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Abstract. Pseudomonotone variational inequalities have been investigated by many authors, a common
assumption “weak sequential continuity” being imposed on pseudomonotone operators. In this paper,
we propose an iterative procedure for solving pseudomonotone variational inequalities and fixed point
problems of asymptotically pseudocontractive operators by using self-adaptive techniques. Under a weaker

assumption than weak sequential continuity imposed on pseudomonotone operators, we prove that the
suggested procedure has strong convergence.

1. Introduction

Let H be a real Hilbert space equipped with inner product (-, -) and induced norm || - ||. Let C be a
nonempty, closed, convex subset of H.

In this paper, we focus on the following variational inequality of finding a point u' € C such that

(", u—u"y >0, VueC, (1)
where ¢ : C — Cisanonlinear operator. Denote the solution set to the variational inequality (1) by Sol(C, ¢).
The variational inequality (1) was proposed by Stampacchia [20] in 1964. It has been shown that this
variational inequality provides a natural, convenient and unified framework for the study of many problems
in economics, operations research and engineering, see [1, 2, 10-12, 25, 31, 37, 39, 43, 44]. The variational
inequality (1) contains, as special cases, well-known problems in mathematical programming such as:
systems of nonlinear equations, optimization problems ([4, 9, 13, 35, 42]), complementarity problems and
fixed point problems ([21, 28, 36, 38]).

Numerous algorithms for solving (1) have been proposed, including proximal point algorithms ([7, 19,
45]), projection algorithms [17, 18, 32, 40, 48], extragradient algorithms ([6, 16, 34, 41, 46]), subgradient
algorithms ([23]) and splitting algorithms ([30]). Ceng, Teboulle and Yao [5] demonstrated the convergence
analysis of extragradient algorithms for solving the pseudomonotone variational inequality and fixed point
problems. In order to achieve a weak convergence result in [5], an additional condition “sequentially weak-
to-strong continuity” was imposed on the pseudomonotone operator ¢. However, this additional condition
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is not satisfied even for the identity operator. Subsequently, Vuong [22] weakened this assumption imposed
on ¢ to “sequentially weak-to-weak continuity”. In this paper, we will relax “sequentially weak-to-weak
continuity” to a weaker condition.

At the same time, in order to solve the variational inequality (1), the Lipschitz constant of ¢ may be
difficult to estimate, even if the underlying mapping is linear. In order to overcome this difficulty, some
self-adaptive methods for solving variational inequality problems have been developed. The advantage of
self-adaptive method lies in the fact that prior information on Lipschitz constant of ¢ is not required, and
convergence is still guaranteed, see [14, 15].

On the other hand, we are interested in an iterative approximation of fixed point problems. It is well
known that fixed point theory acts as an important tool for many branches of mathematical analysis and its
applications. Especially, iterative algorithms by using fixed point techniques come to be useful in numerous
mathematical formulations and theorems ([26, 29]). Often, approximations and solutions to iterative guess
strategies utilized in dynamic engineering problems are sought using this method. Recently, fixed point
algorithms have attracted much attention, see [3, 27, 33].

Our purpose in this paper is to propose an iterative procedure for solving pseudomonotone variational
inequalities and fixed point problems of asymptotically pseudocontractive operators by using self-adaptive
techniques. Under a weaker condition than weak sequential continuity imposed on ¢, we prove that
the suggested procedure converges strongly to a common element of the solution of pseudomonotone
variational inequalities and fixed point of asymptotically pseudocontractive operators.

2. Preliminaries

Let C be a nonempty, closed, convex subset of a real Hilbert space H. The symbol “ —"" stands for the
weak convergence and the symbol “ —”” stands for the strong convergence. Let w(x,) be the set of all weak
cluster points of the sequence {x,}, namely, w,(x,) = {u' : I{x,,} C {x,} such that x,,, = u' asi — oo}.

A bounded linear operator A is said to be fi-strongly positive on H if there exists a constant & > 0 such
that

(A(),x) = pllx?, Vx € H.
An operator ¢ : C — H is said to be L;-Lipschitz if there exists a constant L; > 0 such that
llp(x) = (NI < Lallu = u'll, Vx,x" € C.

If L, <1, then ¢ is said to be Li-contractive. If L; = 1, then ¢ is said to be nonexpansive.
Recall that an operator T : C — C is said to be

(i) 7,-asymptotically pseudocontractive if for all x,x" € C, we have
(T"(x) = T"(x"), x = x*) < Tl = xIP, Vn > 1,

where {7,,} is a real number sequence satisfying 7, > 1(¥n > 1) and lim,, 7, = 1; we can rewrite this
relation as

IT"(0) = T"NIP < Q270 = Dl = 2 IP + 110 = T")x = (1 = TP 2)
(ii) uniformly L,-Lipschitzian if there exists a positive constant L, such that
IT"(x) = T*xNI| < Lallx - 27,

foralln > 1 and for all x,x" € C.

Denote the set of all fixed points of T by Fix(T).
An operator ¢ is said to be
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e monotone on C if
(p(x) — p(x"), x —x")y > 0, Vx, 2" e C.
e pseudomonotone on H if

(p(X),x —%) 20 = (px),x—%) 20, Vx,¥ € H.

o weakly sequentially continuous, if, for given sequence {x,} C C satisfying x, — &, we conclude that
Pxn) = P(X).
For any x, x' € H and constant n € R, we have

= (1 = nllx - x| 3)

For given u' € H, there exists a unique point in C, denoted by projc[u'] such that

[l + (1= n"I? = nllxl + (1 = p)lx"IP

" = projelu'll < Il — u'll, Vx € C.
It is known that projc is firmly nonexpansive, that is, projc satisfies

2
[

liprojclg’] — projclg"lI* < (projclg’] - projclq'l, 9" — %), ¥q',q" € H.

Moreover, projc satisfies the following inequality
(7 —projclg’l,q" —projclq’]) <0, ¥g" € H,q" € C. (4)

Lemma 2.1 ([47]). Let C be a nonempty, closed, convex subset of a real Hilbert space H. Let T: C — C be a uniformly
Ly-Lipschtzian and asymptotically pseudocontractive operator. Then, I — T is demiclosed at zero.

Lemma 2.2 ([8]). Let C be a nonempty, closed, convex subset of a real Hilbert space H. Let ¢ be a continuous and
pseudomonotone operator on H. Then x* € Sol(C, ¢) if and only if x* satisfies

("), pt-x"y =0, ¥p'eC

Lemma 2.3 ([24]). Let {s,} c (0,00), {A,} € (0,1) and {t,} be three real number sequences. Suppose that the
following conditions are satisfied:

o 5pi1 < (1= Ay + Antn, V1 > 0;
L4 ZZO=1 Ay = o0;
o limsup, , t, <00r X2 [Auty] < co.

Then, lim,, 0 S, = 0.

3. Main results

In this section, we give our main results.

Let C be a nonempty, closed, convex subset of a real Hilbert space H. Let ¢ : C — H be a 0-contractive
operator. Let A be a fi-strongly positive, bounded, linear operator on H. Let the operator ¢ be pseu-
domonotone on H and Li-Lipschitz continuous on C. Let T : C — C be an L,-Lipschitz 7,-asymptotically
pseudocontractive operator. Let {A,}, {y,} and {n,} be three real number sequences in (0,1). Letv, x, ®, ¢
and o be five constants. Suppose that the following conditions are satisfied:

(Cl: 0<a; <y,<a<n, < —=foralln>1;

o
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(C2): 0€(0,00),v€(0,1),x€(0,1),€(0,1),c€(0,2)and o < 1< 1;
(C3): im0 Ay =0and Y,y Ay = o0;
(C4): 1 € [1,2)(¥n 2 1), Lol (1, — 1) < +o0 and limy, e % = 0.

In this position, we state our algorithm below.

Algorithm 3.1. Choose an initial point xo € C and set n = 0.
Step 1. For given xy, find the smallest nonnegative integer sni(x,) satisfying

iy = projelx, — v W e(x,)],
and
VKsm(x”)”(P(”n) — ()l < @[y — xnl|-

If u, = xy, then set y, = x, and go to Step 2. Otherwise, calculate

Pt ]
7

o = projicln + <1 = @)un = P

where G, = Uy — X, — VKD (1),

Step 2. Compute

On = (1= 1) Yn + 1 T"(Yn),
Uy =1 =v)yn + yuT"(0n).
Step 3. Calculate
Xn+l = pro]'C[/\anb(xn) + (I = AA)v,].

Step 4. Set n := n + 1 and return to Step 1.

4114

©)

Throughout the paper, assume that I' := Fix(T) N Sol(C,¢p) # 0. In order to prove the convergence of
Algorithm 3.1, we need to impose an additional assumption (referred to as ASUMP) on operator ¢: If the

sequence {s,} C C satisfies s, — s' € C and lim inf,_,« [l¢(s,)l| = 0, then @(st) = 0.

Remark 3.2. It is easy to check that if @ is sequentially weakly continuous, then @ possesses the above assumption

(ASUMP).

Remark 3.3. We have the following assertions:
(i) There exists sni(x,) satisfying (5) and (6).

(i) 0 < K2 <) < 1(n > 0),

(iii) If x, = projclx, — v ep(x,)], then x, € Sol(C, ).

Next, we show the convergence of the sequence {x,} generated by Algorithm 3.1.

Theorem 3.4. The sequence {x,} generated by Algorithm 3.1 converges strongly to g* = projr(I — A + o¢)q".
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Proof. Letp € I'. From (7), we have

ln = PIP = lprojcloes + (1 - @)y - xnnz”f‘"nz] — projelpllf

2 un ”

< |lrn = p + < = @)llty — x4l TN

I[2,, —an
(I,

Now, we estimate (il,,, x, — p). First, note that

= I, = pIP +2¢(1 - @) (%0 = PY + S*(1 = ®)2|

Il |12

$1i(xy)

@(un), Xn — ﬁ>

@(xn), Xn — ﬁ) - VKsm(xn)<(P(xn)/ Xn — ﬁ)
- VKsni(x")<(P(un)/ Xy — Up) — VKsni(x”)<(P(un) Uy — f)>
sni(x”)«P(un)/ﬁ = Up) + VK )<(P(xn) P Xn)

+ Uy —x, + VKs"i(x”)((p(xn) — o(uy)), Xp — Uy)

+ Uy —x, + VKS”i(x")(p(xn), Uy — P).

(fn, X — P) = (Uy — X — VK
= (1t — Xxp, + viciCn)

= vK sni(x,

|14y, _xn”4

4115

(10)

(11)

Next, we focus on the four items of the last equality in (11). Taking advantage of the fact that p € Sol(C, ¢),

we have (¢(p), x, — p) = 0 and {p(p), u, — p) > 0. Further, by the pseudomonotonicity of ¢, we deduce

(P(xXn), p = xn) <0,

and

«P(un)/ﬁ - un> <0.
Applying the characteristic inequality (4) of projc to (5), we achieve
si(x,)

Uy — Xy + VK P(xn), un —py < 0.

It follows from (11)-(14) that
(B, X = P) < ity = 2 + VT (@(0) = (), X = 1)
< =l = 2l > + v () = @)l = tall-
Combining (6) and (15), we get
(B, %0 = P) < =ity = Xl + @l = ]l = ~(1 = @)l — |-
This fact, together with (10) implies that

+c3(1- @)ZM

= PIP < Il = BIP - 26(1 — @y =l 2
71

[I72,]17
Xt

o= PR = 2 - el - w)z”’ﬁA—“z

<l = PIP.
By relation (2) regarding T, we receive
IT" (@) = pIF < 2T = DlIOw = I + 116 = T* @I,
and

IT"(yn) = PIP < 2Tn = Dllyn = PIP + llyn = T @I

(12)

(13)

(14)

(15)

(16)

(17)

(18)
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Since T is uniformly L,-Lipschitz continuous, we obtain
T (yn) = T" (@)l < Lallyn = 0nll = Lantullyn = T" (yu)ll- (19)
Applying (3) to (8), we attain
118 =PI = 1L = 1) (Y = P) + 1a(T" (y) = DI
= (1= n)llyn = PIP + 1l T" (W) = PIP = (T = 1)y = T" )11
It follows from (18) that
118 = PIP < (1= )1y = BIP + 1ul2T0 = Dlly =PI + lyn = T () I°]

= (1 = )llyn = T"(y)II? (20)
= [1+ 2ty = Dnalllyn = AIP + 1311y = T" ()P
Again, by (3) and (19), we get
6 = T" @I = (1 = 1) (Y = T" @) + 10 (T (y) = T" @)
= (1= m)llyn = T"@IP + 0ullT" () = T @I = 10 (1 = )llyn — T" )l (21)
< (@ = mllyn = T"@IP = 1u(1 = 0 = L3n2)llyn = T" ()l
By (17), (20) and (21), we obtain

IT" (@) = pIP < 270 = DI+ 2(z0 = Dalllyn = PIF + QT = Diallyn — T" ()P
+ (1= 0u)llyn = T"@u)IP* = 10 (1 = 0 = L2y — T" ()P
= 21, = DI+ 2(ty = Dialllyn = pIP + (1 = m)llyn — T"@0)IP
= (1 = 2201 = LIy = T ().

(22)

By condition (C1), 1, < , it follows that 1 — 27,1, — L% > 0. In view of (22), we attain

1 . 1
244412 Tty L2472

IT" (@) = PIP < 2T = D1+ 2(t = Dalllyn = AIF + (1 = n)llyn = T @)1 (23)
Based on (3), (8) and (23), it follows

o5 = PIP = 11 = Y)Y + yuT" (@) = pIP
= (1= yu)llyn = PIP + YullT"@n) = PIF = yu( = YT (B0) = Y
< Y@ = DL+ 2(tw = Dalllyn — PIP + 1 = y)llya — PIP
+ V(1= 0)lYn = T" @I = 7u( = y)llyn — T"(0n) I
= [1+2(ty — Dyu + 2(ty — DT — D yulllys — pIP
+Vu(yn = )llyn — T" @)

2
I

On the basis of condition (C1), we have 2(t, — 1)y, + 2(t, — 1)(27, — 1)1}, yn < 8(T4 — 1). It follows that

[0, = I < [1+8(ts = DIllyn = PIF + yu(n = )llyn = T @I
< [1+8(tw = Dlllya = pIP.

This together with (16) implies that

(24)

llon =PIl < [1 + 4(Tw = DIllyn — pll < [1 + 4T = Dlllxn — plI. (25)
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Since A is [i-strongly positive, |[1 — A,All <1 - fiA,. From (9) and (25), we get

xns1 =PIl = llprojclAnod(xn) + (I = AnA)v,] =Pl
< (= ApA)llow = pll + AnollPp(xn) = PP + Anllodp(p) — AP
< (1= AL+ 4(ty = Dlllxy = pll + Au06llxn = pll + Anllodp() — A@)I

llogp(p) — P)||}

[1+4<rn—1>1max{||n— e

llop(p) — A(p)ll}

< H[l +4(7; — 1)] max {llxo -pll, 0— 00

Using condition (C4), the sequence {x,} is bounded. Thus, the sequences {@(x,)}, {P(xu)}, {yn), {vn), {A(vn)}
and {9,} are all bounded.
Since projc is firmly nonexpansive, from (9), we have

ns1 =PI = lIprojelAno(xa) + (I = AnA)v,] = proje[pll?
< (Ao p(xy) + (I = AyA)oy = P, Xns1 — P)
= 0Au(P(xn) = P(B), Xns1 — PY + Au(oP(P) — AP), Xps1 — P) + (I = AnA)Vn = P, Xps1 — P)
< 0010 = Pllllxns = Pll + AulaPp(P) = AP), Xns1 = P) + I = AyAlllloy = pllllcass =PIl (26)
< (0001, — pll + (1 = pA o — plllsenss — Pl + Au(od() — AG), xuer — )

llxs1 — I

1 R N N
< 5100 llx, =l + (1= pA)lon - PIF + =

+ An(oP(P) — AP), Xns1 — P)-
Note that 06 < fi. It follows from (26) that
[xns1 = PIP < 0OAlIxs = IP + (1 = pA[0n = PIP + 27,400 (D) — AP), Xns1 = P)- (27)

Since {x,,} is bounded, there exists a positive constant M such that M > sup, {8({1 — 00)l|x, — pI?}. On account
of (16), (24) and (27), we achieve

w1 = PP < [1= (@ — 00)Au]llxy — PIP + 2A,(0 (D) — A(P), Xpns1 — P)
+(1- (a)\n)yn()/n - Un)Hyn - Tn(ﬁn)”z +8(ty — Dllxy, — ﬁ”z
4
(1= AL+ 8(t — DI2 = el - @)2%
HA )Vn(y T]n)
fi—o0
= T, 2 . a—1
M TOIE S
(1= A+ 8(z, — 1)](2 —9)c(1 = @) |luy — xn||4}
fr=a0 i3,

< 1= (@~ a0)Aulllx, — pIP + (-~ 09)/\n{( (28)

M

For any 1 > 0, set s, = ||x,, — p||* and

_ (1- ,ﬁ/\n)yn(yn - T]n) ”yn - Tn(f)n)llz 2 R R R
t” - ﬁ — 00 An + ﬁ — 06 <U(P(p) A(p)/ Xn+1 p>
r=1 (= AL+ 8 = DIC = el = O fu, — 3,

Ay - o0 72,1127

(29)

+

From (28), we have

sue1 < [1= (1 = 00 A,lsn + (f = 06)Auty, Y 2 0. (30)



T. C. Yin, A. Pitea / Filomat 36:12 (2022), 4111-4122 4118

By condition (C4),

T,—1
A =

2 . . . 2 . . .
b S 55000~ AQ) st = P) + M S 2511009 = ANt = Pl + M.

It follows that limsup, ¢, < +c0. Now, we prove that -1 < limsup, _,_ t,. If not, there exists a positive
integer Ny such that t, < —1 for all n > Ny. Taking advantage of (30), we obtain s,+1 <s, — (ft — 00)A,, for
all n > Ny. Therefore,

Sn+1 < 8N, — (@1 — 00) Z Ai
i=Np
which implies that

limsups, < sy, — (1 — 00) limsup Z Ai=

Nn—oco n—o0
i=Np

which is impossible. So, =1 < limsup,,_, . t;, < +00.
Let x* € wy(x,). There exists a subsequence {n;} of {n} such that x,, — x" e Cand

1= gAY (Vi = 1) WY = T (8,117
limsupt, = hmtn =lim [( AV = 1) Wy, ©ul

n—0co i—0o [Al —-006 A‘fli
Ty, — 1
+ - GQ(O(ﬁ)(ﬁ) —AP), Xp1 — P) + . M (31)
(1= AL+ 8(t = DI = )l = @) s, — xlI*
fi—ab 1,22

Since {x,,+1} is bounded, there exists a subsequence {xn‘ +1} of {x,,,41} such that x,,_ 4 2(j — o). Thus,
lim;,c{(ap(p) — A(p), e = {o¢p(p) — A(P), 2 — P). Based on (31), we have lim sup, . tn = limje b,
For convenience, write 1;, = nk. Thus, from (31), we deduce

1_AA11 n, ne — !n n_TnkAn 2
limsupt, = hm n by, = lim [( By (Yo = ) My ©n)l

n—00 k—oo pl — 06 /\nk
T, —
5 — A(D).2 — D Nk
Tz S o0(P) AP, 2= p)+ " M (32)
_ (A=A +8(ty, = DIR = ¢)c(1 - @) ||t — xnkll‘l]
fL—ob (22 I1* Ay,
Note that limy_,o A, = 0 and hmkam = 0. By (32), we deduce

[Vnk(]/nk n”k) ”]/nk - T”k(?}nk)llz _ (2 - C)C(l - (D)2 ||unk - xnk”4

~ — exists.
R A ft —o0 (120, [P A, ]

k—»oo
This indicates that

l}l—{]; ”ynk - Tnk(z,)l’lk)” = 0/ (33)

and

11m ”unk - xnk”4

. =0. 34
k—oo ||y |1 G4



T. C. Yin, A. Pitea / Filomat 36:12 (2022), 4111-4122 4119

Using (19), we derive

1Y = T I < N, = T @Il + NT™ ) = T™ (Y
S ”yi’lk - Tnk(’z,)nk)“ + LZT]nk”ynk - Tnk(]/nk)“-

It follows that

1 .
e = T N < 7Y, = T (@ )Il-

- 1- LzT]nk
This together with (33) implies that
i [ly,, = T (vl = 0. (35)

Taking into account (5), we get that [[u, — pl| < [lx, — pll + v ®)||p(x,)|l. Hence, {u,} and {#1,,} are bounded.
Consequently, from (34), we conclude

l}l—{]; ”unk - xnk” =0. (36)
Combining (6) and (36), we obtain
lim [lp(14,,) = ()| = 0.

As aresult of (7), we have the following estimate

, Uy ,
I, = )1 = Jprojcl, + (1 = @), = g5 ] = projelen ]
03
c(1- CD)”unk - xnkllz
- [
This together with (36) implies that
lim [ly,, = ]| = 0. 37)

Note that

e = T™ eI < e = Yl + N, = T I+ 1T () = T (el
< (1 + Lo)llxwe = Y L+ 1Y = T (Y-

Combining (35) and (37), we deduce
Tim [fv,, — T ()]l = 0. (38)

Taking account of (9), we have

a1 = Ol = lIprojclAn o (en) + (I = Ay A)on,] = projclon, )
S Ank“O'(P(x‘rlk) - A(vﬂk)” - 0 (k - 00)

Observe that |[v,, — Yull = Vi llYn, — T (0 )ll = 0 due to (33). This together with (37) and (39) implies that
I}l—{]; ||x71k+1 - xnk” =0. (40)

Since T is uniformly L,-Lipschitz, we have

1 1 1 1
“xnk+l - Txnk+1” S ||xnk+l - Tnk+ x?’lk+1|| + ||T”k+ xnk+l - Tnk+ x?’lk” + ||T”k+ x}’lk - Txnk+l||
< “xnk+1 - Tnk+1xnk+1|| + LZ”-xnk+1 - xnkH + LZHTnkxnk - xnk+1“ (41)

S ||x1’lk+1 - Tnk+1xnk+1|| + 2L2”xnk+1 - xnk” + LZHTnklek - xﬂk”'
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By (38), (40) and (41), we have immediately that
I}l—{]; ”xnk - Tx‘rlk” =0. (42)
By Lemma 2.1, (42) and noticing that x,, — x' (k — o), we conclude that x* € Fix(T). Next, we show that

xt € Sol(C, ).
In view of (14), we have

(U, + v () = X, pT =1, ) 20, Vpt € C.

It implies that
(@), P = X ) 2 Q) U, = Xy + ————(tty, = X, U, — '), ¥p' € C. (43)
Vksnl(xuk)
According to (36) and (43), we receive
lim inf(p(x,), p—x,)>0,Vp' eC. (44)

Now, we consider two possibilities: lim infy_,c [|@(x, )l = 0 and lim infy_,o [l (x| > 0.

If lim infy_eo [l9(xy, )l = 0, by the assumption (ASUMP) of ¢, we deduce that ¢(x") = 0. Therefore,
xt € Sol(C, ).

Suppose that lim infy_, [lg(x,, )|l > 0. Without loss of generality, we assume that [|p(x,, )|l = 9(Vk > 0) for

# o) (Yk = 0). Then, (¢(xy,), £n,» = 1(¥k > 0). From (44), we have

some 0 > 0. Set ﬁnk = m

. . (P(xnk) + >
1 f< o —x ) 2 0. 45
e Gl ? )

Let {ex} be a real number sequence satisfying e; > 0(Yk > 0) and €, — 0 as k — oo. By (45), for each ¢, there
exists the smallest positive integer m; such that

(P(x”k) t_
<||(p(xnk>||’p

which implies that

xnk> +€r >0, Yk > my,

(@), p* = XY + exll@(n )l = 0, Vi > my.
Namely,

(@), "+ exllpCen )12, — x) 2 0, Yk = my.
It follows from the pseudomonotonicity of ¢ that

(" + ellpCeu)lIzn), vt + exllpeu)iZn, — xn) = 0, Yk > my. (46)
Since limyeo €xll (Il = limy e € = 0, letting k — oo in (46), we deduce

(", p" =2 =0,vp" eC )

By Lemma 2.2 and (47), we conclude that x' € Sol(C, ¢). Therefore, x" € T.
Finally, we prove that x, — projr(I — A + 0¢)q" = ¢". Thanks to (28), we get

n= 2
I = 'IP < [1= (8= 0OM T, = "I+ (3 = 0O M + == (0(g") = Al 5001 = 4. (48)

An (2
It is obviously that

lim sup{op(g") — A(g"), xu1 — ") < 0.

n—oo

Therefore, applying Lemma 2.3 to (48), we conclude that x, — g'. This completes the proof. [
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Considering T as the identity operator, we propose the next algorithm to determine the solution to the

variational inequality (1).

Algorithm 3.5. Choose an initial point xo € C and set n = 0.

and

Step 1. For given x,, find the smallest nonnegative integer sni(x,) satisfying

u, = projclx, — VKS”i(x")qo(xn)],

Vi D o (1,) — ()|l < @ity — Xl

If u, = xy, then set y, = x, and go to Step 2. Otherwise, calculate

Pt ]

n = proje|xn + ¢(1 = @)lfun — X" =
o = projeln + <1 =) 16,17

where Gy, = Uy — X, — VKD (1),

Step 2. Calculate
Xn+l = pI’O]'c[/\nGQb(Xn) +( - /\nA)]/n]-
Step 3. Set n := n + 1 and return to Step 1.

Corollary 3.6. The sequence {x,} generated by Algorithm 3.5 converges strongly to gt = projsoce)(I — A+ yP)q!.
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