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Abstract. In this study, Hermite-Hadamard type inequalities for harmonically-convex functions using
fuzzy integrals are presented. Some examples are also given to illustrate the obtained results.

1. Introduction

As a tool for modeling non-deterministic issues, Sugeno in [41] started the study of theory of fuzzy
measures and fuzzy integrals. The hypnotizing properties the fuzzy integrals from a mathematical point
of view have been studied by many authors. Ralescu and Adams [33] reviewed several comparable
characterizations of fuzzy integrals, whereas Wang and Klir [42, 43] offered a summarized version of fuzzy
measure theory and gave a broad view of fuzzy measure theory. Researchers have efficaciously applied
the fuzzy measures and Sugeno integrals to various fields, such as applying to decision-making [29] and
artificial intelligence [45]. Several theoretical and applied fields use integral inequalities as handy tools, see
[15, 16]. The interested readers are also referred to Ref. [20] for more information on classical inequalities.
The study of inequalities for the Sugeno integrals was initiated by Romén-Flores et al. [17, 34-39] and then
further developed by Ouyang et al. in [30-32]. Many researchers studied celebrated inequalities using
Sugeno integrals, for example, Hu [19] proved Chebyshev type inequalities for Sugeno-like integral by
using binary operation called g-seminorm, Caballero and Sadarangani [11] developed a Cauchy-Schwarz
type inequality for the Sugeno integral, Agahi et al. [4] showed a generalization of Stolarsky inequality for
Sugeno integral and Ouyang et al. established Minkowski type for the Sugeno integral on abstract spaces.
For more results on several other types of inequalities based on Sugeno integrals, see [3], [5]-[9], [13], [14],
[23], [24], [44] and the references cited therein.

Recently, the integral inequalities for Sugeno integrals using different kinds of convexities is an thought-
provoking topic to many authors in the field of fuzzy integrals, see for instance [1], [2], [10], [18], [22],
[25]-[28] and the references cited therein. Caballero and Sadarangani in [12] have shown that the classical
Hermite-Hadamard inequalities:
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where ¢ : [(, u] = Ris a convex function, do not hold true for fuzzy integrals in general. They established
some Hermite-Hadamard type inequalities for the Sugeno integral and illustrated their results by providing
certain examples.

Motivated by the ongoing research about the integral inequalities for the Sugeno integrals involving
the different kinds of convex functions, the main objective of this paper is to find an upper bound of the
Sugeno integrals for harmonically-convex functions.

In order to proceed to our results, we first give some basic notations and properties of Sugeno integrals.
For more details on Sugeno integrals, we refer the interested readers to [41] and [43].

Suppose that ‘W is ¢-algebra of subsets of R and that 6 : ‘W — [0, o) is non-negative extended real
valued set function, then 0 is said to be fuzzy measure if and only if:

1. 6(0) =0,
2. 7,8SeWand 7 c Simply that 6(7) < 6(S) (monotonicity),

3NATwc W, 71 cT, ..., imply imO6(T,,) = 6( @1‘7},) (continuity from below),

4 (T} cW,71272>...,0(T1) < oo, imply im 6(7,,) = 9( F\_ol’]”n) (continuity from above).

If pis a non-negative real-valued function defined on IR, then we will denoteby L,0 = {s € R : g(s) > a} =
{0 = a} the a-level of g, for « > 0 and Lop = {s € R : g(s) = 0} =suppy, the support of ¢. It may be noted that
if a < B, then {p < a} C {p < B}. If 6 is a fuzzy measure on (R, W) by F(RR), then we mean all -measurable
functions from IR to [0, 00).

Suppose that 0 is a fuzzy measure on (R,Q). If p € 7 9(R) and 7~ c Q, then the Sugeno integral (or
fuzzy integral) of p on 7~ with respect to the fuzzy measure 0 is defined as:

L@d@z\/[aA@(Tﬁ{QZa})],

a0

where V and A denote the supremum and infimum on [0, o), respectively. The following properties of the
Sugeno integral are given in [43].

Proposition 1.1. If 0 is a fuzzy measure on (R, S), T C Sand g, € FO (R), then

- J-0d6 < 6(T).

. ka d0 =k A O(T), k for a non-negative constant.
Afo<ponT then fTQdQ < ngbdG.

. G(TQ{QZOz})Za:fT@dGZa.

. Q(TQ{QZOI})SQ:ITQdQSa,

. f?’ 0d0 < a & there exists y < a such that 6 (T N{o = y}) < a.

N O G &= W N =

. f’r 0d0 > a & there exists y > a such that 6 (T N{o = y}) > a.

Remark 1.2. Consider the distribution function Y associated to o on T, that is, Y(a) = 6 (T N {o = y}). Then from
properties 4 and 5 of Proposition 1.1

Y(a)za:fgd@za.
T

Therefore, it follows that any fuzzy integral can be calculated by solving the equation Y(a) = a.
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2. Main Results

We begin this section with the well-known generalization of the convex functions which is familiar as
harmonic convexity of functions and its properties.

Definition 2.1. [40] A set ITr C R\ {0} is said to be harmonic convex set. if

st

m GI]R, VS,tEI]R,XG[O,ll.

Definition 2.2. [21] Let Ig C IR\ {0} be a real harmonic convex set. A function o : Ir — R is said to be
harmonically convex, if

Q(S—t) <xo(H)+(1-x)o(s) 2)

xs+ (1—x)t
foralls, t € I and x € [0,1]. If the inequality in (2) is reversed, then g is said to be harmonically concave.

Proposition 2.3. [21] Let Ir C R\ {0} be a real interval and o : Ir — R be a function. Then we have:

ifI]R C (0,+oo
if Ig € (0,+
ifIIR C (—00,0
iff]R C (—00,0

and g is a convex and non-decreasing function then g is harmonically convex,
and g is a harmonically convex and non-increasing function then g is convex,
and o is a harmonically convex and non-decreasing function then g is convex,
and o is a convex and non-increasing function then o is harmonically convex.

LN
2Ll

A result which connects the usual convexity to the harmonic convexity is also given in [21]. We state
the result as follows.

Theorem 2.4. [21] Let I C R\ {0} be a harmonically convex function and C, u € I'g with C < p. If p € L([C, u])
then the following inequalities hold

Q(K_u)<é_u dOp <@(C);@(u)‘

Crp) p=CJc & 7 ©

The above inequalities are sharp.

We will see that the inequalities (3) do not hold for fuzzy integrals in general. To prove our assertion
we consider the following examples.

Example 2.5. Take 7 = [1,2] and let O be the usual Lebesgue measure on 7. Let ¢ : [1,2] — [0, o) be defined as
0(s) = §3, then the function is convex and nondecreasing on 7. The function o(s) = s> is harmonically convex on T .

Now to calculate the Sugeno integral 2 f1 sd0, consider the distribution function Y associated to % =son[l,2],
then

Y(@) =60(1,21n{o=a))=0(1,2]N{s > a})
=2—-a

and we solve the equation 2 — a = . It can be easily seen that the solution of this equation is 1. Therefore by Remark
1.2, we have

U 2
G @dszzfsdezz.
p=CJc ¢ 1
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Also
2Cu 4\ 64
(C + y) Q(g) T 27
Therefore,
20u\ 64 2 Cu (s)
(C+M) 27_2 2£ sale—‘u z = ds,

which shows that left part of (3) is not satisfied in the fuzzy context.

Example 2.6. Take T~ = [1,2] and let O be the usual Lebesgue measure on 7 . Let ¢ : [1,2] — [0, 00) be defined as
o(s) = 2, then the function is convex and non-decreasing on T . The function o(s) = 2 is harmonically convex on T .

Now to calculate the Sugeno integral 2 f 5-d0, consider the distribution function Y assoczated to = S) s on[1,2],
then

Y(a) = 0([1,2] N {o > a}) = 9([1,2] n {% > a})
cofian(t =)
cofpinf ) 2o

and we solve the equation z- —1 = a. It can be easily seen that the solution of this equation is e ~ 1.7913 (the second
solution is negative and hence can be neglected), therefore by Remark 1.2, we have

2
2f gd@ ~ 2 x(0.17082) = 3.34164.
1

Also
0@+o(W) _5+5 _ o
2 2
Therefore,
U 2
i &d - 2f 540 ~ 334164 > 03 = 2O W)
pu=C s? 18 2

which shows that right part of (3) is also not satisfied in the fuzzy framework.
Now we prove Hadamard-type inequalities analogous to (3) for Sugeno integrals.

Theorem 2.7. Let ¢ : [C, u] € R\ {0} — [0, o) be a harmonically-convex function on [C, u] such that o(C) < o(u).
Let O be the Lebesgue measure on [C, u] with u > C.

1. If Cu > 0, then
L
f 0dO <min{u - a}, (4)
C

where « is a positive root of the equation

(C— ) a® + (po(u) — Co(Q) + p? = Cp) o+ (Cu — 12 o) = 0. 5)
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2. If Cu <0, then

f 0d0 <min{u -, a},
[Cu]vo)

where « is a positive root of the equation

(C— ) a® + (po(u) — Co(Q) = Cu + )+ (Cu = ) 0(0) = 0.

Proof. Since g is a harmonically-convex function on [C, y], we have

o(s) = @[ o ]
(s=0 (s=0

Goct (1 B :Ey—c))”
_MG—Q) p(s-0

S@s@—og@+ (1)

sw-0°
_C(u-s) pis—=0) _
= s(y—C)Q(C)+s(y—C)Q(y)_h(S)'

By property 3 of Proposition 1.1, we have

d [C=s) . p=0 ] o
fc o(s)do < fc [S (#_C)g(c)+s (M_C)g(y) 46 = fc h(s)do.

Let us consider the distribution function Y given by

Y(a)=0([C ulni{h>al)
= 9([@#] O{C(”_S) ©+2C79 > a})

s@-0"7 " sw-0
_ Cu_a(p—0—po(w)+Co(Q
‘9([9*’]”{sS 2@ - o) })

Now we consider the following cases.
Case 1: If C < 0, u <0, then Cu > 0 and s < 0. Hence from (8), we have

Y(a) =0([C, u]n{h = a})
B Cp (0(0) = o(w))
- 9([6'”] " {S = a(u-0) - po(u) + C@(C)})
__ @-awy
B a@-0-pe+2@©

The last equation can be written as

(C— )@ + (uolp) - ColQ) + = Cu) o+ (Tt = 142) olp) = 0.

Hence the inequality (4) follows, where a is a positive root of the equation (5).

Case 2: If (> 0, u > 0, then Cu > 0 and s > 0. Hence from (8), we have

Y() = 0([C u] N {h > a})
~ Cu(0(9) — o(w)
—Qﬁgﬂm{szaw—cwww00+cmo})
o e@-awy)
S (TS SR YN EN@1(a R

4103
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Equivalently, the last equation can be written as

(C— )@ + (nolp) — CoQ) + * = Cu) o+ (T = 1) olp) = 0.

Hence we obtain the inequality (4), where «a is a positive root of the equation (5).
Case 3: If L <0, u >0, then [C, u]\ {0} =[C,0) U (0, u], Cup <Oands>0ors <0.
If s > 0, then from (8) we obtain

Y(a) = 0 (([C, u]\{O}) N {h > a})

oo === )

1 a(u—C)—u@(uHC@(C)})

>

s T u(e© - o)

_ Cu (0(0) = o))

- 6(([6'0) VOuhn {S = au-0-po(u+ CQ(C)})

_ Cu(0(Q) = o(w)) ])

- 9([C'O) U (0’ a(p—0)—po(u)+Co(0)

__ G@-ew) . _,
a(p—0C)—po(u)+Co(0) '

The last equation can be written as

= 9(([@, 0) U (0, u]) N {

(C— ) a® + (uop) — Co0) - Cu + ) a+ (Cu - %) 0(0) = 0.

Hence we obtain the inequality (6), where «a is a positive root of the equation (7).
If s < 0, then from (8) we obtain

Y(a) =0([C uln{h = a})
~o(c0u .

i a(u—C)—u@(uHC@(C)})
s 0(0) — o)

i 1_a(u=0-po(w)+Co(©
—6([C,O)U(0/H]”{§2 Cu (0(0) = o(w) })

) Cu(0(Q) = o(w))
= 9([C,0) U0, u]n {S < a(u—C)— po(u)+ CQ(C)})

_ 9([(: Cu (@) - o(w) D
Ta(p-0) - po(p)+Co(0)

_ Cu(0(0) — o(w))

Ca(u=-0) - po(p) +Co(Q)

Thus, we get the inequality (6), where «a is a positive root of the equation (7). O

-C=a.

Example 2.8. Take 7 = [1,2] and let O be the usual Lebesgue measure on 7. Let o : [1,2] — [0, c0) be defined
as o(s) = s*Ins, then the function is convex and non-decreasing on 7. Hence by Proposition 2.3, the function
0(s) = s? Ins is harmonically convex on T". Clearly, o(C) = 0 and o(u) = 4In2 and Cu > 0.

Hence by (1) of Theorem 2.7, we have

2
f s*Ins dO < min {1, a},
1
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where is « is a positive root of the equation
a®>+(4In2+2)a—-8In2 =0.

The solution of this equation are

a1 =1+4In2+ \/(1 +4In2)* - 8In2 ~ 6.72

and

ay=1+4In2 - \/(1 +4In2)* - 81In2 ~ 0.82517.

Thus

2
f s’ InsdO0 <1+4In2 - \/(1 +4In2)* - 8In2.
1

Example 2.9. Take T = [—%, %] \ {0} and let O be the usual Lebesgue measure on T . Let o : [—%, %] \ {0} — [0, 0)

be defined as o(s) = 512 then the function o(s) = slz is harmonically convex on 7. We observe that o(C) = 4 and

o(u) =9and Cu < 0.
Hence by (2) of Theorem 2.7, we have

f 0d6 Smin{g,a},
[cu]vio) 6

where a is a positive root of the equation

20* =130+ 4 = 0.
13+ V137 13— V137
+4 and ===

The roots of this equation are
Thus

f ld8S13—\/17
11

Lo 82 4

Theorem 2.10. Let ¢ : [C, u] € R\ {0} — [0, 00) be a harmonically-convex function on [C, ] such that o(C) > o(u).
Let O be the Lebesgue measure on [C, u] with u > C.

1. If Cu <0, then

f 0d6 <min{u - a}, )
[Cu]\o)

where a is a positive root of the equation (7) given in Theorem 2.7.
2. IfCu >0, then

fCHQdQSmin{y—C,a}, (10)

where a is a positive root of the equation (5) given in Theorem 2.7.
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Proof. Since p is a harmonically-convex function on [, u], we have

Cp
o(s) = @[ ]
(s=0C) (s=C)
SP(# C)C+( :Z# C))

p(s—=20) p(s—=20)
5@ S cﬂ(o+sw—c>

_Cu-9) pis=-0 o
0% s W e

o(w)

o(Q) +

By property 3 of Proposition 1.1, we have

H C(#—S) (s — :
f@d f[s(y C) s(y 5¢ ()]d@ fh(s)d@.

Let us consider the distribution function Y given by

Y(@) = 0([Cu]lnih > al)
<ol {9000+ 2Bt

_ Cua(p=0)—po(u)+Co(©
_9([6'”]0{ - 00 - o(w) })

Now we consider the following cases.

Case 1: If L <0, u > 0, then [C, u] \ {0} = [(,0) U (0, u], Cu <Oand s >0ors <0.

If s > 0, then from (11) we obtain

Y(a) = 0 (([C, u] \ {O}) N {h
S (e

0(0) — o(w)

( a(p—0) —po(p)+Co© })
Cu (@)~ o(w)
Cu(0(Q) = o(w))

9(([C o)u(Oy)n{ a(u-0)- Hg(y)+CQ(C)})

« Cu(0(0) — o(w) D
a(p=0) - po(p) +Co @)’

Cu(0(Q) = o(w)) _

Ca(u-0—ue(p) +Co@)

Ol (&0 U (O, uDhn

i a(u—C)—#@(uHC@(C)})

0

Thus, we get the inequality (9).

4106
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Example 2.11. Take 7 = [-2,-1] and let O be the usual Lebesgue measure on 7. Let o : [-2,-1] —
defined as o(s) = In (-

0(s)

M. A. Latif, T. S. Du / Filomat 36:12 (2022), 4099-4110

< 0, then from (11) we obtain

Y(e) = O (([C, 1]\ {10) N {h = a})

—eﬁmmumuhn{ Gl %JW§K{MQD
a(p—0C)—po(p)+Co(0)

6(([C'O)U(O ”Dm{ Cu(o(Q) — o) })

_ Cu(o(C) — o(u))

‘9(“ O)U(O“)”{ aGi-0)- #@(u)+C@(C)})

_ Cu(0(0) — o(w))

_9([a(u 0) - wo(w)+ 00’ )U(O"”)

Cue©@-o(w)  _
Ca(u-0-pe(w+Ce©

Hence we get inequality (9).
Case 2: If (> 0, u > 0, then Cu > 0 and s > 0. Hence from (11), we have

Y(@) = 6 ([, p] N i > o))

B C(0(0) - o(w)
- Q(K’H] " {S S (-0 -poG+ C@(C)})
Cu@e@-ow) C-

T a(@-0) - po(w) + 0@

Hence we obtain the inequality (10).
Case 3: If ( <0, u <0, then Cu > 0 and s < 0. Hence from (11), we have

Y(a) = 0([C, u] N{h > a})
Cu(0(0) = o())

([C HIn { a(u-0C)- u@(u)+C@(C)})

_ @~ o)

a(p—0C)—po(u)+Co(0)

m the last equation, we obtain the inequality (10). O

_C:

Hence by (2) of Theorem 2.10, we have

U
f 0d0 <min{l,a},
C

where «a is a positive root of the equation

The

a>—(2In2-1)a=0.

roots of this equation are 0 and In2 — 1.

Thus

-1
f In(-s) d6 <2In2 -1 =~ 0.386294.
-2

4107

[0, c0) be
s), then the function is convex and nonincreasing on 7 . Hence by Proposition 2.3, the function
= In (=s) is harmonically convex on 7. Clearly, o(C) = In2 and o(u) = 0 and Cu > 0.
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Example 2.12. Take 7 = [—%, %] \ {0} and let 6 be the usual Lebesgue measure on 7. Let o : [—%, %] \ {0} — [0, o0)

be defined as o(s) = slz Then the function o(s) = slz is harmonically convex on T". Clearly, o(C) = 9 and o(u) = 4 and

Cu<0.
Hence by (1) of Theorem 2.10, we have

f@d@ <min{u-_a},
-

where « is a root of the equation

30> =19a+9 =0.

The roots of this equation are 2* g/ﬁ and = g/ﬁ .

Thus

1. 19-+3
f 0 < % ~ 0.515671.
1410

Theorem 2.13. Let ¢ : [C, u] € R\ {0} — [0, c0) be a harmonically-convex function on [C, ] such that o(C) = o(u).
Let O be the Lebesgue measure on [C, u] with p > C.

1. IfC, u >0, then

L
f; 0d0 <min{u —C, u,0(0)}. (12)

2. IfC, u <0, then

i
\fc 0dO <min{u -, 0(0)}. (13)

3. IfC<0,u>0,then

f 0d6 <minfu—C 0(0)}. (14)
[Cu]vo)

Proof. (1) and (2) If o(C) = o(u), then from the first part of Theorem 2.7 or the second part of Theorem 2.10,
we have

U
f 0d6 <min{u - a},
c
where « is a positive root of the equation

a? = (0(C) + p) a + p19(C) = 0. (15)

The solutions of the equation (15) are p and ¢ (C). Hence the inequalities (12) and (13) are proved.
(3) If o(C) = o(u), then from the second part of Theorem 2.7 or the first part of Theorem 2.10, we have

f 0d0 <min{u-_a},
[Cu]vo)

where a is a positive root of the equation

a® = (0(0) + Q) a — Cp(C) = 0.
The solutions of this equation are C and ¢(C). Thus, we get the inequality (14). O
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Example 2.14. Take 7 = [—%, %] \ {0} and let 6 be the usual Lebesgue measure on 7. Let o : [—%, %] \ {0} — [0, o0)

be defined as o(s) = Slz, then the function o(s) = slz is harmonically convex on 7. We observe that o(C) = 4 and
o(u) =4and C < 0and p > 0.
Hence by (3) of Theorem 2.13, we have

j{ ld@ <min{u - 0(0)} =min{l,4} = 1.

2
2 MU

Example 2.15. Take T = [%, 37”] and let O be the usual Lebesgue measure on T . Let g : [g, 37”] — [0, o0) be defined

as o(s) = 5 + coss, then the function o(s) = 1 + cos s is harmonically convex on 7". We observe that o(C) = 5 and
o(u) =5 and C>0and u > 0.
Hence by (1) of Theorem 2.13, we have

3n
2 3n T
1+ cos9 d0 < minfr, 2,7} = 7
j;[ (1 + coss) min{ ) >

3. Conclusion

We have proved a series of Hermite-Hadamard type inequalities for fuzzy integrals on a fuzzy measure
space based on harmonically-convexity. It generalizes the results of [21]. We believe that the obtained results
in this study will contribute to estimation and approximation theory in information sciences systems when
considering the importance of fuzzy integrals.
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