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Abstract. In this paper, we establish some fixed point results in quasi-metric structures via modified
ω-distance and using one control function, known as Jachymski function. Our results generalize the fixed
point result of Alegre and Marı́n [Topology Appl. 203:32-41, 2016], and give an affirmative answer to the
natural question of Alegre Gil et al. [Results Math. 74(4):1-9, 2019]. Apart from these, we utilize one of our
results to study the solvability of a certain kind of fractal difference equation of networks communication.

1. Introduction and preliminaries

The concept of ω-distance in metric spaces was first introduced by Kada et al. [7] in 1996, and then
using this concept, many mathematicians have obtained several fixed point results, where in the contraction
condition, the metric is replaced by the ω-distance, (see [3, 8, 12] and the references therein). Besides these,
in 2000, Park [10] proposed the idea of ω-distance in quasi-metric spaces and obtained some fixed point
results. The study of fixed points via ω-distance on quasi-metric spaces was further continued by many
researchers, (see [3, 9] and the references therein). It is notable that if d is a metric on a nonempty set X,
then d itself becomes a ω-distance on (X, d) but this fact need not be true in case of quasi-metric, i.e., if d is a
quasi-metric on X, then d is not necessarily aω-distance on (X, d). Due to these facts, one can think, whether
the idea ω-distance on quasi-metric spaces can be modified in such a way that the function d itself becomes
a ω-distance on a quasi-metric space (X, d). This question was answered in 2016 by Alegre and Marı́n [2].
In [2], Alegre and Marı́n improved the definition of ω-distance on a quasi-metric space, and designate it by
modified ω-distance (mω-distance).

Definition 1.1. Suppose that (X, d) is a quasi-metric space and a function q : X×X→ [0,∞) satisfies the succeeding
properties:

(a) q(x, z) ≤ q(x, y) + q(y, z) for all x, y, z ∈ X;
(b) for each x ∈ X, the function q(x, ·) : X→ [0,∞) is lower semicontinuous on (X, τd−1 );
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(c) for any ε > 0, there exists δ > 0 such that x, y, z ∈ X and q(y, x) ≤ δ, q(x, z) ≤ δ imply d(y, z) ≤ ε.

Then q is called a modified ω-distance (mω-distance) on (X, d).

If further, for each x ∈ X, the function q(·, x) : X → [0,∞) is lower semicontinuous on (X, τd−1 ), then q is
called strong mω-distance on (X, d).

For examples of mω-distances and strong mω-distances, and some of its properties, one is referred to
[2, 5].

After introducing mw-distance, Alegre and Marı́n [2] obtained a fixed point result using a control
function, known as Jachymski function, in which the contraction condition is used via mω-distance.

Definition 1.2. [3] A function φ : [0,∞)→ [0,∞) satisfying the following, is called a Jachymski function:

(a) φ(0) = 0;
(b) for any ε > 0, there exists δ > 0 such that t > 0 and ε < t < ε + δ imply φ(t) ≤ ε.

Theorem 1.3. [2] Suppose that (X, d) is a complete quasi-metric space, T : X → X a map, there exist a strong-mω-
distance q on (X, d) and a Jachymski function φ with φ(t) < t for all t > 0 such that q(Tx,Ty) ≤ φ(q(x, y)) for all
x, y ∈ X. Then T has a unique fixed point z (say) with q(z, z) = 0.

Following this initial paper, some mathematicians have obtained several results related to fixed point
utilizing mω-distance, see [1, 5, 13]. An important one of such results is due to Alegre et al. [5], where they
modified and extended Theorem 1.3 by replacing the control function (Jachymski function) by Bianchini-
Grandolfi gauge function.

Definition 1.4. [4, 11] A function φ : [0,∞) → [0,∞) satisfying the following, is called a Bianchini-Grandolfi
gauge function:

(a) φ is nondecreasing;
(b)

∑
∞

n=0 φ
n(t) < ∞ for all t > 0.

One may note that if φ is a Bianchini-Grandolfi gauge function, then φ(t) < t for all t > 0.

Theorem 1.5. [5] Suppose that (X, d) is a complete quasi-metric space, T : X → X a q-lower semicontinuous map,
there exist a strong-mω-distance q on (X, d) and a Bianchini-Grandolfi gauge function φ such that

q(Tx,Ty) ≤ φ(max{q(x, y), q(x,Tx), q(y,Ty)})

and

q(Tx,Ty) ≤ φ(max{q(x, y), q(Tx, x), q(Ty, y)})

for all x, y ∈ X. Then T has a unique fixed point.

Theorem 1.6. [5] Suppose that (X, d) is a complete quasi-metric space, T : X → X a map, there exist a strong-mω-
distance q on (X, d) and a Bianchini-Grandolfi gauge function φ such that

q(Tx,Ty) ≤ φ(max{q(x, y), q(x,Tx)})

and

q(Tx,Ty) ≤ φ(max{q(x, y), q(Tx, x)})

for all x, y ∈ X. Then T has a unique fixed point.



H. Garai et al. / Filomat 36:12 (2022), 4123–4137 4125

From Theorem 1.6, it follows that Theorem 1.3 remains true if we replace the Jachymski function
by Bianchini-Grandolfi gauge function. It is noteworthy to mention that φ is a Jachymski function if is
Bianchini-Grandolfi gauge function but not conversely, see [5] for details. So from Theorems 1.5 and 1.6,
it can’t be concluded that these results hold true if the Bianchini-Grandolfi gauge function is replaced by
Jachymski function. So a natural question appears in our mind whether Theorems 1.5 and 1.6 can be settled
for Jachymski functions, and this is mentioned in [5]. Motivated by these facts, in this paper, we prove the
analogous versions of Theorem 1.5 and 1.6 using Jachymski functions.

Apart from these, it is familiar to all that in contraction principle of fixed point theory, if some results
are proved using the displacements d(x, y), d(x,Tx) and d(y,Ty), then some of these can also be established
using the displacements d(x, y), d(x,Ty) and d(y,Tx). Due to these, we establish another fixed point result
involving mω-distance, Jachymski function and the displacements q(x, y), q(x,Ty), q(y,Tx), q(Tx, y) and
q(Ty, x).

On the other hand, we apply one of our results in the communication networks domain. It is creating the
usage of the mathematical modelling method and through the operator based on some types of well-known
techniques, where the basis point (node) is mapped to the target point, and the target point is conforming to
the fixed point of the metric space, that is called the fixed point of the network space. Application instances
of the network fixed-point theory will be presented to this work and examples have exposed that the fixed
point theory is a promising theoretical backup related for the network association, dynamic normal and
symmetry of the space-air-ground joined network.

Before going to our main results, we recollect some important definitions and notions in quasi-metric
space theory, which will be useful in our main results. At first, we recall the definition quasi-metric spaces.

Definition 1.7. A quasi-metric on a non-empty set X is a function d : X ×X→ [0,∞) which satisfies the following
conditions:

(i) d(x, y) = d(y, x) = 0 if and only if x = y;

(ii) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

Remark 1.8. Let (X, d) be a quasi-metric space. Then the function d−1 : X×X→ [0,∞) defined by d−1(x, y) = d(y, x)
for all x, y ∈ X is again a quasi-metric on X and this quasi-metric is known as conjugate quasi-metric. Also, the
function ds : X × X→ [0,∞) defined by ds(x, y) = max

{
d(x, y), d(y, x)

}
for all x, y ∈ X, is a metric on X.

We finish this section by recalling the completeness of a quasi-metric space.

Definition 1.9. A quasi-metric space (X, d) is said to be complete if every Cauchy sequence {xn} in the metric space
(X, ds) converges with respect to the metric d−1, i.e., if there exists u ∈ X such that d(xn,u)→ 0 as n→∞.

2. Fixed point results

In the beginning of this section, we extend Theorem 1.5 using Jachymski function instead of Bianchini-
Grandolfi gauge function. Before this, we need the following definition:

Definition 2.1. [5] Let T be a self-map and q a mω-distance on a quasi-metric space (X, d). The T is said to be q-lower
semicontinuous if the map x 7→ q(x,Tx) is lower semicontinuous on (X, ds).

Theorem 2.2. Let T be a q-lower semicontinuous self-map on a complete quasi-metric space (X, d). Further, assume
that there exists a strong mw-distance q on X and a Jachymski function φ such that

q(Tx,Ty) ≤ φ(max{q(x, y), q(x,Tx), q(y,Ty)}) (1)

and

q(Tx,Ty) ≤ φ(max{q(x, y), q(Tx, x), q(Ty, y)}) (2)

for all x, y ∈ X, and φ(t) < t for all t > 0. Then the following hold:
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(i) T has a unique fixed point z (say) and q(z, z) = 0;

(ii) for any x0 ∈ X, the Picard’s iterative sequence {xn} converges to z in (X, ds).

Proof. Choose x0 ∈ X arbitrarily and consider the sequences {xn} in X, {αn}, {βn} inR+0 , defined by xn = Tnx0,
αn = q(xn, xn+1), βn = q(xn+1, xn) for n ∈N. We first show that limn→∞ αn = 0 and limn→∞ βn = 0. We have

αn+1 = q(Txn,Txn+1)
≤ φ(max{q(xn, xn+1), q(xn, xn+1), q(xn+1, xn+2)}) (3)
= φ(max{αn, αn, αn+1}). (4)

If αn+1 = 0, then clearly αn+1 ≤ αn. So we assume αn+1 , 0. If max{αn, αn, αn+1} = αn+1, then we have
αn+1 < αn+1, a contradiction. So max{αn, αn, αn+1} = αn and so

αn+1 ≤ αn. (5)

Similarly, we have

βn+1 ≤ βn. (6)

Hence there exist α, β ∈ R+0 such that

lim
n→∞
αn = α and lim

n→∞
βn = β.

Next, we show that α = 0. If αn0 = 0 for some n0 ∈N, then from (5), it follows that αn = 0 for n ≥ n0 and so
α = 0. So we assume that αn > 0 for all n. If αn+1 = αn for some n, then from (4), we get

αn ≤ φ(max{αn, αn, αn)} = φ(αn) < αn,

a contraction. So αn+1 < αn for all n, which gives

α < αn for all n. (7)

Now if α > 0, then there exists δ > 0 such that for t > 0, α < t < α + δ implies φ(t) ≤ α. Since
limn→∞ αn = α, there exists N ∈N such that

α < αn < α + δ for all n ≥ N,

which implies
φ(αn) ≤ α for all n ≥ N,

and from this we get

αn+1 ≤ φ(max{αn, αn, αn+1) = φ(αn}) ≤ α,

a contradiction to (7). So we must have α = 0. Similarly we have β = 0.
Next, we show that {xn} is Cauchy in the metric space (X, ds). Let ε > 0 be arbitrary. Then there exists

δ > 0 such that t > 0 and ε < t < ε + δ imply φ(t) ≤ ε, and q(y, x) ≤ δ and q(x, z) ≤ δ imply q(y, z) ≤ ε2 . Again
there exists δ1 > 0 such that t > 0 and δ

2 < t < δ2 + δ1 imply φ(t) ≤ δ2 . Without loss of generality, we assume
that δ1 < δ < ε. Since limn→∞ αn = 0 = limn→∞ βn, there exists N ∈N such that

q(xn, xn+1) <
δ1

16
and q(xn+1, xn) <

δ1

16
for all n ≥ N. (8)

Let k ≥ N be arbitrary. Then by induction on n, we show that q(xk, xk+n) < δ1
4 +

δ
2 for all n ∈ N. If n = 1, the

result follows from (8). Let q(xk, xk+n) < δ1
4 +

δ
2 for some n. Then we have two cases.



H. Garai et al. / Filomat 36:12 (2022), 4123–4137 4127

Case I: Let q(xk, xk+n) > δ2 . Then

δ
2
< max{q(xk, xk+n), q(xk, xk+1), q(xk+n, xk+n+1)}

< max
{
δ1

4
+
δ
2
,
δ1

16
,
δ1

16

}
<
δ
2
+ δ1.

So

q(xk+n, xk+n+1) ≤ φ(max{q(xk, xk+n), q(xk, xk+1), q(xk+n, xk+n+1)})

≤
δ
2
.

Therefore,

q(xk, xk+n+1) ≤ q(xk, xk+1) + q(xk+1, xk+n+1)

<
δ1

16
+
δ
2
<
δ1

4
+
δ
2
.

Case II: Let q(xk, xk+n) ≤ δ2 . Therefore,

q(xk, xk+n+1) ≤ q(xk, xk+1) + q(xk+1, xk+n+1)
≤ q(xk, xk+1) + φ(max{q(xk, xk+n), q(xk, xk+1), q(xk+n, xk+n+1})
≤ q(xk, xk+1) +max{q(xk, xk+n), q(xk, xk+1), q(xk+n, xk+n+1)}

<
δ1

16
+max

{
δ
2
,
δ1

16
,
δ1

16

}
<
δ1

4
+
δ
2
.

Thus q(xk, xk+n) < δ1
4 +

δ
2 for all n ∈ N and k ≥ N. In a similar way, we can show that q(xk+n, xn) < δ1

4 +
δ
2 for

all n ∈N and k ≥ N.
Let i, j ∈N be such that j ≥ i ≥ N. Then i = N + n, j = N +m for some m ≥ n. Then

q(xi, xN) = q(xN+n, xN) <
δ1

4
+
δ
2
< δ

and

q(xN, x j) = q(xN, xN+m) <
δ1

4
+
δ
2
< δ,

which imply that d(xi, x j) ≤ ε2 < ε. Similarly we have d(x j, xi) < ε. Thus {xn} is a Cauchy sequence in (X, ds).
So there exists z ∈ X such that d(xn, z)→ 0 as n→∞.

Let ε > 0 be arbitrary. Then there exists δ > 0 with δ < ε2 and N ∈N such that

q(xn, xm) < δ +
ε
2

for all m ≥ n ≥ N.

Since for n ≥ N, the mapping q(xn, ·) is lower semi-continuous on (X, τd−1 ) and d(xm, z)→ 0 as m→∞, there
exists N1 ∈N such that

q(xn, z) − q(xn, xm) < ε for all m ≥ N1.
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Therefore, for m ≥ n ≥ max{N,N1}, we have

q(xn, z) < q(xn, xm) + ε

< δ +
ε
2
+ ε < 2ε.

So q(xn, z) → 0 as n → ∞. Again since q(·, xn) is lower semi-continuous, we can similarly show that
q(z, xn)→ 0 as n→∞. Thus

q(z, z) ≤ q(z, xn) + q(xn, z)→ 0 as n→∞
=⇒ q(z, z) = 0.

Next, our goal is to prove d(z, xn)→ 0 as n→∞. For any ε > 0, we get δ > 0 with δ < ε such that q(y, x) ≤ δ
and q(x, z) ≤ δ imply d(y, z) ≤ ε2 . For sufficiently large m and n, we have q(z, xm) < δ and q(xm, xn) < δ, and so
d(z, xn) < ε.. Thus we reach to our goal. Since T is q-lower semicontinuous, the map 1(x) = q(x,Tx) is lower
semicontinuous on (X, ds). Since ds(xn, z)→ 0 as n→∞, we have

1(z) ≤ lim inf 1(xn)
=⇒ q(z,Tz) ≤ lim inf q(xn,Txn) = 0
=⇒ q(z,Tz) = 0.

Therefore,

q(xn+1,Tz) ≤ φ(max
{
q(xn, z), q(xn, xn+1), q(z,Tz)

}
)

≤ max
{
q(xn, z), q(xn, xn+1), q(z,Tz)

}
→ 0 as n→∞.

Since q(·, z) is lower semi-continuous on (X, τd−1 ), for any ε > 0, we get N2 ∈N such that

q(Tz, z) − q(xn, z) < ε
=⇒ q(Tz, z) < q(xn, z) + ε for all n ≥ N2.

So q(Tz, z) = 0 and hence q(Tz,Tz) = 0. This gives d(z,Tz) = 0 = d(Tz, z). Thus Tz = z, i.e., z is a fixed point
of T.

For uniqueness of fixed point of T, let u1, u2 be two fixed points of T. Then

q(u1,u1) ≤ φ(max{q(u1,u1), q(u1,u1), q(u1,u1))}
= φ(q(u1,u1)),

which implies that q(u1,u1) = 0. Similarly q(u2,u2) = 0. From these, we have

q(u1,u2) ≤ φmax{q(u1,u2), q(u1,u1), q(u2,u2)})
= φ(q(u1,u2)).

So q(u1,u2) = 0. Similarly q(u2,u1) = 0. Then proceeding as the argument in which we show that z = Tz, we
can show that u1 = u2. This completes the proof.

Subsequently, we prove the following theorem by making some changes in the contraction conditions (1)
and (2), and relaxing the q-lower semicontinuity of T:

Theorem 2.3. Suppose that (X, d) is a complete quasi-metric space and T is a self-map on X. Further, assume that
there exists a strong mw-distance q on X and a Jachymski function φ such that

q(Tx,Ty) ≤ φ(max{q(x, y), q(x,Tx)}) (9)
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and

q(Tx,Ty) ≤ φ(max{q(x, y), q(Tx, x)}) (10)

for all x, y ∈ X, and φ(t) < t for all t > 0. Then the following hold:

(i) T has a unique fixed point z (say) and q(z, z) = 0;

(ii) for any x0 ∈ X, the Picard’s iterative sequence {xn} converges to z in (X, ds).

Proof. The proof of this theorem follows from the proofs of Theorem 2.2 and [5, Theorem 6].

Next, we prove the following theorem by modifying the contraction condition of Theorem 2.2. To prove
this theorem, we need some some extra assumptions on φ. To be more specific, we need the following extra
assumptions:

(E1) φ is nondecreasing;
(E2) lim supφ(xn) ≤ φ(lim sup xn) for every sequence {xn} in R+0 .

Theorem 2.4. Let T be a q-lower semicontinuous self-map on a complete quasi-metric space (X, d). Assume that
there exist a strong mw-distance q on X, a Jachymski function φ satisfying (E1), (E2), and three constants a, b, c ∈ R+0
such that

q(Tx,Ty) ≤ φ(aq(x, y) + bq(x,Ty) + cq(y,Tx)) (11)

and

q(Tx,Ty) ≤ φ(aq(x, y) + bq(Tx, y) + cq(Ty, x)) (12)

for all x, y ∈ X, φ(t) < t for all t > 0 and a + b + c = 1. Along with these, suppose that there exists x0 ∈ X such that
q(Tnx0,Tnx0) ≤ φ(q(Tn−1x0,Tn−1x0)) for all n ∈ N and the set

{
q(Tnx0,Tmx0) : n,m ∈ N

}
is bounded. Then T has

has a unique fixed point z (say) satisfying q(z, z) = 0.

Proof. If a = 1, then the result follows from [2, Theorem 2]. Therefore, we now assume that a < 1.
Let us consider the sequence {xn} defined by xn = Tnx0 for all n. Put αn = q(xn, xn+1), βn = q(xn+1, xn) and

γn = q(xn, xn) for all n. Since the set
{
q(Tnx0,Tmx0) : n,m ∈ N

}
is bounded, we have D1 = lim supαn < ∞,

D2 = lim sup βn < ∞ and D3 = lim supγn < ∞. By given condition, we have

q(xn+1, xn+1) ≤ φ(q(xn, xn))
=⇒ γn+1 ≤ φ(γn).

Taking lim sup in both sides of above inequality and using (E1), (E2), we get D3 ≤ φ(D3), from which we
get D3 = 0.

Now

q(Txn,Txn+1) ≤ φ(aq(xn, xn+1) + bq(xn,Txn+1) + cq(xn+1,Txn))
≤ φ(aq(xn, xn+1) + bq(xn, xn+1) + bq(xn+1+, xn+1) + cq(xn+1, xn+1))

=⇒ αn+1 ≤ φ(aαn + bαn + bαn+1 + cγn+1).

Taking lim sup in both sides of above inequality and using (E1), (E2), we get

D1 ≤ φ(aD1 + 2bD1 + cD3)
=⇒ D1 ≤ φ(aD1 + 2bD1). (13)
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Again we have

q(Txn,Txn+1) ≤ φ(aq(xn, xn+1) + bq(Txn, xn+1) + cq(Txn+1, xn))
≤ φ(aq(xn, xn+1) + bq(xn+1, xn+1) + cq(xn+2+, xn+1) + cq(xn+1, xn))

=⇒ αn+1 ≤ φ(aαn + bγn + cβn+1 + cβn).

Taking lim sup in both sides of above inequality and using (E1), (E2), D3 = 0, we get

D1 ≤ φ(aD1 + 2cD2). (14)

Similarly interchanging xn and xn+1 and using (11) and (12), we can obtain

D2 ≤ φ(aD2 + 2cD1), (15)
D2 ≤ φ(aD2 + 2bD2). (16)

If D1 , 0,D2 , 0, then from (13)-(16), we get

D1 < aD1 + 2bD1, D1 < aD1 + 2cD2, D2 < aD2 + 2cD1, D2 < aD2 + 2bD2.

Adding the above four inequalities, we obtain

2D1 + 2D2 < 2D1 + 2D2,

which is a contradiction, and this contradiction ensures that at least one of D1 and D2 must be 0. Without
loss of generality, we assume that D1 = 0. Then from (15), we get D2 ≤ φ(aD2). If D2 , 0, then we get

D2 ≤ φ(aD2) ≤ aD2 < D2,

which leads to a contradiction. Therefore, D1 = 0 = D2, that is,

lim
n→∞
αn = lim

n→∞
βn = lim

n→∞
γn = 0. (17)

Next, we show that {xn} is a Cauchy sequence in the metric space (X, ds). Let ε > 0 be arbitrary. Then we
get δ > 0 with δ < ε such that

t > 0 and ε < t < ε + δ =⇒ φ(t) ≤ ε

and
q(y, x) ≤ δ, q(x, z) ≤ δ =⇒ d(y, z) ≤

ε
2
.

Again, we get δ1 > 0 with δ1 < δ such that

t > 0 and
δ
2
< t <

δ
2
+ δ1 =⇒ φ(t) ≤

δ
2
.

By (17), we get N ∈N such that

q(xn, xn+1) <
δ1

16
, q(xn+1, xn) <

δ1

16
, q(xn, xn) <

δ1

16
, for all n ≥ N. (18)

Let k ≥ n be arbitrary. Then we show by induction on n that

q(xk, xk+n) <
δ1

4
+
δ
2
, q(xk+n, xk) <

δ1

4
+
δ
2
.

For n = 1, it follows from (18). We now assume that

q(xk, xk+n) <
δ1

4
+
δ
2
, q(xk+n, xk) <

δ1

4
+
δ
2
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for some n. Then we have the following cases:
Case I: Let q(xk, xk+n) > δ2 , q(xk+n, xk) > δ2 . Therefore,

q(xk+1, xk+n+1) ≤ φ(aq(xk, xk+n) + bq(xk, xk+n+1) + cq(kk+n, xk+1))
≤ φ(aq(xk, xk+n) + bq(xk, xk+n) + bq(xk+n, xk+n+1)
+ cq(kk+n, xk) + cq(kk, xk+1)). (19)

Also since δ2 < q(xk, xk+n), q(xk+n, xk), we have

(a + b + c)
δ
2
< aq(xk, xk+n) + bq(xk, xk+n) + cq(xk+n, xk)

=⇒
δ
2
< aq(xk, xk+n) + bq(xk, xk+n) + bq(xk+n, xk+n+1)

+ cq(kk+n, xk) + cq(kk, xk+1)

< a
(
δ1

4
+
δ
2

)
+ b

(
δ1

4
+
δ
2

)
+ b
δ1

16
+ a

(
δ1

4
+
δ
2

)
+ c
δ1

16

<
δ
2
+ δ1.

Therefore,

φ(aq(xk, xk+n) + bq(xk, xk+n) + bq(xk+n, xk+n+1) + cq(kk+n, xk) + cq(kk, xk+1)) ≤
δ
2
,

and hence from (19), we get

q(xk+1, xk+n+1) ≤
δ
2
.

Therefore,

q(xk, xk+n+1) ≤ q(xk, xk+1) + q(xk+1, xk+n+1)

<
δ
2
+
δ1

16
<
δ
2
+
δ1

4
.

Similarly, we can show that

q(xk+n+1, xk) <
δ
2
+
δ1

4
.

Case II: Let q(xk, xk+n) > δ2 and q(xk+n, xk) ≤ δ2 . Therefore,

(a + b)
δ
2
< aq(xk, xk+n) + bq(xk, xk+n)

< aq(xk, xk+n) + bq(xk, xk+n) + bq(xk+n, xk+n+1) + cq(xk+n, xk) + cq(xk, xk+1)

< a
(
δ1

4
+
δ
2

)
+ b

(
δ1

4
+
δ
2

)
+ b
δ1

16
+ c
δ
2
+ c
δ1

16

<
δ
2
+ δ1.

Then we have two subcases:
Subcase I: Let

δ
2
< aq(xk, xk+n) + bq(xk, xk+n) + bq(xk+n, xk+n+1) + cq(xk+n, xk) + cq(xk, xk+1) <

δ
2
+ δ1.

Therefore, from (19), we get

q(xk+1, xk+n+1) ≤
δ
2
.
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Continuing similar to Case I, we have

q(xk, xk+n+1) <
δ
2
+
δ1

4
.

Subcase II: Let

aq(xk, xk+n) + bq(xk, xk+n) + bq(xk+n, xk+n+1) + cq(xk+n, xk) + cq(xk, xk+1) ≤
δ
2
.

Therefore,

φ(aq(xk, xk+n) + bq(xk, xk+n) + bq(xk+n, xk+n+1) + cq(xk+n, xk) + cq(xk, xk+1)) ≤ φ
(
δ
2

)
<
δ
2
.

Then by following Subcase I and case I, we have

q(xk, xk+n+1) <
δ
2
+
δ1

4
.

Similarly we can show that

q(xk+n+1, xk) <
δ
2
+
δ1

4
.

Case III: Let q(xk, xk+n) ≤ δ2 and q(xk+n, xk) > δ2 . This case is similar to Case II.
Case IV: Let q(xk, xk+n) ≥ δ2 and q(xk+n, xk) ≥ δ2 . Therefore,

q(xk+1, xk+n+1) ≤ φ(aq(xk+1, xk+n) + bq(xk, xk+n) + cq(xk+n, xk) + bq(xk+n+, xk+n+1)
+ cq(xk, xk+1))

≤ φ
(
a
δ
2
+ b
δ
2
+ c
δ
2
+ (b + c)

δ1

16

)
<
δ
2
+
δ1

16
.

So
q(xk, xk+n+1) <

δ1

16
+
δ
2
+
δ1

16
<
δ
2
+
δ1

4
.

Similarly we have

q(xk+n+1, xk) <
δ
2
+
δ1

4
.

Thus

q(xk, xk+n), q(xk+n, xk) <
δ
2
+
δ1

4
for all n and for all k ≥ N. (20)

Let i, j ∈N be arbitrary with j ≥ i > N. Then i = N + n, j = N +m for some n, m with m ≥ n. Then

q(xN, x j) = q(xN, xN+n) <
δ
2
+
δ1

4
< δ,

q(xi, xN) = q(xN+m, xN) <
δ
2
+
δ1

4
< δ.

Therefore,
d(xi, x j) ≤

ε
2
< ε.

In a similar way, we have
d(x j, xi) < ε.

Hence {xn} is Cauchy in (X, ds) and so we get z ∈ X such that d(xn, z) → 0 as n → ∞. Let ε > be arbitrary.
Then by (20), we get δ > 0 with δ < ε2 and N ∈N such that

q(xn, xm) < δ +
ε
2

for all m ≥ n ≥ N.
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Now for n ≥ N, the mapping q(xn, ·) is lower semicontinuous on (X, τd−1 ) and d(xn, z)→ 0 as n→ ∞, so we
get N1 ∈N such that

q(xn, z) − q(xn, xm) < ε for all m ≥ N1.

Then for m ≥ n ≥ max{N,N1}, we have

q(xn, z) < q(xn, xm) + ε < δ +
ε
2
+ ε < 2ε,

which shows that q(xn, z) → 0 as n → ∞. Again q(·, xn) is lower semicontinuous, so proceeding as above,
we have q(z, xn)→ 0 as n→∞. Therefore,

q(z, z) ≤ q(z, xn) + q(xn, z) → 0 as n→∞
=⇒ q(z, z) = 0.

Next, we show that d(z, xn)→ 0 and d(xn,Tz)→ 0 as n→ ∞. For this choose ε > 0 arbitrarily. Then we get
δ > 0 with δ < ε such that q(y, x) ≤ δ and q(x, z) ≤ δ implies d(y, z) ≤ ε

2 . For sufficiently large m,n, since
q(z, xm) < δ and q(xm, xn) < δ hold, we have d(z, xn) < ε. This shows that d(z, xn) → 0 as n → ∞. Hence
ds(xn, z)→ 0 as n→∞.

Since T is q-lower semicontinuous, we have

q(z,Tz) ≤ lim inf q(xn,Txn)
= lim inf q(xn, xn+1) = 0

=⇒ q(z,Tz) = 0.

Since q(xn, z)→ 0 as n→∞, we get N3 ∈N such that q(xn, z) < δ for all n ≥ N3 Also, we have q(z,Tz) = 0 < δ.
So

d(xn,Tz) ≤
ε
2

for all n ≥ N3.

Therefore, d(xn,Tz) → 0 as n → ∞. Since q(·, z) is lower semi-continuous on (X, τd−1 ) and d(xn,Tz) → 0, we
get N4 ∈N such that

q(Tz, z) − q(xn, z) < ε for all n ≥ N4

=⇒ q(Tz, z) < q(xn, z) + ε.

Then using the fact q(xn, z)→ 0, we have q(Tz, z) = 0. Using the facts q(z,Tz) = 0 and q(Tz, z) = 0, we have
q(z,Tz) = 0. Since q(Tz, z) = 0 < δ and q(z, z) = 0 < δ, we have d(Tz, z) ≤ ε2 , that is, d(Tz, z) = 0. Similarly we
have d(z,Tz) = 0 Therefore, Tz = z, that is, z is a fixed point of T.

For uniqueness, let u1,u2 be two fixed points of T. Then

q(u1,u1) = q(Tu1,Tu1)
≤ φ(aq(u1,u1) + bq(u1,Tu1) + cq(u1,Tu1))
= φ(q(u1,u1))

=⇒ q(u1,u1) = 0.

Similarly we have q(u2,u2) = 0. Thus

q(u1,u2) = q(Tu1,Tu2)
≤ φ(aq(u1,u2) + bq(u1,u2) + cq(u2,u1)).

If q(u1,u2) + q(u2,u1) , 0, then we have

q(u1,u2) < aq(u1,u2) + bq(u1,u2) + cq(u2,u1). (21)
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Similarly, we have

q(u2,u1) < aq(u2,u1) + bq(u2,u1) + cq(u1,u2). (22)

Adding (21) and (22), we get
q(u1,u2) + q(u2,u1) < q(u1,u2) + q(u2,u1),

which leads to a contradiction. So we have q(u1,u2)+q(u2,u1) = 0, that is, q(u1,u2) = 0 = q(u2,u1). Therefore,
d(u1,u2) = 0 = d(u2,u1). This completes the proof.

Now we present some examples to validate the above two results.

Example 2.5. Let us take X = [0, 3] and define d : X × X → R by d(x, y) = y − x if y ≥ x and d(x, y) = 1 if y < x;
q(x, y) = x for all x, y ∈ X. Then (X, d) is a quasi-metric space and q is a strong mω-distance on X.

Next, we define T : X→ X by Tx = 0 if x ∈ [0, 1) and Tx = 3
5 x if x ∈ [1, 3]. Also, we take a Jachymski function φ

defined by φ(t) = 9
10 t. Then clearly φ(t) < t for all t > 0. It can be easily verified that (1) and (2) hold for all x, y ∈ X

and T is q-lower semicontinuous. Therefore, by the conclusions of Theorem 2.2, we get a unique fixed point z of T
satisfying q(z, z) = 0. Indeed, here z = 0.

Example 2.6. Let us consider the normed lattice (X,≼, ∥ · ∥), where X = C[0, 1], x ≼ y means x(t) ≤ y(t) for all
t ∈ [0, 1] and ∥ · ∥ is the sup norm. Let X+ = {x ∈ X : x(t) ≥ 0 for all t ∈ [0, 1]}, and define ∥x∥+ = ∥x∨ 0∥, where 0 is
the zero function and d+(x, y) = ∥y − x∥+ for all x, y ∈ X+. Then from [2, Example 5], it is known that (X+, d+) is a
quasi-metric space, and the function q : X+ × X+ → [0,∞) defined by q(x, y) = ∥y∥ is a strong mw-distance on X+.

Now we define a map T : X+ → X+ by (Tx)(t) = 0 if ∥x∥ ≤ 6 and (Tx)(t) = 2t elsewhere. We choose a Jachymski
function φ defined by φ(t) = 3

4 t. So φ(t) < t for all t > 0. Then one can verify by simple calculations that T is q-lower
semicontinuous and (1) and (2) hold for all x, y ∈ X. So by the conclusions of Theorem 2.2, T possesses a unique fixed
point z satisfying q(z, z) = 0, and here z is the zero function.

Example 2.7. Let X = R2 and define p : X→ R by

p(x1, x2) =

x1 + x2, if x1, x2 ≥ 0
0, elsewhere.

Then p is an asymmetric norm on X. Therefore, d, q : X × X → R defined by d(x, y) = p(y − x) and q(x, y) =
p(x) + p(−y), are respectively a complete quasi-metric and a strong mω-distance on (X, d) respectively.

Next, we define a mapping T : X→ X by

T(x1, x2) =

(x1 − 1, 0), if (x1, x2) ∈ C
(−1, 2), if (x1, x2) < C,

where C = {(x1, x2) ∈ R2 : x1, x2 ≥ 1 and 2x1 ≤ x2 + 3}. We choose a Jachymski function φ defined by φ(t) = 3
4 t.

Then φ(t) < t for all t > 0 and φ satisfies (E1), (E2). One can easily verify that T is q-lower semicontinuous and (11)
and (12) hold for a = b = c = 1

3 for all x, y ∈ X. Also, if we take x0 ∈ C then q(Tnx0,Tnx0) ≤ φ(q(Tn−1x0,Tn−1x0))
for all n ∈ N and the set {q(Tnx0,Tmx0) : n,m ∈ N} is bounded. So by consequences of Theorem 2.4, it follows that
T has a unique fixed point z of T with q(z, z) = 0. Note that here z = (−1, 2).

3. Application

Measurement theory (MT) is mainly concerned about the investigation of how numbers are allocated
to things and occurrences, and its distresses contain the classes of possessions that can be dignified, how
diverse measures communicate to each other, and the issue of error in the measurement procedure. In this
theory, it requests to optimize the minimum location to transform the information in the networks [6]. It has
been recognized as one of the best processes in MT is by using the unique fixed point of a suitably defined
operator. In this application, we aim to use Theorem 2.2. For this purpose, we shall use the modified
fractional local calculus (fractal) [14].
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3.1. Fractal operator construction

Let X = Cα(0, 1) be the space of local fractional continuous functions in the domain I = (0, 1) such that for
all γ > 0, there is κ > 0 satisfying |x − x0| < γ whenever, |t − t0| < κ. In communication, x is the distributor
of information while x0 is the target. The distance between the distributor and the target can be measured
by the fractal Dα : X × X→ [0,∞) as follows:

Dα(x, x0) = Γ(α + 1)|x − x0|, α ∈ (0, 1]. (23)

Note that the | · | indicates the minimum distance between x and x0.Moreover, Dα(x, ·) achieves

Dα(x, ·) = Dα(x) = Γ(α + 1)x, α ∈ (0, 1].

Define an operator Tα : X→ X by

Tα x = α
(

Dα(x)
Γ(α + 1)

)
, α ∈ (0, 1].

We have the following result:

Theorem 3.1. Consider the fractal space X = Cα(0, 1) for α ∈ (0, 1]. Then (X,Dα) is a quasi-metric space and Tα has
a unique fixed point.

Proof. Consider the fractal space X = Cα(0, 1) for α ∈ (0, 1]. Then for x, x0 ∈ X we have

(a) Dα(x, x0) = Γ(α + 1)|x − x0| ≥ 0 and Dα(x0, x0) = Γ(α + 1)|x0 − x0| = 0;

(b) Dα(x, x0) = Γ(α + 1)|x − x0| = Γ(α + 1)|x0 − x| = Dα(x0, x);

(c) Dα(x, x00) = Γ(α + 1)|x − x00| ≤ Γ(α + 1)|x − x0| + Γ(α + 1)|x0 − x00| = Dα(x, x0) +Dα(x0, x00).

Thus (X,Dα) is a quasi-metric space.

Define a target function (objective function) Q : R2
→ [0,∞) by Q(x, x0) = x. Then, we obtain

(a) Q(x, x00) = x ≤ x + x0 = Q(x, x0) +Q(x0, x00) for all x, x0, x00 ∈ X;

(b) define Q(x, ·) : R→ [0,∞) by Q(x, ·) = x; thus, Q is a lower semicontinuous function on X.

(c) Let x, x0, x00 ∈ X such that Q ≤ δ for all x ∈ X. Suppose that δ =
ϵ

2Γ(α + 1)
. Then we have

Dα(x0, x00) = Γ(α + 1)|x0 − x00|

≤ Γ(α + 1) (Q(x0, .) +Q(x00, .))
≤ Γ(α + 1)(2δ)
= ϵ.

Thus, we have Dα(x0, x00) ≤ ϵ; consequently, Q is a strong mω−distance on (X,Dα).

Define a function Θα : [0,∞)→ [0,∞) by

Θα(χ) = Γ(α + 1)χ, α ∈ (0, 1).

Then, we get

(a) Θα(0) = 0;
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(b) for any ϵ > 0, if we choose δ =
(

1
Γ(α+1) − 1

)
ϵ, then χ > 0 and ϵ < χ < ϵ + δ imply Θα(χ) ≤ ϵ.

Thus Θα is a Jachymski function. Also for χ > 0, we have Θα(χ) = Γ(α+ 1)χ < χ, α ∈ (0, 1). Finally, we shall

prove that the conditions (1) and (2) are satisfied by using the operator Tα,where

Tα x = α
(

Dα(x)
Γ(α + 1)

)
, α ∈ (0, 1].

(a) It is clear that Q(Tα x,Tα x0) = Tα x = α x.Moreover, we have Q(x, x0) = x,Q(x,Tα x) = x, Q(x0,Tα x0) =
x0; then, we obtain

Θα (max{Q(x, x0),Q(x,Tα x), Q(x0,Tα x0)}) = Θα (max{x, x0})
= Γ(α + 1) max{x, x0}.

But

Q(Tα x,Tα x0) = αx
≤ Γ(α + 1) max{x, x0}

= Θα (max{Q(x, x0),Q(x,Tα x), Q(x0,Tα x0)}) , α ∈ (0, 1];

thus, condition (1) is achieved.

(b) Similarly, we have Q(Tα x,Tα x0) = Tα x = α x, Q(x, x0) = x,Q(Tα x, x) = α x, Q(Tα x0, x0) = α x0 then,

Θα (max{Q(x, x0),Q(Tα x, x), Q(Tα x0, x0)}) = Θα (max{x, αx0, αx})
= Γ(α + 1) max{x, αx0, αx}.

Consequently, we obtain

Q(Tα x,Tα x0) ≤ Θα (max{Q(x, x0),Q(Tα x, x), Q(Tα x0, x0)}) ,

which indicates condition (2). As a conclusion, this shows that the operator Tα has a unique fixed
point in X,where Q(Tα (0),Tα (0)) = 0 (see Theorem 2.2).

Example 3.2. Let α = 0.5 then we have D0.5x = 0.886x and T0.5x = 0.5x, Q(x, x0) = x and Θ0.5χ = 0.886χ < χ
such that

Q(Tα x,Tα x0) = 0.5x ≤ 0.886x = Θα (max{Q(x, x0),Q(x,Tα x), Q(x0,Tα x0)}) .

Similarly, we have

Q(Tα x,Tα x0) = 0.5x ≤ 0.886x = Θα (max{Q(x, x0),Q(Tα x, x), Q(Tα x0, x0)}) .

Hence, in view of Theorem 3.1, Tα has a fixed point in X = Cα(0, 1) where α = 0.5.
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