — (tu —v)*1 > 0. (2.4)
Q
Multiplying t with (2.2) and then inserting this into (2.4) we will get (i).

(ii) Choosing uy = u + (tv — u)* = max{u, tv} and setting O; = {u > tv} and Q, = {u < tv}, we have
hug = —g(x, u)u in Q and huy = —g(x, u)tv in Q. Therefore, hug = —g(x, u) max{u, tv} € L1(Q). By Theorem
2.2 we have

(Au—z,u+ (tv—u)") + fg(x, wlu+ (tv—u)*]1 = 0.
0
This along with (2.2) yields (ii).

(iif) The proof of (iii) can be done in the same manner by choosing 1y = v and we omit details.
0

Lemma 2.5. Suppose that g : Q X R* — R* is a Caratheodory function and satisfies the following conditions
(g1) g(x,0) = 0, and g(x, u) is an increasing function with respect to u for a.e x € €J;
(g2) there exista > 0,8 <p* —1and b € L¥)(Q) so that g(x,u) < auf + b(x).
Then, forallz€ Ky = {z € W= (Q) : {z,u) > 0,Yu € K}, the problem
uek,

(Au,v—u) + fg(x, u)(v—u)=>{z,v—uy, Yo ek (2.5)
Q

has a unique solution u, satisfying (2.2) and

(Au,v) + f g(x,u)v > {z,v), Vv € K (2.6)
Q

Moreover, the solutions uq, uy of (2.5), corresponding to z = z1, z, satisfy (2.3).

Proof. It is easy to see that the function g extended for u € (—o0,0] by putting g(x, u) = —g(x, —u) satisfies the

conditions of Theorem 2.1. Therefore, the problem (2.1) has a unique solution. Since [ulf € L7 (Q) c LV (Q)
and condition (g2), it follows that g(x,u) € L¥)(Q). For v € K we have vg(x,u) € L'(Q), hence by (iii) of
Lemma 2.4, (2.5) holds true. Finally, from (2.2) and (2.5) we obtain (2.6) [J

Lemma 2.6. Let P : K1 — K be a mapping which maps each z € Ky into P(z) = u, a unique solution of problem (2.5).
Then the following statements are true:

(i) P isincreasing, that is zy < zp implies P(z1) < P(z»). Here, z1 < zp means that (zo —z1,u) > 0,Yu € K.
(if) P is continuous and bounded that is if M is bounded then so is P(M).
(iii) If6 > (p*)’ then P : L>(Q) — Wé’p (Q) is compact.

(iv) Ifzy, = z # O and t,, — oo then ||P(t,z,)|| = 0.
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Proof. (i) Let z; < zp and u; = P(z;),i = 1,2. By Lemma 2.4, we have

(Auy =21, (11 — 1)) + f g9(x, ur)(ur — up)"dx <0,
Q

and
<AM2 -2z, (uy — M2)+> + fg(x, up)(uy — up) dx > 0.
0

We then have

<AM1 — Aug, (uy - M2)+> + f[g(x, ur) — g(x, 7«!2)](”1 —up) + <Zz - z1, (U1 — M2)+> <0, (27)

O

where 1 = {x : u1(x) > up(x)}. Since the second and the third terms in (2.7) are nonnegative, we have

>
Auq — Auy, (uq — up)t) < 0. Therefore, (17 — up)* = 0, or equivalently, u; < uy a.e in Q.
q Y

(ii) Let M be a bounded set in W™#(Q) and z € M, u = P(z). By (2.2) we have |[ullP < (z, u) < |lzl|.l|u||, which
implies that ||u|| < ||z||n%1. Therefore, P(M) is bounded.

We will show that P is continuous by proving that if lim z, = z then sequence u, = P(z,) has a

n—oo

subsequence, which converges to P(z). Indeed, the sequence u,, = P(z,) is bounded, W;’p (Q) is reflexive and

the embedding Wé’p(Q) — L7(Q) is compact as y < p*, we may assume, without loss of generality, that

uy »u€K weaklyin  W,"(Q), (2.8)
u, - u in LY(Q) with y<p. (2.9)

By assumption (g2), the Nemytskii operator N, : u — g(x, u(x)) is continuous from LF¥) (Q) to L¥)'(Q)
and B(p*)’ < p*. Therefore, by (2.9), we have

lim g(-, u,) = g(-,u) in L¥Y(Q) and in W=#(Q). (2.10)
It follows from

(Auy, u, —u) < — fg(-, Uy )y — 1) + (Zy, Uy — U,
Q

and (2.8), (2.10) and the fact that {z,} is convergent that

lim sup{Au,, u, —u) = 0.

Since A is a mapping of S* class , we obtain u, — u in Wé’p(()). Letting n — oo in
(Attn, 0 — 1) + fg(u Un)(© = Un) > (20,0 = tiy), Y0 € K
Q

we get (2.5). Therefore u = P(z).

(iii) Since the embedding Wé’p (Q) - L(Q) is compact as y < p*, the embedding L%(Q) — W™7(Q) is

compact as 6 > (p*)’. Since P : W (Q) — W(l)’p (Q) is continuous, we get that P : L°(Q) — W(l)’p(Q) is
compact as 6 > (p*)’.
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(iv) If the sequence u,, = P(z,) is bounded, then we may assume that it satisfies (2.8), (2.10). It follows from
(2.6) that

1
o [(Aun, v) + f g(x, ”n)] > (zy,v), Y €K,
n Q
which by letting n — oo gives 0 > (zp, v) Vv € K, a contradiction to zp € K; \ {0}. O

Lemma 2.7. [9] Let f : Q X R x RYN — R be a Caratheodory function satisfying

If (x,u,0) < glx, ful, [o]),

where g : QO X R* X R* — R is a Caratheodory function which is increasing with respect to the second and the third
variables, and satisfies the following condition

uel’(Q),velP(Q) = g(x,u,v) € LQ).
Then, the Nemytskii operator Ng : u + f(x, u(x), Vu(x)) from W(l)’p (Q) to L2(Q) is continuous.

Corollary 2.8. The Nemytskii operator Ny from Wé’p (Q) to L¥(Q) is continuous and bounded in the following cases

(i) 6= min{%; q;’i;g* }, [f(x, u, )] < m(x)|[ul* + clo)”, where a <p* =1,y < % and m € LI(Q) with q > (%)’,

(i) 6 = W, [f(x,u,0)| < m(x)lul“(l + clvP’), where a < p* =1,y < p(l — 1;;—“) and m € L1(Q) with

q>—~—.
(1-2)-

Proof. (i) If u € L7 (Q) and v € LP(Q) then m(x)u|* € L= (Q) and [o]’ € L7 (Q). Therefore, m(x)|ul® + [o]’ €

L%(Q), where 6 = min{% ; q;”i;f }

(i) If u € LV (Q),v € LP(Q) then we get [u|* € L5 (Q), 1 + clo]’ € L¥(Q). Hence, m()lu*(1+ clol’) € L2(Q),
Where%:%+;—ﬁ+%.

Therefore, by the Lemma 2.7, the operator Ny is continuous from Wé’p (Q) into L2(Q).
To see the boundedness of Ny, we apply the Holder inequality and we get

INs@lls < llmllgllull: + CHIVullle < Hmllgllully. + Cllull”

for the case (i) and
INf@)lls < llmllglllzet* ] 11+ CIVulllz < C (1 + [ul|**7)

for the case (ii). O

Remark 2.9. If the condition (g1)-(g2) and one of the conditions (i) and (ii) of Lemma 2.8 are satisfied then

the operator P o Ny is completely continuous from W(l)’p(Q) to W(l)’p (Q). By definition of the operator P, the
problem (1.1) is reduced to the fixed point problem u = P o N¢(u).

We now recall some preliminaries on ordered spaces and the fixed point index.
Let E be a Banach space ordered by the cone K C E, that is, K is a closed convex subset such that AK C K
forall A > 0, KN (=K) = {0} and ordering in E is defined by x < y iff y — x € K.

If D is a bounded relatively open subset of K and F : D — K is a compact operator such that F(u) #
1, Yu € dD, then the fixed point index i(F, D, K) of F on D with respect to K is well-defined. This fixed point
index admits all usual properties of the Leray - Schauder degree. In the sequence, we will use the following
important results on computation of the index. See [5, 9].
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Proposition 2.10. Assume that D is a bounded relatively open subset of K and F : D — K is a compact operator
satisfying F(u) # u,Yu € dD. If there exits uy € K\ {0} such that

u # F(u) + tug, Yt > 0,Yu € dD,
then i(F, D,K) = 0.

Proposition 2.11. Let (E, K) and (E1, K1) be the ordered Banach spaces and N : K — K be a continuous, bounded
operator, P : Ky — K be a compact operator, P(6) = 6. Let D C E be a bounded open subset containing 0.

1. Ifu # P[tN(u)],Vt € [0,1],Yu € D N K, then i(P o N, D, K) = 1.
2. Suppose that there exists ug € Ky \ {0} such that
u # P[N(u) + Aug], YA =0, Yu € KN IQ

and lf{tn} - (0, Oo)r {Zn} - Kl/tl’l — 09,z — U then limn—mo ”P(tnzn)H = 0.
Then i(P o N,D,K) = 0.

Here, we use the notation i(P o N, D, K) instead of i(P o N, D N K, K).

3. Main results
In this section we shall order space Wé’p (Q) by the cone K defined in (1.1).

Theorem 3.1. Suppose that the Caratheodory function g : QO X R* — R* satisfies (g1)-(2). Also assume that the
Caratheodory function f : Q X R* x RN — R* satisfies the following conditions

(HO) There exist o < p —1,m(x) € L1(Q),q > (L), such that f(x,u,v) < m(x)u® + clo|.

T+a
(H1) Either of two following conditions holds
a y<p-1L

Bl ug(x,u) > alulP.

b. There exists a number 1 > 1 such that y < =5—

(H2) There exist an open set Qg € Q and numbers mg > 0,m; > 0,& > 0,1 <p—1,P2 > aq such that

f(x,u,0) > mou® and g(x,u) < muf?, ¥Yx € Qp,u € [0;¢],0 € RN,
Then, problem (1.1) has a positive solution.

Proof. We will proceed the proof of Theorem 3.1 in three steps.
Step 1. We show that there exists a number R large enough such that

u # P[tNyu], Vt € [0;1], Yu > 6, |lul| = R.

Assume by contradiction that we can find {t,} € [0;1], and u, > 6, |lusl| — oo such that u, = P[tNfu,]. By
(2.2), we get

(Auy, uy) + f g(x, uy)u, < f flx, un, Vg )uy,
Q Q

which implies that

|V + f g(x, uy)uy, < f m(x)uyt + ¢ f Vi, uy,. (3.1)
Q Q Q
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If condition a. in (H1) holds, by applying (3.1), Holder’s and Young’s inequalities and the fact that second
term in the left hand is nonnegative, we obtain

lllP < CallitallEnyyr + elluall + Cellunll;, where t = ()E/)’- (3.2)

It follows from (1 + a)7’ < p*,t < p and (3.2) that
el < C(Ieall™** + lueall'),

which contradicts to [[u,]| = oo, 1+ a <p,t <p.
If condition b. in (H1) holds, by (3.1) we get

el + allully < | mE)ul® +C | Vi . (3.3)
p1 n

Q Q

By Young’s inequality, we have
IVital 1y < C&)Vuta B + ey,
which along with (3.3) and y(81)" < p implies that

il + allienlly < Cllaall§ )+ ellnlly + Clelaeg PP (34)

Then, we obtain
1 (B1Y
ol + allenl < (1l + 70

which is a contradiction to (1 + @) < p, y(1)’ < p and |[u,|| — oo.
Step 2. We show that there exists 7 > 0 small enough such that
u# PoNg(u)+tup,Vt > 0,Yu = 0, |[ul| =, (3.5)

where u is given as follows. Let u be a positive eigenfunction corresponding to the eigenvalue of the
problem
—Apu(x) = AulP~2.u in Qp, u(x) = 0 on Q.

We define ug as uy = cu in Qy where ¢ > 0 small enough and o = 0in Q \ Q.
We now prove that (3.5) holds. Assume by contradiction that we can find t, > 0,1, > 0, ||u,|| — 0 such that
u, =Pyo Nf(u,,) + t,Up.

Let A, be a maximal number such that u, > A,ug. Since u, > t,ug, we get A, > t, > 0. Due to the fact that
u, — 0, wehave A,, - 0.
We choose a number o such that 1 > ¢ > max{;%;; Z—;} and we will show that for n large enough

P o Ng(uy) 2 Ajuo. (3.6)
It was shown in [2] that
(Aug, ) < fugl(p, Yo e K (3.7)
Q

Setting v = P o N¢(uy,), it follows from (ii) of Lemma 2.4 that

(a0, o =07 > [ [ = gt 0)+ a0, Vi) [0 = )" (38
Q
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Taking ¢ = (AJup — v)* in (3.7) and then multiplying (3.7) with )\Z(p_D and finally taking the difference of
(3.7) and (3.8), we get

(A (o) = Av, (Aup = 0)") < f [ + 90, 0) = £0x, 1, Vi) | (Ao = 0), (3.9)
O

where O = {tuy > v}. Setting h = [/\Z(p_l)ugl +g(x,0) — f(x, uy, Vun)] (A%ug — v), we have h = 0in O \ Qy.
In O; N Qy, we have
h < A2 Vg = mo(Anuig)® + my(A%u0)P1(A%uo — 0)
= (Autto) AP g + mg AT uﬁf‘“](/\guo -v).
Since ug is bounded and A, — 0, h < 0 as n is sufficiently large. Therefore, from (3.9) we obtain
(A (A%ug) — Av, (ASug — )"y <0,

which proves (Aup — v)* < 0 or Ajuy < v provided that n is sufficiently large.

From (3.6), we obtain u,, > P o N¢(u,) > Ajuo. Therefore, by the choice of A, we get A; < A,, which

contradictstoo < 1,A,, — 0.
Step 3. It follows from Step 1 and Step 2 and Propositions 2.10, 2.11 that
i(P o Ny, B(6,R),K) =1, as R is large enough,
and
i(Po Ny, B(6,7),K) =0, as r is small enough.
Therefore, there exists u > 6 such that 7 < |[u|| < Rand u = P o N¢(u). This means that the problem (1.1) has

a positive solution. [

Theorem 3.2. Suppose that N—1 <p <N, f : OXR* xRN — R*,g: QxR* — R* are Caratheodory functions,
satisfying condition (31) and the following conditions
(H3) a. ug(x,u) > auf» — b(x) withp < p2 < p*,b € LL(Q),

b. g(x,u) < auf1.

(H4) f(x,u,v) <m(x)uP~t + Clo]’,Yu > 0,Yo e RN withp -1 <y < ﬁ;—;lp and m € L1(Q),q > (%)

(H5) There exists a function my € L, (Q)), m1(x) £0,7 > Np ) such that

(=-D(p+1-N

a. For all positive sequences t,, — 0,u, — u, and any bounded sequence {v,} C RN, we have

lim f(x/ tultn, tnUy)

n—o00 p—l
n

= my(x).uP L

b. The principal eigenvalue Ay of the problem

—Apu = A (Ol 2w in Q,
u=00ndQ,

satisfies Ag < 1.

Then, problem (1.1) has a positive solution.
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Proof. We split the proof of Theorem 3.2 into three steps.
Step 1. We show that there exists a sufficiently large number R such that

u # P[tNsu), Yt €[0,1], Yu > 6, ||ull = R.

Assume by contradiction that we can find {t,} € [0,1], and u,, > 6, |[u,|| — oo such that u, = P[t,Nfu,]. By
(2.2), we get

<Aun/ un) + fg(xr un)un < ff(x/ Z’ln/ Vul’l)un'
Q

Q
It follows from (H3)-(H4) that

il + allslfy < Cr + f mly + CVity ] . (3.10)
Q

By Holder’s inequality, Young’s inequality and yf, < p we get

fmﬂ’i < llmllglially = Collunlly,,, (3.11)
Q

and
f Vit 1t < ellunllf? + CEIVal I < el + CCellnll. (3.12)
Q

From (3.10), (3.12) and yB, < p we have
il + Nl < C(1 + lunll, )- (3.13)

We consider two cases.
Case 1. If pg’ < B, then it follows from (3.13) that

el + latallfy < C(1 + llally ).

which implies ||u;||, — 0, a contradiction to p < f8>.
Case 2. Suppose that pg’ > B,. It follows from the assumption (H4) that pg’ < p*. By the interpolation
inequality, we obtain

[etnllpg < Cllunll;.i-||14n||}52_‘I < Cllunll“llunllé;(’, (3.14)
where o € (0; 1) satisfying
1_1_ o(l _ l)
B vy B2 p
From (3.13), we obtain, for n be large enough,

P

il < Cllttullpg and lfitulls, < Cllatull}2,- (3.15)

From (3.14) and (3.15) we have
a+(1fo)£
”un”pq’ < C”un”pqr ’

which is a contradiction to that |||,y — o0 and o + (1 — U)ﬁﬁz <1.
Step 2. We show that there exists a sufficiently small number r such that

u# PNy () + tug, V20, Yu 2 0, |lull =,
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where 1y > 0,1y # 0. Assume by contradiction that we can find ¢, > 0, u, > 6, |[u,|| = 0 such that

Up = P[Nf(un) + tatio].

We have
(A,  — up) 2 f[f(x, U, Vidy) = g(x, ) + tatio](p — un), Vo € K, (3.16)
Q
and
At 1) = f £ty Vitg) — (3, 1) + ol (317)
Q
From (3.16) and (3.17) we obtain
At ) > [ 1010, V) = 963, + g, Vg € K. (3.18)
Taking z, = IL”II’ then {z,} is a bounded consequence. Since W P(Q) is a reflexive space, we may assume,

without loss of generality, that z, — z weakly in W0 P(Q) and z, — z in LY(Q), where 6 is defined in
Corollary 2.8 (i) and with a = p — 1. By (H3)-(H4), we get

< f(x/ unl vu?‘l)

< m@)Z " + cllug P V2,
1t P

and

X, u
< L) ety
lluenllP
Since the mapping z — m(x)zF~! + c|Vz|’,z — azf>! maps bounded sets in Wé’p (Q) into bounded sets in

L%(Q), the sequence { f fx, un, Vuy,) — g(x, uy,)] i (ﬁp—l } is bounded. Moreover, from the fact that the mapping

Ais bounded and (3. 17) the sequence {” )= } is bounded; and hence we may assume
It follows from (3.16) that

ty
—a >
Tt — 02 0.

(zn—2)

lloul P~

(Azy, 2y —2) < f[f(x, U, Vity) = g(x, ty) + tytig]
Q

Since the sequence {[ f(x, uy, Vuy) — g, u,) + ¢ ul] } is bounded in L°(Q) and by lim, (2, —z) = 0in

[[ot II” 1
L% (Q), we get lim sup(Az,, z, — z) < 0.

Since A is a mapping of the type S*, we have z, — z # 6. Since z, — z in [V (Q), Vz, — Vz in LP(Q), we
may assume z, — z,Vz, — Vzand |z,| < zy € L7 (Q), |Vz,| < v € LP(Q) a.e in Q. This in combination with
(H4)-H(5) implies that

fEun, V) fO iz, lllVza)p
oo uy|P n—sco [P~

=m(x)Z 'paeinQ,

and

|f(x, 1y, Vi)l

-1 y—p+1
T < m(x)zy + clluall P V2,
n

< m(x)z Ty cv 'e Q) c L (Q).
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By the Lebesgue’s Dominated Convergence Theorem, we obtain

. fx, un, Vi) -
1 A itk S P1p.
e B PR T M
Q
Similarly
lim (x, un)(P _

e g1
Q
Therefore, passing to the limit in (3.18), we get

(Az, ) > f (m1(x)2" ™" + toug)p, Vo € K, (3.19)
Q

which proves
z > (A (02 = w. (3.20)

Since m(x)zF~! € L*(Q) with s = ﬁ > %, and the result of [4] we have w € intC,, where C, = {u €

G (Q), u(x) > 0}. Let @o be a positive eigenfunction corresponding to the principal eigenvalue Ag and s > 0
be a maximal number satisfying z > s@g. Then we get from (3.20) that

2> (M) @l = ——go.
A

p-1
0
Since Ap < 1, =%~ > s, which contradicts to the choice of s.
AP
Step 3. Using the argument that used in Step 3 in proof of Theorem 3.1, we conclude that the problem (1.1)
has a positive solution. [

Theorem 3.3. Assume that N —1 < p < N and the conditions (¢1), and (H3), (H5) in Theorem 3.2 hold true, and
the condition (H4) is replaced by the following condition

(H4) f(x,u,0) < m(x)ur~ (1 + cloP’) with y < p(1 - £), m(x) € L1(Q),q > 55—

Then, problem (1.1) has a positive solution.

Proof. The proof is similar to that of Theorem 3.2 with the minor difference in Step 1. We now sketch it here.
We will prove that there exists a sufficiently large number R so that

u # P[tN¢(u)], Vt € [0;1], Yu > O, |lull = R.

Assume by contradiction that we can find sequences {t,}, {u,} such that t, € [0,1],u, > O,|lu,|]| = oo
satisfying u, = P[t,Nf(u,)]. By (2.2), we get

<Aun,un)+fg(x,un)un<ff(x,un,Vun)un.
Q Q
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By (H3) and (H4’), we obtain

P+ allf? < [ o)+ [ e + v

Q Q

7
< [lmll f Wy (14 [Vu, )T} +C
Q
4 L/ 7 l/
< Clluy I 1L+ Va1
<C+ IIunlly)IIunIIZq,t
< Cllunllyllunlliq,t, (3.21)
where s = yiq,,t =5 = (y%)’. We consider two cases.
Case 1. If pq’t < p, then by (3.21) we get

llunll” + IIMnllgi < Clluta P el , (3.22)
which implies that
v
llnllp, < Cllunll™7,

and that w
llunllP < Cllul 77

This contradicts to that p >y + % and ||u,|| — oo.

Case 2. If B, < pq’t then we have B, < pq’t < p*. By interpolation inequality, we get

etnllpge < IIunIIZ*IIMnIIé;” < IIMnIIUIIMnIIé;“, (3.23)
where ¢ is defined by + — L. = g(+ — 1). Tt follows from (3.21) that
Y b oot B2 P
= e
llunll < Cllunll,,, and |lunllg, < IIunIIP;Z ’

This in combination with (3.23) gives
”un”pq't < ”un”;\qrt/

_ P NP . /
where A = 055+ (1-o0) ) < 1, a contradiction to that |[u;]|pg+ — 0.

At this stage, by the argument used in Step 2 and Step 3 in the proof of Theorem 3.2, we complete the
proof of the theorem. [

4. Example and Remark

1. Let f(x,u,v) = mu® + clv|”, (x,u,v) € Q X [0, ) X RN, where 0 < a < p—1 and m,c, )y are positive
numbers. Conditions of Theorem 3.1 hold in the following cases

a. gx,u)=In(l+uf)orgx,u)=ufandy <p-lLa<p<p -1
g

b. g(x,u) = uf and y < ;3/+1' a<B<p -1
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2. LetN—-1<p <N, g(x,u) = uf withp—1 < g < p* —1 and A, be the principal eigenvalue of the problem

~Apu = AMulP~1in Q, u = 0 on dQ.

a. Conditions of Theorem 3.2 are satisfied for the function f(x, u, v) = muP~ +clo] withp—1 < y < %
and m > A..

b. Conditions of Theorem 3.3 hold for the function f(x, u,v) = mu’~}(1+clo|) with0 < y < p (1 - I%)
and m > A..

Note that, these functions do not satisfy the following condition which has been proposed in the
literature [14, 15]
i &0 _
u—0 yp-l

m(x)

uniformly with respect to x € Q and to v in each bounded subset of RV.
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