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Abstract. In this paper, we investigate Fibonacci polynomials as complex hyperbolic functions. We
examine the roots of these polynomials. Also, we give some exciting identities about images of the roots of
Fibonacci polynomials under another member of the Fibonacci polynomials class. Finally, we obtain some
excellent relationships between the roots of Fibonacci polynomials and the modular group, Hecke groups
and generalized Hecke groups with geometric interpretations.

1. Introduction

In recent years, many recursive sequences have been extensively studied from many points of view in
the literature. The most famous sequences are Fibonacci and Lucas. They are used in various fields of
science and art. Interesting large classes of Fibonacci and Lucas polynomials can be defined by Fibonacci-
like recurrence relation. On the other hand, the sum of the coefficients of the polynomials is the Fibonacci
and Lucas number. Besides, the ratio of two consecutive numbers or polynomials of Fibonacci and Lucas
families converges to the golden ratio, which appears in many fields in the literature, such as nature, art,
architecture, biology, physics, chemistry, cosmos, theology, finance, and so on (see [13], [20], [25], [28], [32],
[34]). There are many interesting studies related to the number sequences, polynomials, and the golden
ratio mentioned above (see [12], [25], [35] for more details). The recursive formula of the Fibonacci sequence
is

Fn = Fn−1 + Fn−2 (1)

for n ≥ 2 with initial conditions F0 = 0 and F1 = 1. Fibonacci numbers can also be calculated by the Binet
formula

Fn =
φn
− ψn

φ − ψ
(2)

where φ = 1+
√

5
2 and ψ = 1−

√
5

2 . Catalan defined the recursive formula for Fibonacci polynomials in the
following manner [25].

Fn(x) = xFn−1(x) + Fn−2(x) (3)
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where n ≥ 2 and F0(x) = 0, F1(x) = 1.
Fibonacci polynomials hold the following properties. The Binet formula of Fibonacci polynomials is

obtained as

Fn(x) =
φn(x) − ψn(x)
φ(x) − ψ(x)

(4)

where φ(x) = x+
√

x2+4
2 and ψ(x) = x−

√

x2−4
2 [25]. Also, the Fibonacci polynomials are generated by a matrix

Q(x) [22].

Q(x) =
[

x 1
1 0

]
, Qn(x) =

[
Fn+1(x) Fn(x)
Fn(x) Fn−1(x)

]
.

In [25], the Cassini-like (Simpson) formula for Fibonacci polynomial Fn(x) is given as

Fn+1(x)Fn−1(x) − F2
n(x) = (−1)n. (5)

Using the above recurrence relation, we can reach the following equation [41].

Fn+2(x) = (1 + x2)Fn(x) + xFn−1(x). (6)

The relations between Fibonacci polynomials and the diagonal of Pascal’s triangle were generalized in
[22] by Hoggatt and Bicknell in 1973. In the same year, they expressed Fibonacci polynomials as complex
hyperbolic functions. They obtained the root formula for these polynomials in [21]. Then, the roots of the
derivative of Fibonacci polynomials were obtained in [39].

There are many studies in the literature that state the conditions under which these groups or semi-
groups are free groups (semi-groups) or not free groups (semi-groups). The main results can be given
as [2], [4], [8], [10], [11], [14], [29], [30], [33], [40], [41], [42]. In these studies, the provision of different
conditions about the freeness of linear groups or semi-groups that have two or more generators is obtained
with similar approaches. We briefly summarize some of these studies: In [33], when a, b, c, d, α, β, γ, δ ≥ 0 ;
d − a ≥ 2 ; δ − α ≥ 2 ; the matrices

A =
[
−a b
−c d

]
, B =

[
−α −β
γ δ

]
∈ SL(2,R)

generate a free group. In [2], Bachmuth proved when x, y, z ∈ C ; |x|, |y|, |z| ≥ 4.45 ; the following three
matrices

A =
[

1 x
0 1

]
, B =

[
1 0
y 1

]
and C =

[
1 − z −z

z 1 − z

]
generate a free group.

In [8], [10], [40], [41], the matrix representations of the generators were defined by the following form
of a linear group in the same form and complementary studies were carried out for different conditions of
this form in these articles. We briefly express these studies as follows.

They examine the generators of the linear group which

Aa =

[
1 a
0 1

]
and Bb =

[
1 0
b 1

]
when a and b ∈ C.

Sanov, Brenner, and Chang proved the group’s freeness while these generators Aa and Bb have the
following conditions

a = b = 2 ; a = b and |a| ≥ 2 ; |ab| ≥ 2, |ab − 2| ≥ 2 and |ab + 2| ≥ 2, respectively.
Also, in [41], Słanina proved the group is not free which generators mentioned above Aa and Ba

for a that root of Fibonacci polynomials.
In [41], some facts about Fibonacci polynomials are used to solve this problem.
Słanina showed some properties about the linear group as follows.
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(i) a is a root of Fibonacci polynomial F2n(x) if and only if (AaBa)n = I.
(ii) a is a root of Fibonacci polynomial F2n+1(x) if and only if (AaBa)n(BaAa)n is a lower triangular matrix

which commutes with Ba .

Hence, we get if a is a root of F2n(x), F2n+1(a) = F2n−1(a) = ±1 from (i).
In [19], Hecke introduced the groups H(λ) generated by two Möbius transformations

T(z) = − 1
z and U(z) = z + λ

where λ is a fixed positive real number. Let S = TU i.e.

S(z) = − 1
z+λ .

The transformation az+b
cz+d is represented by the matrices A =

[
a b
c d

]
or −A. Notice that, T and S have the

matrix representations are

T =
[

0 −1
1 0

]
and S =

[
0 −1
1 λ

]
.

Hecke showed that H(λ) is discrete if and only if λ = λq = 2 cos π
q , q ∈ N, q ≥ 3 or λ ≥ 2. These groups

have come to be known as the Hecke groups and denoted by H(λq), H(λ) for q ≥ 3, λ ≥ 2, respectively.
Hecke group H(λq) is the Fuchsian group of the first kind when λ = λq or λ = 2 and H(λ) is the Fuchsian
group of the second kind when λ > 2. In this study, we focus the case λ = λq, q ≥ 3. Hecke group H(λq) is
isomorphic to the free product of two finite cyclic groups of orders 2 and q and it has a presentation

H(λq) = Hq = ⟨T,S | T2 = Sq = I⟩ � C2 ∗ Cq.

Some important Hecke groups Hq are H3 = Γ = PSL(2,Z) (the modular group), H4 = H(
√

2), H5 =

H( 1+
√

5
2 ), and H6 = H(

√
3).

Lehner studied in [27], a more general class Hp,q of Hecke groups Hq, by taking

X(z) = −1
z−λp

and V(z) = z + λp + λq

where 2 ≤ p ≤ q, p + q > 4. Here, if we take Y = XV = −1
z+λq

then the group presentation is

Hp,q = ⟨X,Y | Xp = Yq = I⟩ � Cp ∗ Cq

These groups are named as generalized Hecke groups Hp,q. Also, from [27] H2,q = Hq. Furthermore, all
Hecke groups Hq are included in generalized Hecke groups Hp,q. The modular group, Hecke groups, and
generalized Hecke groups have been studied extensively. (See for more details [5], [6], [9], [19], [23], [24],
[36], [37].) Moreover, there are many remarkable studies on 2 cos π

q and cos 2π
q in the literature. Finding the

minimal polynomial of cos 2π
q is an old problem due to its connection to the cyclotomic polynomials. The

algebraic numbers are investigated in many papers related to Chebyshev polynomials, Gaussian periods,
Dickson polynomials, Ramanujan sums, and Möbius inversion (see for more details [1], [3], [17], [26]).

In this study, we focus on the roots of Fibonacci polynomials. In Section 2, we give some background
knowledge about Fibonacci polynomials. Then, we study Fibonacci polynomials in terms of complex
hyperbolic functions in Section 3. We examine the roots of Fibonacci polynomials. Also, we investigate the
image of a root of a polynomial under another member of the family. Finally, we obtain strong relationships
between the roots of Fibonacci polynomials and the modular group, Hecke groups, generalized Hecke
groups in Section 4.
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2. Motivation and background

In [21], V. E. Hoggatt and M. Bicknell have been obtained the roots of large classes of polynomials
Fibonacci and Lucas using hyperbolic trigonometric functions. Hence, the general root formulas for the
polynomials have been obtained. This contribution is quite remarkable for the fundamental theorem of
algebra and the Abel-Ruffini theorem. There are numerous papers on this topic from different aspects (see
[7], [16], [18], [31], [38], [39]).

Hoggatt and Bicknell studied on hyperbolic function represent of Fibonacci polynomials as follows.

Theorem 2.1. [21] Let x = 2 sinh z then,

F2n(x) =
e2nz
− (−1)2ne−2nz

ez + e−z =
sinh 2nz
cosh z

(7)

F2n+1(x) =
e(2n+1)z

− (−1)2n+1e−(2n+1)z

ez + e−z =
cosh (2n + 1)z

cosh z
(8)

Theorem 2.2. [21] Let x = 2i cosh z then,

Fn(x) =
inenz

− ine−nz

iez − ie−z = in−1 sinh nz
sinh z

(9)

It is known from W. N. H. Abel that an algebraic equation of degree five or more has no solution.
Also, considering the Abel-Ruffini theorem, we can interpret that the general root formulas for Fibonacci
polynomials are very valuable. At that point, the existence of the formulas is outstanding and significant
for this study.

3. Main results

In this section, we prove the root of the Fibonacci polynomial by clear expression compared with [21].
We give some results about roots of Fibonacci polynomials. We consider Fibonacci polynomials as complex
hyperbolic functions. Then, we get interesting identities about images of a root of a Fibonacci polynomial
under another member of the family.

Theorem 3.1. The roots of Fibonacci polynomials are

F2n(x) = 0 : x = ±2i sin
kπ
2n

(10)

F2n+1(x) = 0 : x = ±2i sin
(2k + 1)π
(2n + 1)2

(11)

where k = 0, 1, . . . ,n − 1.

Proof. Firstly, we deal the roots of the even subscripted Fibonacci polynomials. Consider the Theorem 2.1.
If F2n(x) = 0 then, sinh 2nz

cosh z = 0 which yields sinh 2nz = 0 and cosh z , 0. Therefore,

sinh 2nz = sinh (2na + i2nb) = sinh 2na cos 2nb + i cosh 2na sin 2nb = 0

cosh z = cosh (a + ib) = cosh a cos b + i sinh a sin b , 0

for z = a + ib, where a, b ∈ R. Since cosh 2na ≥ 1 for n ∈ N, sin 2nb must be zero. Hence, b = kπ
2n for

0 ≤ k ≤ 2n − 1 and k ∈N. We use this in the real part of the preceding equation in the above line.

sinh 2na cos 2n
kπ
2n
= sinh 2na cos kπ = 0
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Here, a = 0 because sinh 2na must be zero. The error now we have is the Fibonacci polynomial F2n(x)
has degree 2n − 1. Hence, we must collect at most 2n − 1 zeros. Unlikely, we have one value of b which
should not be a member. That one is obtained when k = n is impossible because it leads the denominator
F2n(x) = sinh 2nz

cosh z to be zero. Therefore, we omit it. It can be easily seen that cosh a cos b + i sinh a sin b , 0 for
other possible values of k. Since F2n(x) is an odd function, we can restrict k as 0 ≤ k ≤ n − 1 and give roots
as x = ±2i sin kπ

2n .
Roots of odd subscripted Fibonacci polynomials can be calculated similarly.

Theorem 3.2. The roots of the nth Fibonacci polynomial Fn(x) are x = 2i cos kπ
n for k = 1, 2, . . . ,n − 1.

Proof. Let Fn(x) = in−1 sinh nz
sinh z = 0 for x = 2i cosh z from Theorem 2.2. Then, the nominator sinh nz = 0 and the

denominator sinh z , 0. For z = a + ib, where a and b are real numbers.

sinh nz = sinh (na + inb) = sinh na cos nb + i cosh na sin nb = 0

sinh z = sinh (a + ib) = sinh a cos b + i cosh a sin b , 0

Hence, the real numbers a and b must satisfy both of the following equalities.

sinh na cos nb = 0 (12)

and

cosh na sin nb = 0 (13)

Furthermore, the real numbers a and b which have the equations above must also satisfy at least one of the
followings.

sinh a cos b , 0 (14)

or

cosh a sin b , 0 (15)

From Equation 13, we have sin nb = 0, since cosh nb = enb+e−nb

2 ≥ 1 for all b ∈ R. Therefore, b = kπ
n for some

k ∈ Z excluding multiples of n because of Equation 15. In addition, one can solve a = 0 from Equation 12.
As a result, we have Fn(x) = 0 if and only if x = 2i cos kπ

n . Observe that, Fn(x) = Fn(−x) = 0 where x is a zero
of Fn(x). Owing to the fact that Fibonacci polynomial Fn(x) has degree n−1, we restrict k = 1, 2, . . . ,n−1.

Now, we are ready to calculate images of the roots of a Fibonacci polynomial under other members of the
family.

Theorem 3.3. If a is a root of the Fibonacci polynomial F2n−1(x), i.e. F2n−1(a) = 0, then F2n(a) = ±i and F2n+1(a) =
±ai.

Proof. Let x = a be a root of F2n−1(x). Using the Cassini-like formula for Fibonacci polynomials, we get

F2
2n(a) = −1

Therefore,

F2n(a) = ±i.

Now, we need the image of a under the polynomial F2n+1(x). For this purpose, we use the recurrence
formula

F2n+1(x) = xF2n(x) + F2n−1(x)

If we put x = a, we obtain F2n+1(a) = aF2n(a) = ±ai. Thus, we get the desired result.
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Corollary 3.4. F2n−1(a) = 0, implies F2n(a).F2n+1(a) = −a.

Theorem 3.5. If a is zero of the Fibonacci polynomial F2n−1(x) i.e. F2n−1(a) = 0, we have F2n(a)F2n+1(a) , 0.

Proof. We know from Corollary 3.4 that if F2n−1(a) = 0 then F2n(a).F2n+1(a) = −a. Hence, if F2n(a).F2n+1(a) = 0
then a must be zero. The roots of F2n−1(x) can be calculated by Theorem 3.2 as

a = 2i cos
kπ

2n − 1

for k = 1, 2, . . . , 2n−2. By considering all possible values of k, we have kπ
2n−1 =

π
2 . By elementary calculations,

one has n − k = 1
2 which is a contradiction.

It is able to verify the following theorems by using the same techniques. So, we leave the proofs to the
readers.

Theorem 3.6. If a is a root of the Fibonacci polynomial F2n+1(x), i.e. F2n+1(a) = 0 then, F2n(a) = ±i and F2n−1(a) =
∓ai.

Proof. It can be proved using by recurrence relation and the Cassini formula for Fibonacci polynomials.

Corollary 3.7. F2n+1(a) = 0, implies F2n(a).F2n−1(a) = a.

Theorem 3.8. If a is root of the Fibonacci polynomial F2n+1(x) i.e. F2n+1(a) = 0, we have F2n(a)F2n−1(a) , 0.

Proof. It can be proved by using the same technique in Theorem 3.5.

Now, we need some identities proved in [15] and [25].

Theorem 3.9.
n∑

r=1

Fr(x) =
Fn+1(x) + Fn(x) − 1

x
(16)

Fk(x)|Fnk(x) (17)

Fm+n(x) = Fm+1(x)Fn(x) + Fm(x)Fn−1(x) (18)

dFn(x)
dx

=
nFn+1(x) − xFn(x) + nFn−1(x)

x2 + 4
=

2nFn−1(x) + (n − 1)xFn(x)
x2 + 4

(19)∫ x

0
Fn(x) dx =

1
n

(
Fn+1(x) + Fn−1(x) − Fn+1(0) − Fn−1(0)

)
(20)

Proof. This identities were proved in [15] and [25].

We obtain some interesting properties about the roots of Fibonacci polynomials via the above equalities.

Theorem 3.10.

(i) F2n+1(a) = 0↔ F1(a) + F2(a) + . . . + F2n(a) = ±i−1
a =

±i−1
±2i sin (2k+1)π

4n+2

for k = 0, 1, . . . ,n − 1
(ii) Fk(a) = 0↔ Fnk(a) = 0 for k,n ∈N

(iii) F2n(a) = 0↔ Fm+2n+1(x) = ±Fm+1(x)
(iv) F2n+1(a) = 0↔ Fm+2n+1(x) = ±iFm(x)
(v) F2n(a) = 0↔ Fm+2n(x) = ±Fm(x)

(vi) F2n−1(a) = 0↔ Fm+2n(x) = ±iFm+1(x)
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Proof. The proof can be seen by Theorem 3.2, Theorem 3.3, Theorem 3.6, and Theorem 3.9 as follows.

(i) It is proved by using Equation 16 and Equation 11 together with Theorem 3.6.
(ii) By using Equation 17 it is obtained.

(iii) This is followed by changing in Equation 18 n by odd subscript 2n + 1 and using F2n+1(a) = ±1 when
F2n(a) = 0.

(iv) This is followed by changing in Equation 18 n by odd subscript 2n + 1 and using Theorem 3.6.
(v) This is followed by changing in Equation 18 n by even subscript 2n and using F2n+1(a) = ±1 when

F2n(a) = 0.
(vi) This is followed by changing in Equation 18 n by even subscript 2n and using Theorem 3.3.

Theorem 3.11.

(i) F2n(a) = 0↔
dF2n+1(x)

dx

∣∣∣∣
x=a
= in tan kπ

2n . sec kπ
2n

for k = 0, 1, . . . ,n − 1

(ii) F2n+1(a) = 0↔
dF2n+1(x)

dx

∣∣∣∣
x=a
= ±

(4n+2)i
4 . sec2 (2k+1)π

4n+2

for k = 0, 1, . . . ,n − 1

(iii) F2n(a) = 0↔
dF2n(x)

dx

∣∣∣∣
x=a
= ±n sec2 kπ

2n

for k = 0, 1, . . . ,n − 1

(iv) F2n−1(a) = 0↔
dF2n(x)

dx

∣∣∣∣
x=a
= ∓

(4n−2)
4 . cot kπ

2n−1 . csc kπ
2n−1

for k = 1, 2, . . . , 2n − 2

(v) F2n+1(a) = 0↔
∫ a

0 F2n(x) dx = sin (2k+1)π
4n+2 −1
n

for k = 0, 1, . . . ,n − 1
(vi) F2n(a) = 0↔

∫ a

0 F2n(x) dx = ±1−1
n

(vii) F2n−1(a) = 0↔
∫ a

0 F2n(x) dx = ∓ cos kπ
2n−1−1
n

for k = 1, 2, . . . , 2n − 2

Proof. The proof can be seen by Theorem 3.1, Theorem 3.2, Theorem 3.3, Theorem 3.6, and Theorem 3.9 as
follows.

(i) This is followed by changing in Equation 19 n by odd subscript 2n + 1 and using F2n+1(a) = ±1 when
F2n(a) = 0 together with Equation 10. Finally, the proof is completed via the below equalities using by
some trigonometric function properties and algebraic calculations.
dF2n+1(x)

dx

∣∣∣∣
x=a
= ± 2na

a2+4 = ±
±4ni sin kπ

2n

4
(

1−sin2 kπ
2n

) = in tan kπ
2n . sec kπ

2n

for k = 0, 1, . . . ,n − 1 when F2n(a) = 0.
(ii) This is followed by changing in Equation 19 n by odd subscript 2n+ 1 and using Theorem 3.6 together

with Equation 11. Finally, the proof is completed via the below equalities using some trigonometric
function properties and algebraic calculations.
dF2n+1(x)

dx

∣∣∣∣
x=a
=
±(4n+2)i

a2+4 =
±(4n+2)i

4
(

1−sin2 (2k+1)π
4n+2

) = ± (4n+2)i
4 . sec2 (2k+1)π

4n+2

for k = 0, 1, . . . ,n − 1 when F2n+1(a) = 0.
(iii) This is followed by changing in Equation 19 n by even subscript 2n and using F2n+1(a) = ±1 when

F2n(a) = 0 together with Equation 10. From where, after some algebra the desired result is obtained
via below equalities.
dF2n(x)

dx

∣∣∣∣
x=a
= ± 4n

a2+4 =
±n

1−sin2 kπ
2n
= ±n sec2 kπ

2n

for k = 0, 1, . . . ,n − 1 when F2n(a) = 0.
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(iv) This is followed by changing in Equation 19 n by even subscript 2n and using Theorem 3.3 together with
Theorem 3.2 as by changing in the theorem n by odd subscript 2n − 1. Finally, the proof is completed
via the below equalities using some trigonometric function properties and algebraic calculations.
dF2n(x)

dx

∣∣∣∣
x=a
= ±

(2n−1)ai
a2+4 = ∓

(4n−2) cos kπ
4n−2

4
(

1−cos2 kπ
2n−1

) = ∓ (4n−2)
4 . cot kπ

2n−1 . csc kπ
2n−1

for k = 1, 2, . . . , 2n − 2 when F2n−1(a) = 0.
(v) This is followed by changing in Equation 20 n by even subscript 2n and using Theorem 3.6 together

with Equation 11. From where, after some algebra the desired result is obtained via below equalities.∫ a

0 F2n(x) dx = ∓ai−2
2n =

sin (2k+1)π
4n+2 −1
n

for k = 0, 1, . . . ,n − 1 when F2n+1(a) = 0.
(vi) This is followed by changing in Equation 20 n by even subscript 2n and using F2n+1(a) = F2n−1(a) = ±1

when F2n(a) = 0.
(vii) This is followed by changing in Equation 20 n by even subscript 2n and using Theorem 3.3 together

with Theorem 3.2 as by changing in the theorem n by odd subscript 2n − 1. From where, after some
algebra the desired result is obtained via below equalities.∫ a

0 F2n(x) dx = ±ai−2
2n =

∓ cos kπ
2n−1−1
n

for k = 1, 2, . . . , 2n − 2 when F2n−1(a) = 0.

4. Relationships between the roots of Fibonacci polynomials and the modular group& Hecke groups&
generalized Hecke groups

In this section, we consider the complex numbers as vectors in the complex plane. All the roots of
Fibonacci polynomials are pure imaginary complex numbers. Also, each norm of the roots of a Fibonacci
polynomial is smaller than two. We interpret the roots in the complex plane as related to the parameter of
the modular group, Hecke groups, generalized Hecke groups.

Corollary 4.1. We examine the relationship between parameter of the modular group and roots of Fibonacci poly-
nomial in the complex plane geometrically. The parameter of the modular group λ3 = 2 cos π

3 . All of the roots of
Fibonacci polynomial F3(x) are known as 2i cos π

3 and 2i cos 2π
3 from Theorem 3.2 for k = 1, 2. If the first root 2i cos π

3
of the Fibonacci polynomial F3(x) is rotated 270 degrees counterclockwise around the origin in the complex plane, the
parameter of the modular group is obtained. Therefore, we can state that the Fibonacci polynomial F3(x) generates a
parameter for the modular group as a geometric interpretation.

Corollary 4.2. The parameter of Hecke group as Fuchsian group of first kind is λq = 2 cos π
q for q ≥ 3 and all

of the roots of Fibonacci polynomial Fq(x) are known as 2i cos π
q , 2i cos 2π

q ,. . . , 2i cos (q−1)π
q from Theorem 3.2 for

k = 1, 2, . . . , q − 1. If the first root 2i cos π
q of the Fibonacci polynomial Fq(x) is rotated 270 degrees counterclockwise

around the origin in the complex plane, the parameter of the Hecke group is obtained. Therefore, we can state
geometrically that the Fibonacci polynomial Fq(x) generates a parameter for the Hecke group as Fuchsian group of
first kind.

Corollary 4.3. The parameters of generalized Hecke groups are λp = 2 cos π
p and λq = 2 cos π

q . Also, all the roots of

Fibonacci polynomial Fp(x) are known as 2i cos π
p , 2i cos 2π

p ,. . . , 2i cos (p−1)π
p from Theorem 3.2 for k = 1, 2, . . . , p−1.

All the roots of Fibonacci polynomial Fq(x) are known as 2i cos π
q , 2i cos 2π

q ,. . . , 2i cos (q−1)π
q from Theorem 3.2

for k = 1, 2, . . . , q − 1. If the first roots 2i cos π
p of the Fibonacci polynomial Fq(x) and 2i cos π

q of the Fibonacci
polynomial Fq(x) are rotated 270 degrees counterclockwise around the origin in the complex plane, the parameters of
the generalized Hecke groups are obtained. Therefore, we can state geometrically that the Fibonacci polynomial Fp(x)
and Fq(x) generate parameters for the generalized Hecke groups.
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Remark 4.4. Using the root of the Fibonacci polynomial, it is not the only way to obtain a modular group parameter.
For instance, another way finding parameter of the modular group is using the Fibonacci polynomial F6(x). Then the
second root of the polynomial F6(x) is obtained as 2i cos π

3 from Theorem 3.2 for k = 2. Also, the parameter is obtained
from another Fibonacci polynomial F9(x) using Theorem 3.2 for k = 3. Therefore, we can state that the parameter
of the modular group related to the Fibonacci polynomials F3t(x) when t ∈ N. More generally, the parameter of the
Hecke group Hm can be derived from the Fibonacci polynomial Fkm(x) when k is a whole number and m is an integer
greater than two.

Remark 4.5. Each Fibonacci polynomial Fn(x) for n ≥ 3 generates at least one parameter for the Hecke group. For
example, the Fibonacci polynomial F3(x) generates one parameter as 2 cos π

3 via the root 2i cos π
3 rotated 270 degrees

counterclockwise around the origin in the complex plane. The Fibonacci polynomial F4(x) generates one parameter
as 2 cos π

4 via the root 2i cos π
4 rotated 270 degrees counterclockwise around the origin in the complex plane. The

Fibonacci polynomial F6(x) generates two parameters as 2 cos π
6 and 2 cos π

3 via the roots 2i cos π
6 and 2i cos 2π

6
rotated 270 degrees counterclockwise around the origin in the complex plane.

Corollary 4.6. We set a general way to get the relationship between the parameter of Hecke group as Fuchsian group
of the first kind and Fibonacci polynomial Fn(x). All the roots of Fibonacci polynomial Fn(x) are known as 2i cos kπ

n
for k = 1, 2, . . . ,n− 1 from Theorem 3.2. Fn(x) generates the parameter for Hecke group every provided condition that
k divides n except for k = n

2 and k = n. For instance, F10(x) = x9 + 8x7 + 21x5 + 20x3 + 5x generates exactly two

parameters for Hecke groups denoted by H10 and H5 = H( 1+
√

5
2 ).

Theorem 4.7. (Birol-Hecke-Fibonacci Theorem)
The number of the parameters for Hecke groups generated by Fn(x) is calculated by the formula

F(n) =


t∏

i=1
(ai + 1) − 2 if n even

t∏
i=1

(ai + 1) − 1 if n odd

where n =
t∏

i=1
pai

i for pi distinct prime numbers and ai positive integers.

Proof. It can be proved using the fundamental theorem of arithmetic, the formula for the total number of
divisors of a number considering the root formula of Fibonacci polynomials and the parameter of the Hecke
group as λq = 2 cos π

q , q ∈N, q ≥ 3.

Corollary 4.8. Considering the polynomial space, the {Fn(x) : n ≥ 3} set of Fibonacci polynomials is a relation with
the ability to generate parameter for Hecke groups. This relation has reflection and symmetry properties.

Remark 4.9. We call the above relation as ϱ. Notice that, ϱ is not reflexive relation. We give a counterexample to
prove that.

(
F3(x),F21(x)

)
∈ ϱ via H3 and

(
F21(x),F7(x)

)
∈ ϱ via H7 but

(
F3(x),F7(x)

)
< ϱ. Although F3(x) and F7(x)

generate one parameter for the Hecke groups, these polynomials do not generate a common parameter for any Hecke
group. F3(x) and F7(x) generate a parameter for the Hecke groups H3 and H7, respectively.

Definition 4.10. (Birol-Hecke-Fibonacci Number Sequence)
We define a new number sequence derived from the Theorem 4.7. This sequence shows the relationship between the
root of the Fibonacci polynomial and the Hecke groups interestingly. The first, the fourth and the thirteenth terms of
the number sequence are obtained as 1, 2 and 3 from Fibonacci polynomials F3(x), F6(x) and F15(x), respectively. This
sequence is as follows.

1, 1, 1, 2, 1, 2, 2, 2, 1, 4, 1, 2, 3, 3, 1, 4, 1, 4, 3,...
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