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Abstract. In this paper, we study the following variational inequality
u ∈ K,

⟨Au, v − u⟩ +
∫
Ω

1(x,u)(v − u) ≥
∫
Ω

f (x,u,∇u)(v − u),∀v ∈ K,

where K = {u ∈ W1,p
0 (Ω) : u(x) ≥ 0}, A is the p- Laplacian and the function 1 is increasing in the second

variable.
By constructing the solution operator for an associate variational inequality, we reduce the problem to a
fixed point equation. Then, we apply the fixed point index to prove the existence of the nontrivial solution
of the problem.

1. Introduction

We consider the following problem
u ∈ K,

⟨Au, v − u⟩ +
∫
Ω

1(x,u)(v − u) ≥
∫
Ω

f (x,u,∇u)(v − u),∀v ∈ K, (1.1)

whereΩ is a bounded domain with smooth boundary inRN, f , 1 are Caratheodory functions satisfying some
suitable conditions which will be clarified later, K = {u ∈ W1,p

0 (Ω) : u ≥ 0} and < Au, ϕ >=
∫
Ω

|∇u|p−2
∇u · ∇ϕ

is the p-Laplacian.
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The problem (1.1) is a natural extension of the following generalized logistic equation

−∆pu = f (x,u,∇u) − 1(x,u) in Ω,u = 0 on ∂Ω,

which has received a great deal of attention from mathematicians due to many important applications in
reaction - diffusion processes and biological models. See for example [6–9, 12, 13, 17] and references therein.

Elliptic variational inequalities of the form
u ∈ K1,

⟨A1u, v − u⟩ ≥
∫
Ω

F1(x,u,∇u)(v − u)dx,∀v ∈ K1,
(1.2)

in which A1 : W1,p
0 (Ω) → W−1,p′ (Ω) is an operator of Leray - Lions type, F1 : Ω × R × RN

→ R is a
Caratheodory function and K1 ⊂ W1,p

0 (Ω) is a convex set have arisen in Physics, mechanics, engineering,
control, optimization and other fields and have been widely studied. To investigate them, mathematicians
have applied different methods such as approximations, variational, sub - supersolution, bifurcation,
topological index methods. See [2, 3, 10, 11, 14, 15, 18].

In this paper, we will restrict our attention to the problem (1.1) (thus F1(x,u, v) = f (x,u, v) − 1(x,u) in
(1.2)) when the function 1(x,u) is increasing in the second variable. This condition includes, as a special
case, the following condition which has been imposed in the literature [3].

• There is a positive number M such that the function F1(x,u, v) +Mu is increasing with respect to the
variable u, for every v ∈ RN.

It is also closely related to the following condition of [10]

• F1(x,u) = F(x,u,u) with the function F be increasing in the second variable and decreasing in the third
variable.

In those cases, the existence of a nontrivial solution can be proved by sub - supersolution method or
by the fixed point theorems for increasing operators in ordered spaces. In studying problem (1.1) we do
not impose any monotonicity condition on the function f , hence, we can not apply fixed point theorem
of increasing operators. Also, unboundedness in x- variable of f , 1 makes it difficult to construct sub
- supersolution of the problem. In present paper we shall use the solution operator of an associated
variational inequality to reduce the problem (1.1) to a fixed point equation and then we apply the theory
of fixed point index to prove the existence of nontrivial solutions of the problem. We consider the case of
(p − 1)− sublinear growth of the function f in Theorem 3.1 and the case of asymptotically (p − 1)− linear
growth in Theorem 3.2 and Theorem 3.3. In Example and Remark 4 we give some simple cases of the
functions f and 1 for Theorems 3.1, 3.2, 3.3 to hold and for compairing of our results with the some previous
results in the literature.

2. A reduction to fixed point problem

We shall use the following theorems due to L. Boccardo et al. [1]

Theorem 2.1. Suppose that 1 : Ω ×R −→ R is a Caratheodory function satisfying the following conditions

(i) 1(x, 0) = 0,u 7−→ 1(x,u) is increasing function, for a.e x ∈ Ω;

(ii) for all t > 0 there exists a function φt ∈ L1(Ω) such that sup
|u|⩽t |1(x,u)| ⩽ φt(x).
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Then, for any z ∈W−1,p′ (Ω), the problem
u ∈ K, 1(x,u) ∈ L1(Ω),u1(x,u) ∈ L1(Ω),

⟨Au, v − u⟩ +
∫
Ω

1(x,u)(v − u) ≥ ⟨z, v − u⟩,∀v ∈ K ∩ L∞(Ω), (2.1)

has a unique solution u satisfying

⟨Au,u⟩ +
∫
Ω

1(x,u)u = ⟨z,u⟩. (2.2)

In addition, if u1,u2 are two solutions with respect to z1, z2 in (2.1) then u11(x,u2) and u21(x,u1) belong to L1(Ω)
and

⟨Au1 − Au2,u1 − u2⟩ +

∫
Ω

[
1(x,u1) − 1(x,u2)

]
(u1 − u2) ⩽ ⟨z1 − z2,u1 − u2⟩. (2.3)

Theorem 2.2. Let u0 ∈W1,p
0 (Ω) and µ be a positive Radon measure. Suppose that h ∈ L1(Ω) satisfying

µ + h ∈W−1,p′

0 (Ω),u0 ≥ θ, hu0 ≥ v ∈ L1(Ω).

Then, we have hu0 ∈ L1(Ω),u0 ∈ L1(Ω, µ), and

⟨µ + h,u0⟩ =

∫
Ω

u0dµ ≥
∫
Ω

hu0dx.

We also recall the following properties of the operator A = −∆p (see [16]).

Proposition 2.3. 1. The mapping A is continuous, strictly monotone, bounded and of type S+, that is, if (un) ⊂
W1,p

0 (Ω) such that

un
w
−→ u and lim sup⟨Aun,un − u⟩ ≤ 0,

then un → u strongly in W1,p
0 (Ω).

2. If u, v ∈W1,p
0 (Ω) and satisfying ⟨Au − Av, (u − v)+⟩ ≤ 0 then u ≤ v a.e. in Ω. Here, u+ = max{u, θ}.

Lemma 2.4. Suppose that u is a solution of the problem (2.1) and v ∈ K. We have

(i)
〈
Au − z, (tu − v)+

〉
+

∫
Ω

1(x,u)(tu − v)+ ⩽ 0, ∀t ≥ 0;

(ii)
〈
Au − z, (tv − u)+

〉
+

∫
Ω

1(x,u)(tv − u)+ ≥ 0 if v1(x,u) ∈ L1(Ω);

(iii) ⟨Au − z, v − u⟩ +
∫
Ω

1(x,u)(v − u) ≥ 0 if v1(x,u) ∈ L1(Ω).

Proof. We will prove that all assumptions in Theorem 2.2 hold true with µ = Au − z + 1(x,u), h = −1(x,u)
and a suitable u0.
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(i) Choosing u0 = tu − (tu − v)+ = min{tu, v}, we then have

hu0 = −1(x,u) min{tu, v} ≥ −1(x,u)tu ∈ L1(Ω).

It follows from Theorem 2.2 that

⟨Au − z, tu − (tu − v)+⟩ +
∫
Ω

1(x,u)[tu − (tu − v)+] ≥ 0. (2.4)

Multiplying t with (2.2) and then inserting this into (2.4) we will get (i).

(ii) Choosing u0 = u + (tv − u)+ = max{u, tv} and setting Ω1 = {u ≥ tv} and Ω2 = {u < tv}, we have
hu0 = −1(x,u)u in Ω1 and hu0 = −1(x,u)tv in Ω2. Therefore, hu0 = −1(x,u) max{u, tv} ∈ L1(Ω). By Theorem
2.2 we have

⟨Au − z,u + (tv − u)+⟩ +
∫
Ω

1(x,u)[u + (tv − u)+] ≥ 0.

This along with (2.2) yields (ii).

(iii) The proof of (iii) can be done in the same manner by choosing u0 = v and we omit details.

Lemma 2.5. Suppose that 1 : Ω ×R+ → R+ is a Caratheodory function and satisfies the following conditions

(g1) 1(x, 0) = 0, and 1(x,u) is an increasing function with respect to u for a.e x ∈ Ω;

(g2) there exist a > 0, β < p∗ − 1 and b ∈ L(p∗)′ (Ω) so that 1(x,u) ⩽ auβ + b(x).

Then, for all z ∈ K1 = {z ∈W−1,p′ (Ω) : ⟨z,u⟩ ≥ 0,∀u ∈ K}, the problem
u ∈ K,

⟨Au, v − u⟩ +
∫
Ω

1(x,u)(v − u) ≥ ⟨z, v − u⟩,∀v ∈ K, (2.5)

has a unique solution u, satisfying (2.2) and

⟨Au, v⟩ +
∫
Ω

1(x,u)v ≥ ⟨z, v⟩, ∀v ∈ K. (2.6)

Moreover, the solutions u1,u2 of (2.5), corresponding to z = z1, z2, satisfy (2.3).

Proof. It is easy to see that the function 1 extended for u ∈ (−∞, 0] by putting 1(x,u) = −1(x,−u) satisfies the

conditions of Theorem 2.1. Therefore, the problem (2.1) has a unique solution. Since |u|β ∈ L
p∗

β (Ω) ⊂ L(p∗)′ (Ω)
and condition (g2), it follows that 1(x,u) ∈ L(p∗)′ (Ω). For v ∈ K we have v1(x,u) ∈ L1(Ω), hence by (iii) of
Lemma 2.4, (2.5) holds true. Finally, from (2.2) and (2.5) we obtain (2.6)

Lemma 2.6. Let P : K1 → K be a mapping which maps each z ∈ K1 into P(z) = u, a unique solution of problem (2.5).
Then the following statements are true:

(i) P is increasing, that is z1 ≤ z2 implies P(z1) ≤ P(z2). Here, z1 ≤ z2 means that ⟨z2 − z1,u⟩ ≥ 0,∀u ∈ K.

(ii) P is continuous and bounded that is if M is bounded then so is P(M).

(iii) If δ > (p∗)′ then P : Lδ(Ω)→W1,p
0 (Ω) is compact.

(iv) If zn → z , θ and tn →∞ then ∥P(tnzn)∥ → ∞.



B. T. Quan, N. B. Huy / Filomat 36:12 (2022), 4055–4068 4059

Proof. (i) Let z1 ⩽ z2 and ui = P(zi), i = 1, 2. By Lemma 2.4, we have〈
Au1 − z1, (u1 − u2)+⟩ +

∫
Ω

1(x,u1)(u1 − u2)+dx ⩽ 0,

and 〈
Au2 − z2, (u1 − u2)+

〉
+

∫
Ω

1(x,u2)(u1 − u2)+dx ≥ 0.

We then have 〈
Au1 − Au2, (u1 − u2)+

〉
+

∫
Ω1

[
1(x,u1) − 1(x,u2)

]
(u1 − u2) +

〈
z2 − z1, (u1 − u2)+

〉
⩽ 0, (2.7)

where Ω1 = {x : u1(x) ≥ u2(x)}. Since the second and the third terms in (2.7) are nonnegative, we have〈
Au1 − Au2, (u1 − u2)+

〉
⩽ 0. Therefore, (u1 − u2)+ = 0, or equivalently, u1 ⩽ u2 a.e in Ω.

(ii) Let M be a bounded set in W−1,p′ (Ω) and z ∈ M,u = P(z). By (2.2) we have ∥u∥p ⩽ ⟨z,u⟩ ⩽ ∥z∥.∥u∥, which
implies that ∥u∥ ⩽ ∥z∥

1
p−1 . Therefore, P(M) is bounded.

We will show that P is continuous by proving that if lim
n→∞

zn = z then sequence un = P(zn) has a

subsequence, which converges to P(z). Indeed, the sequence un = P(zn) is bounded, W1,p
0 (Ω) is reflexive and

the embedding W1,p
0 (Ω)→ Lγ(Ω) is compact as γ < p∗, we may assume, without loss of generality, that

un → u ∈ K weakly in W1,p
0 (Ω), (2.8)

un → u in Lγ(Ω) with γ < p∗. (2.9)

By assumption (g2), the Nemytskii operator N1 : u −→ 1(x,u(x)) is continuous from Lβ(p∗)′ (Ω) to L(p∗)′ (Ω)
and β(p∗)′ < p∗. Therefore, by (2.9), we have

lim
n→∞
1(·,un) = 1(·,u) in L(p∗)′ (Ω) and in W−1,p′ (Ω). (2.10)

It follows from

⟨Aun,un − u⟩ ⩽ −
∫
Ω

1(·,un)(un − u) + ⟨zn,un − u⟩,

and (2.8), (2.10) and the fact that {zn} is convergent that

lim sup⟨Aun,un − u⟩ = 0.

Since A is a mapping of S+ class , we obtain un → u in W1,p
0 (Ω). Letting n→∞ in

⟨Aun, v − un⟩ +

∫
Ω

1(·,un)(v − un) ⩾ ⟨zn, v − un⟩,∀v ∈ K

we get (2.5). Therefore u = P(z).

(iii) Since the embedding W1,p
0 (Ω) → Lγ(Ω) is compact as γ < p∗, the embedding Lδ(Ω) → W−1,p′ (Ω) is

compact as δ > (p∗)′. Since P : W−1,p′ (Ω) → W1,p
0 (Ω) is continuous, we get that P : Lδ(Ω) → W1,p

0 (Ω) is
compact as δ > (p∗)′.
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(iv) If the sequence un = P(zn) is bounded, then we may assume that it satisfies (2.8), (2.10). It follows from
(2.6) that

1
tn

[
⟨Aun, v⟩ +

∫
Ω

1(x,un)
]
≥ ⟨zn, v⟩, ∀v ∈ K,

which by letting n→∞ gives 0 ≥ ⟨z0, v⟩ ∀v ∈ K, a contradiction to z0 ∈ K1 \ {θ}.

Lemma 2.7. [9] Let f : Ω ×R ×RN
−→ R be a Caratheodory function satisfying

| f (x,u, v)| ⩽ 1(x, |u|, |v|),

where 1 : Ω ×R+ ×R+ → R is a Caratheodory function which is increasing with respect to the second and the third
variables, and satisfies the following condition

u ∈ Lp∗ (Ω), v ∈ Lp(Ω) =⇒ 1(x,u, v) ∈ Lδ(Ω).

Then, the Nemytskii operator N f : u 7−→ f (x,u(x),∇u(x)) from W1,p
0 (Ω) to Lδ(Ω) is continuous.

Corollary 2.8. The Nemytskii operator N f from W1,p
0 (Ω) to Lδ(Ω) is continuous and bounded in the following cases

(i) δ = min
{ p
γ ; qp∗

qα+p∗

}
, | f (x,u, v)| ⩽ m(x)|u|α + c|v|γ, where α < p∗ − 1, γ < p

(p∗)′ and m ∈ Lq(Ω) with q > ( p∗

1+α )′,

(ii) δ = pp∗q
pp∗+αpq+γp∗q , | f (x,u, v)| ⩽ m(x)|u|α

(
1 + c|v|γ

)
, where α < p∗ − 1, γ < p

(
1 − 1+α

p∗

)
and m ∈ Lq(Ω) with

q > p

p
(

1− 1+α
p∗

)
−γ

.

Proof. (i) If u ∈ Lp∗ (Ω) and v ∈ Lp(Ω) then m(x)|u|α ∈ L
qp∗

qα+p∗ (Ω) and |v|γ ∈ L
p
γ (Ω). Therefore, m(x)|u|α + |v|γ ∈

Lδ(Ω), where δ = min
{ p
γ ; qp∗

qα+p∗

}
.

(ii) If u ∈ Lp∗ (Ω), v ∈ Lp(Ω) then we get |u|α ∈ L
p∗

α (Ω), 1 + c|v|γ ∈ L
p
γ (Ω). Hence, m(x)|u|α

(
1 + c|v|γ

)
∈ Lδ(Ω),

where 1
δ =

1
q +

α
p∗ +

γ
p .

Therefore, by the Lemma 2.7, the operator N f is continuous from W1,p
0 (Ω) into Lδ(Ω).

To see the boundedness of N f , we apply the Holder inequality and we get

∥N f (u)∥δ ≤ ∥m∥q∥uα∥ p∗
α
+ C∥|∇u|γ∥ p

γ
≤ ∥m∥q∥u∥αp∗ + C∥u∥γ

for the case (i) and
∥N f (u)∥δ ≤ ∥m∥q∥|u|α∥ p∗

α
∥1 + C|∇u|γ∥ p

γ
≤ C (1 + ∥u∥α+γ)

for the case (ii).

Remark 2.9. If the condition (g1)-(g2) and one of the conditions (i) and (ii) of Lemma 2.8 are satisfied then
the operator P ◦N f is completely continuous from W1,p

0 (Ω) to W1,p
0 (Ω). By definition of the operator P, the

problem (1.1) is reduced to the fixed point problem u = P ◦N f (u).

We now recall some preliminaries on ordered spaces and the fixed point index.
Let E be a Banach space ordered by the cone K ⊂ E, that is, K is a closed convex subset such that λK ⊂ K

for all λ ≥ 0, K ∩ (−K) = {θ} and ordering in E is defined by x ≤ y iff y − x ∈ K.

If D is a bounded relatively open subset of K and F : D → K is a compact operator such that F(u) ,
u,∀u ∈ ∂D, then the fixed point index i(F,D,K) of F on D with respect to K is well-defined. This fixed point
index admits all usual properties of the Leray - Schauder degree. In the sequence, we will use the following
important results on computation of the index. See [5, 9].
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Proposition 2.10. Assume that D is a bounded relatively open subset of K and F : D → K is a compact operator
satisfying F(u) , u,∀u ∈ ∂D. If there exits u0 ∈ K \ {θ} such that

u , F(u) + tu0,∀t > 0,∀u ∈ ∂D,

then i(F,D,K) = 0.

Proposition 2.11. Let (E,K) and (E1,K1) be the ordered Banach spaces and N : K → K1 be a continuous, bounded
operator, P : K1 → K be a compact operator, P(θ) = θ. Let D ⊂ E be a bounded open subset containing θ.

1. If u , P[tN(u)],∀t ∈ [0, 1],∀u ∈ ∂D ∩ K, then i(P ◦N,D,K) = 1.

2. Suppose that there exists u0 ∈ K1 \ {θ} such that

u , P[N(u) + λu0], ∀λ ≥ 0, ∀u ∈ K ∩ ∂Ω

and if {tn} ⊂ (0,∞), {zn} ⊂ K1, tn →∞, zn → u0 then limn→∞ ∥P(tnzn)∥ = ∞.
Then i(P ◦N,D,K) = 0.

Here, we use the notation i(P ◦N,D,K) instead of i(P ◦N,D ∩ K,K).

3. Main results

In this section we shall order space W1,p
0 (Ω) by the cone K defined in (1.1).

Theorem 3.1. Suppose that the Caratheodory function 1 : Ω ×R+ → R+ satisfies (g1)-(g2). Also assume that the
Caratheodory function f : Ω ×R+ ×RN

→ R+ satisfies the following conditions

(H0) There exist α < p − 1,m(x) ∈ Lq(Ω), q >
( p∗

1+α

)′
such that f (x,u, v) ⩽ m(x)uα + c|v|γ.

(H1) Either of two following conditions holds

a. γ < p − 1.

b. There exists a number β1 > 1 such that γ < β1−1
β1

p,u1(x,u) ⩾ a|u|β1 .

(H2) There exist an open set Ω0 ⋐ Ω and numbers m0 > 0,m1 > 0, ε > 0, α1 < p − 1, β2 > α1 such that

f (x,u, v) ≥ m0uα1 and 1(x,u) ⩽ m1uβ2 , ∀x ∈ Ω0,u ∈ [0; ε], v ∈ RN.

Then, problem (1.1) has a positive solution.

Proof. We will proceed the proof of Theorem 3.1 in three steps.
Step 1. We show that there exists a number R large enough such that

u , P[tN f u], ∀t ∈ [0; 1], ∀u ⩾ θ, ∥u∥ = R.

Assume by contradiction that we can find {tn} ⊂ [0; 1], and un ⩾ θ, ∥un∥ → ∞ such that un = P[tN f un]. By
(2.2), we get

⟨Aun,un⟩ +

∫
Ω

1(x,un)un ⩽

∫
Ω

f (x,un,∇un)un,

which implies that

∥un∥
p +

∫
Ω

1(x,un)un ⩽

∫
Ω

m(x)u1+α
n + c

∫
Ω

|∇un|
γun. (3.1)
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If condition a. in (H1) holds, by applying (3.1), Holder’s and Young’s inequalities and the fact that second
term in the left hand is nonnegative, we obtain

∥un∥
p ⩽ C1∥un∥

1+α
(1+α)q′ + ε∥un∥

p + C(ε)∥un∥
t
t, where t = (

p
γ

)′. (3.2)

It follows from (1 + α)q′ < p∗, t < p and (3.2) that

∥un∥
p ⩽ C

(
∥un∥

1+α + ∥un∥
t
)
,

which contradicts to ∥un∥ → ∞, 1 + α < p, t < p.
If condition b. in (H1) holds, by (3.1) we get

∥un∥
p + a∥un∥

β1

β1
⩽

∫
Ω

m(x)u1+α
n + C

∫
Ω

|∇un|
γun. (3.3)

By Young’s inequality, we have

|∇un|
γun ⩽ C(ε)|∇un|

γ(β1)′ + εuβ1
n ,

which along with (3.3) and γ(β1)′ < p implies that

∥un∥
p + a∥un∥

β1

β1
⩽ C∥un∥

(1+α)
(1+α)q′ + ε∥un∥

β1

β1
+ C(ε)∥un∥

γ(β1)′ . (3.4)

Then, we obtain
∥un∥

p + a∥un∥
β1

β1
⩽ C
(
∥un∥

1+α + ∥un∥
γ(β1)′
)

which is a contradiction to (1 + α) < p, γ(β1)′ < p and ∥un∥ → ∞.

Step 2. We show that there exists r > 0 small enough such that

u , P ◦N f (u) + tu0,∀t > 0,∀u ≥ θ, ∥u∥ = r, (3.5)

where u0 is given as follows. Let u be a positive eigenfunction corresponding to the eigenvalue of the
problem

−∆pu(x) = λ|u|p−2.u in Ω0, u(x) = 0 on ∂Ω0.

We define u0 as u0 = cu in Ω0 where c > 0 small enough and u0 = 0 in Ω \Ω0.
We now prove that (3.5) holds. Assume by contradiction that we can find tn > 0,un ≥ θ, ∥un∥ → 0 such that

un = P0 ◦N f (un) + tnu0.

Let λn be a maximal number such that un ≥ λnu0. Since un ≥ tnu0, we get λn ≥ tn > 0. Due to the fact that
un → θ, we have λn → 0.
We choose a number σ such that 1 > σ > max{ αp−1 ; α1

β2
} and we will show that for n large enough

P ◦N f (un) ≥ λσnu0. (3.6)

It was shown in [2] that

⟨Au0, φ⟩ ≤

∫
Ω

uα1
0 φ,∀φ ∈ K. (3.7)

Setting v = P ◦N f (un), it follows from (ii) of Lemma 2.4 that

⟨Av, (λσnu0 − v)+⟩ ≥
∫
Ω

[
− 1(x, v) + f (x,un,∇un)

]
(λσnu0 − v)+. (3.8)
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Taking φ = (λσnu0 − v)+ in (3.7) and then multiplying (3.7) with λσ(p−1)
n and finally taking the difference of

(3.7) and (3.8), we get

⟨A
(
λσnu0

)
− Av, (λσnu0 − v)+⟩ ≤

∫
Ω1

[
λσ(p−1)

n uα1
0 + 1(x, v) − f (x,un,∇un)

]
(λσnu0 − v), (3.9)

where Ω1 = {tσu0 ≥ v}. Setting h =
[
λσ(p−1)

n uα1
0 + 1(x, v) − f (x,un,∇un)

] (
λσnu0 − v

)
, we have h = 0 in Ω1 \Ω0.

In Ω1 ∩Ω0, we have

h ≤ [λσ(p−1)
n u0 −m0(λnu0)α1 +m1(λσnu0)β2 ](λσnu0 − v)

= (λnu0)α1 [λσ(p−1)−α1
n −m0 +m1λ

σβ2−α1
n uβ2−α1

0 ](λσnu0 − v).

Since u0 is bounded and λn → 0, h ≤ 0 as n is sufficiently large. Therefore, from (3.9) we obtain

⟨A
(
λσnu0

)
− Av,

(
λσnu0 − v

)+
⟩ ≤ 0,

which proves (λσnu0 − v)+ ≤ 0 or λσnu0 ≤ v provided that n is sufficiently large.

From (3.6), we obtain un ≥ P ◦ N f (un) ≥ λσnu0. Therefore, by the choice of λn we get λσn ≤ λn, which
contradicts to σ < 1, λn → 0.

Step 3. It follows from Step 1 and Step 2 and Propositions 2.10, 2.11 that

i(P ◦N f ,B(θ,R),K) = 1, as R is large enough,

and
i(P ◦N f ,B(θ, r),K) = 0, as r is small enough.

Therefore, there exists u ≥ θ such that r ≤ ∥u∥ ≤ R and u = P ◦N f (u). This means that the problem (1.1) has
a positive solution.

Theorem 3.2. Suppose that N−1 < p < N, f : Ω×R+×RN
→ R+, 1 : Ω×R+ → R+ are Caratheodory functions,

satisfying condition (g1) and the following conditions

(H3) a. u1(x,u) ≥ auβ2 − b(x) with p < β2 < p∗, b ∈ L1
+(Ω),

b. 1(x,u) ≤ auβ2−1.

(H4) f (x,u, v) ≤ m(x)up−1 + C|v|γ,∀u ≥ 0,∀v ∈ RN with p − 1 ≤ γ ≤ β2−1
β2

p and m ∈ Lq
+(Ω), q >

( p∗

p

)′
.

(H5) There exists a function m1 ∈ Lr
+(Ω),m1(x) . 0, r > Np

(p−1)(p+1−N) such that

a. For all positive sequences tn → 0,un → u, and any bounded sequence {vn} ⊂ RN, we have

lim
n→∞

f (x, tnun, tnvn)

tp−1
n

= m1(x).up−1.

b. The principal eigenvalue λ0 of the problem{
−∆pu = λm1(x)|u|p−2u in Ω,

u = 0 on ∂Ω,

satisfies λ0 < 1.

Then, problem (1.1) has a positive solution.
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Proof. We split the proof of Theorem 3.2 into three steps.
Step 1. We show that there exists a sufficiently large number R such that

u , P[tN f u], ∀t ∈ [0, 1], ∀u ⩾ θ, ∥u∥ = R.

Assume by contradiction that we can find {tn} ⊂ [0, 1], and un ⩾ θ, ∥un∥ → ∞ such that un = P[tnN f un]. By
(2.2), we get

⟨Aun,un⟩ +

∫
Ω

1(x,un)un ⩽

∫
Ω

f (x,un,∇un)un.

It follows from (H3)-(H4) that

∥un∥
p + a∥un∥

β2

β2
≤ C1 +

∫
Ω

mup
n + C|∇un|

γun. (3.10)

By Holder’s inequality, Young’s inequality and γβ′2 < p we get∫
Ω

m.up
n ≤ ∥m∥q∥u

p
n∥q′ = C2∥un∥

p
pq′ , (3.11)

and ∫
Ω

|∇un|
γun ≤ ε∥un∥

β2

β2
+ C(ε)∥|∇un|

γ
∥
β′2
β′2
≤ ε∥un∥

β2

β2
+ C(ε)∥un∥

γβ′2 . (3.12)

From (3.10), (3.12) and γβ
′

2 < p we have

∥un∥
p + ∥un∥

β2

β2
≤ C
(
1 + ∥un∥

p
pq′

)
. (3.13)

We consider two cases.
Case 1. If pq′ ≤ β2 then it follows from (3.13) that

∥un∥
p + ∥un∥

β2

β2
≤ C
(
1 + ∥un∥

p
β2

)
.

which implies ∥un∥β2 →∞, a contradiction to p < β2.
Case 2. Suppose that pq′ > β2. It follows from the assumption (H4) that pq′ < p∗. By the interpolation
inequality, we obtain

∥un∥pq′ ≤ C∥un∥
σ
p∗ .∥un∥

1−σ
β2
≤ C∥un∥

σ
∥un∥

1−σ
β2
, (3.14)

where σ ∈ (0; 1) satisfying
1
β2
−

1
pq′
= σ
( 1
β2
−

1
p∗
)
.

From (3.13), we obtain, for n be large enough,

∥un∥ ≤ C∥un∥pq′ and ∥un∥β2 ≤ C∥un∥

p
β2
pq′ . (3.15)

From (3.14) and (3.15) we have

∥un∥pq′ ≤ C∥un∥
σ+(1−σ) p

β2
pq′ ,

which is a contradiction to that ∥un∥pq′ →∞ and σ + (1 − σ) p
β2
< 1.

Step 2. We show that there exists a sufficiently small number r such that

u , P
[
N f (u) + tu0

]
, ∀t ≥ 0, ∀u ≥ θ, ∥u∥ = r,
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where u0 ≥ θ,u0 , θ. Assume by contradiction that we can find tn ≥ 0,un ≥ θ, ∥un∥ → 0 such that

un = P[N f (un) + tnu0].

We have

⟨Aun, φ − un⟩ ≥

∫
Ω

[ f (x,un,∇un) − 1(x,un) + tnu0](φ − un),∀φ ∈ K, (3.16)

and

⟨Aun,un⟩ =

∫
Ω

[ f (x,un,∇un) − 1(x,un) + tnu0]un. (3.17)

From (3.16) and (3.17) we obtain

⟨Aun, φ⟩ ≥

∫
Ω

[ f (x,un,∇un) − 1(x,un) + tnu0]φ,∀φ ∈ K. (3.18)

Taking zn =
un
∥un∥

, then {zn} is a bounded consequence. Since W1,p
0 (Ω) is a reflexive space, we may assume,

without loss of generality, that zn → z weakly in W1,p
0 (Ω) and zn → z in Lδ′ (Ω), where δ is defined in

Corollary 2.8 (i) and with α = p − 1. By (H3)-(H4), we get

0 ≤
f (x,un,∇un)
∥un∥

p−1 ≤ m(x)zp−1
n + c∥un∥

γ−p+1
|∇zn|

γ,

and

0 ≤
1(x,un)
∥un∥

p−1 ≤ azβ2−1
n ∥un∥

β2−p.

Since the mapping z 7→ m(x)zp−1 + c|∇z|γ, z 7→ azβ2−1 maps bounded sets in W1,p
0 (Ω) into bounded sets in

Lδ(Ω), the sequence
{ ∫
Ω

[ f (x,un,∇un)− 1(x,un)] φ
∥un∥

p−1

}
is bounded. Moreover, from the fact that the mapping

A is bounded and (3.17), the sequence
{

tn
∥un∥

p−1

}
is bounded; and hence we may assume tn

∥un∥
p−1 → t0 ≥ 0.

It follows from (3.16) that

⟨Azn, zn − z⟩ ≤
∫
Ω

[
f (x,un,∇un) − 1(x,un) + tnu0

] (zn − z)
∥un∥

p−1

Since the sequence
{
[ f (x,un,∇un) − 1(x,un) + tnu1] 1

∥un∥
p−1

}
is bounded in Lδ(Ω) and by limn→∞(zn − z) = 0 in

Lδ′ (Ω), we get lim sup⟨Azn, zn − z⟩ ≤ 0.
Since A is a mapping of the type S+, we have zn → z , θ. Since zn → z in Lp∗ (Ω), ∇zn → ∇z in Lp(Ω), we
may assume zn → z,∇zn → ∇z and |zn| ≤ z0 ∈ Lp∗ (Ω), |∇zn| ≤ v0 ∈ Lp(Ω) a.e in Ω. This in combination with
(H4)-H(5) implies that

lim
n→∞

f (x,un,∇un)φ
∥un∥

p−1 = lim
n→∞

f (x, ∥un∥zn, ∥un∥∇zn)φ
∥un∥

p−1

= m1(x)zp−1φ a.e in Ω,

and

| f (x,un,∇un)|
∥un∥

p−1 ≤ m(x)zp−1
n + c∥un∥

γ−p+1
|∇zn|

γ

≤ m(x)zp−1
0 + cvp−1

0 ∈ Lδ(Ω) ⊂ L(p∗)′ (Ω).
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By the Lebesgue’s Dominated Convergence Theorem, we obtain

lim
n→∞

∫
Ω

f (x,un,∇un)φ
∥un∥

p−1 =

∫
Ω

m1(x)zp−1φ.

Similarly

lim
n→∞

∫
Ω

1(x,un)φ
∥un∥

p−1 = 0.

Therefore, passing to the limit in (3.18), we get

⟨Az, φ⟩ ≥
∫
Ω

(m1(x)zp−1 + t0u0)φ,∀φ ∈ K, (3.19)

which proves

z ≥ (−∆p)−1(m1(x)zp−1) := w. (3.20)

Since m(x)zp−1
∈ Ls(Ω) with s = rp∗

r(p−1)+p∗ >
Np
p−1 , and the result of [4] we have w ∈ intC+, where C+ = {u ∈

C1
0(Ω),u(x) ≥ 0}. Let φ0 be a positive eigenfunction corresponding to the principal eigenvalue λ0 and s > 0

be a maximal number satisfying z ≥ sφ0. Then we get from (3.20) that

z ≥ (∆p)−1(m1(x)sp−1φp−1
0 ) =

s

λ
1

p−1

0

φ0.

Since λ0 < 1, s

λ
1

p−1
0

> s, which contradicts to the choice of s.

Step 3. Using the argument that used in Step 3 in proof of Theorem 3.1, we conclude that the problem (1.1)
has a positive solution.

Theorem 3.3. Assume that N − 1 < p < N and the conditions (g1), and (H3), (H5) in Theorem 3.2 hold true, and
the condition (H4) is replaced by the following condition

(H4’) f (x,u, v) ≤ m(x)up−1(1 + c|v|γ) with γ < p(1 − p
β2

),m(x) ∈ Lq(Ω), q > p∗p
p∗(p−γ)−p2 .

Then, problem (1.1) has a positive solution.

Proof. The proof is similar to that of Theorem 3.2 with the minor difference in Step 1. We now sketch it here.

We will prove that there exists a sufficiently large number R so that

u , P[tN f (u)], ∀t ∈ [0; 1], ∀u ≥ θ, ∥u∥ = R.

Assume by contradiction that we can find sequences {tn}, {un} such that tn ∈ [0, 1],un ≥ θ, ∥un∥ → ∞

satisfying un = P[tnN f (un)]. By (2.2), we get

⟨Aun,un⟩ +

∫
Ω

1(x,un)un ⩽

∫
Ω

f (x,un,∇un)un.
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By (H3) and (H4’), we obtain

∥un∥
p + a∥un∥

β2

β2
≤

∫
Ω

b(x) +
∫
Ω

m(x)up
n(1 + c|∇un|

γ)

≤ ∥m∥


∫
Ω

upq′
n (1 + |∇un|

γ)q′


1
q′

+ C

≤ C∥upq′
n ∥

1
q′

t ∥(1 + |∇un|
γ)q′
∥

1
q′

s

≤ C(1 + ∥un∥
γ)∥un∥

p
pq′t

≤ C∥un∥
γ
∥un∥

p
pq′t, (3.21)

where s = p
γq′ , t = s′ = ( p

γq′ )
′. We consider two cases.

Case 1. If pq′t ≤ β2 then by (3.21) we get

∥un∥
p + ∥un∥

β2

β2
≤ C∥un∥

γ
∥un∥

p
β2
, (3.22)

which implies that

∥un∥β2 ≤ C∥un∥
γ
β2−p ,

and that
∥un∥

p
≤ C∥un∥

γ+
γp
β2−p .

This contradicts to that p > γ + γp
β2−p and ∥un∥ → ∞.

Case 2. If β2 < pq′t then we have β2 < pq′t < p∗. By interpolation inequality, we get

∥un∥pq′t ≤ ∥un∥
σ
p∗∥un∥

1−σ
β2
≤ ∥un∥

σ
∥un∥

1−σ
β2
, (3.23)

where σ is defined by 1
β2
−

1
pq′t = σ(

1
β2
−

1
p∗ ). It follows from (3.21) that

∥un∥ ≤ C∥un∥

p
p−γ

pq′t and ∥un∥β2 ≤ ∥un∥

p2

β2(p−γ)

pq′t .

This in combination with (3.23) gives
∥un∥pq′t ≤ ∥un∥

λ
pq′t,

where λ = σ p
p−γ + (1 − σ) p2

β2(p−γ) < 1, a contradiction to that ∥un∥pq′t →∞.

At this stage, by the argument used in Step 2 and Step 3 in the proof of Theorem 3.2, we complete the
proof of the theorem.

4. Example and Remark

1. Let f (x,u, v) = muα + c|v|γ, (x,u, v) ∈ Ω × [0,∞) × RN, where 0 < α < p − 1 and m, c, γ are positive
numbers. Conditions of Theorem 3.1 hold in the following cases

a. 1(x,u) = ln(1 + uβ) or 1(x,u) = uβ and γ < p − 1, α < β < p∗ − 1.

b. 1(x,u) = uβ and γ < β
β+1 , α < β < p∗ − 1.
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2. Let N−1 < p < N, 1(x,u) = uβ with p−1 < β < p∗−1 and λ∗ be the principal eigenvalue of the problem

−∆pu = λ|u|p−2u in Ω,u = 0 on ∂Ω.

a. Conditions of Theorem 3.2 are satisfied for the function f (x,u, v) = mup−1+c|v|γwith p−1 < γ < β
β+1

and m > λ∗.

b. Conditions of Theorem 3.3 hold for the function f (x,u, v) = mup−1(1+c|v|γ) with 0 < γ < p
(
1 − p

β+1

)
and m > λ∗.

Note that, these functions do not satisfy the following condition which has been proposed in the
literature [14, 15]

lim
u→0

f (x,u, v)
up−1 = m(x)

uniformly with respect to x ∈ Ω and to v in each bounded subset of RN.
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