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Available at: http://www.pmf.ni.ac.rs/filomat

Optimality and Duality Results for
(
h, φ
)
-Nondifferentiable

Multiobjective Programming Problems with
(
h, φ
)
-
(
b,F, ρ

)
-Convex

Functions

Tadeusz Antczaka, Vinay Singhb, Mohan Bir Subbab,c

aFaculty of Mathematics and Computer Science, University of Łódź, Banacha 22, 90-238 Łódź, Poland
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Abstract. Generalized algebraic operations introduced by Ben-Tal [5] are used to define new classes of
generalized convex functions, namely

(
h, φ
)
-
(
b,F, ρ

)
-convex functions and generalized

(
h, φ
)
-
(
b,F, ρ

)
-convex

functions in the vectorial case. Further, optimality and duality results are proved for the considered
(
h, φ
)
-

nondifferentiable multiobjective programming problem under assumptions that the functions involved are
(generalized)

(
h, φ
)
-
(
b,F, ρ

)
-convex.

1. Introduction

Multiobjective programming also known as vector optimization, has grown remarkably in different
directional in the setting of optimality conditions and duality results since 1980s. The term multiobjective
programming is used to denote a type optimization problems where two or more objectives are to be
minimized subject to certain constraints. Multiobjective optimization problems typically have conflicting
objectives, and a gain in one objective very often is an expense of another. Recently there have been
numerous attempts to generalize the concept of convexity in order to weaken the assumptions of the
attained results for nondifferentiable multiobjective programming problems (see e.g. [2], [3], [4], [5], [6],
[7], [8], [9], [10], [11],[12], [13], [16], [17] [18], and others). One of significant convexity generalizations
is the concept of

(
F, ρ
)
-convexity introduced by Preda [15] for differentiable multiobjective programming

problems. He established optimality conditions and duality results for differentiable vector optimization
problems under assumptions that the functions involved are differentiable

(
F, ρ
)
-convex. The concept

of
(
F, ρ
)
-convexity and various its generalizations have been used in proving optimality conditions and

duality results for various classes of nonconvex multiobjective programming problems (see, for example,
[1], [13], [14], and others). The definition of a

(
b,F, ρ

)
-convex function was defined by Pandian [14] for a
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differentiable multiobjective programming problem as a generalization of the definition of a
(
F, ρ
)
-convex

function introduced by Preda [15].
In [5], Ben-Tal introduced generalized algebraic operations and showed that some classes of generalized

convex functions can be defined by using them. By using Ben-Tal generalized algebraic operations and
Motzkin’s alternative theorem, Xu and Liu [19] developed the generalized Kuhn-Tucker necessary optimal-
ity conditions for a class of generalized

(
h, φ
)
-differentiable single-objective and multiobjective program-

ming problems. Also based upon Ben-Tal’s generalized algebraic operations, Yu and Liu [20] introduced(
h, φ
)
-type-I and generalized

(
h, φ
)
-type I functions for the considered

(
h, φ
)
-differentiable multi-objective

programming problem. Using these concepts of generalized convexity, they proved sufficient optimality
conditions for a feasible solution to be a Pareto efficient solution for the considered

(
h, φ
)
-differentiable

multi-objective programming problem and duality results between it and its
(
h, φ
)
-differentiable vector

dual problem. In [21], Yuan et al. investigated properties of generalized convexities based on algebraic
operations introduced by Ben-Tal [5]. Further, they defined the

(
h, φ
)
-generalized directional derivative and

the
(
h, φ
)
-gradient in the sense of Clarke and, by using them, they introduced the concept of

(
φ, γ
)
-convexity.

In this paper, we use the generalized algebraic operations given by Ben-Tal to generalize the con-
cept of differentiable

(
b,F, ρ

)
-convexity in a

(
h, φ
)
-nondifferentiable vectorial case. Namely, we define

the concept of
(
h, φ
)
-
(
F, ρ
)
-convexity, and also classes of generalized

(
h, φ
)
-
(
F, ρ
)
-convex functions for a(

h, φ
)
-nondifferentiable multiobjective programming problem. However, the main aim of this paper is

to prove optimality conditions and duality results for a new class of nonconvex
(
h, φ
)
-nondifferentiable

multiobjective programming problems. Used the introduced concepts of
(
h, φ
)
-
(
F, ρ
)
-convexity and gen-

eralized
(
h, φ
)
-
(
F, ρ
)
-convexity, the sufficient optimality conditions are proved for

(
h, φ
)
-nondifferentiable

multiobjective programming problems involving such nonconvex functions. Further, for the considered(
h, φ
)
-nondifferentiable multiobjective programming problem, its

(
h, φ
)
-nondifferentiable vector dual prob-

lem in the sense of Mond-Weir is defined. Then, various duality theorems are proved by the primal(
h, φ
)
-nondifferentiable multiobjective programming problem and its

(
h, φ
)
-nondifferentiable vector dual

problem in the sense of Mond-Weir under assumptions of
(
h, φ
)
-
(
F, ρ
)
-convexity and/or generalized

(
h, φ
)
-(

F, ρ
)
-convexity.

2. Preliminaries and (generalized)
(
h, φ
)
-b-
(
F, ρ
)
-convexity

Throughout this paper, the following convention for vectors in the n-dimensional Euclidean space will
be followed:

for any x = (x1, x2, ..., xn)T, y =
(
y1, y2, ..., yn

)T, we define:
(i) x = y if and only if xi = yi for all i = 1, 2, ...,n;
(ii) x < y if and only if xi < yi for all i = 1, 2, ...,n;
(iii) x ≦ y if and only if xi ≦ yi for all i = 1, 2, ...,n;
(iv) x ≤ y if and only if x ≦ y and x , y.
Now, let us recall generalized operations of addition and multiplication introduced by Ben-Tal [5].
1) Let h be an n-dimensional vector-valued continuous function defined on Rn and possessing an inverse

function h−1. Then, the h-vector addition of x, y ∈ Rn is defined as follows:

x
⊕

y = h−1 (h (x) + h
(
y
))

, (1)

and the h-scalar multiplication of x ∈ Rn and α ∈ R is defined as follows:

α
⊗

x = h−1 (αh (x)) . (2)

2) Let φ be a real-valued continuous function defined on R and possessing the inverse function φ−1.
Then the φ-scalar addition of two numbers α and β is defined as follows:

α [+] β = φ−1 (φ (α) + φ
(
β
))

, (3)
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and the φ-scalar multiplication is defined as follows:

β [·]α = φ−1 (βφ (α)
)

. (4)

3) The
(
h, φ
)
-inner product of x ∈ Rn and y ∈ Rn is defined by(

xT y
)
(h,φ) = φ

−1
(
h (x)T h

(
y
))
. (5)

Denote

m⊕
i=1

xi = x1
⊕

x2
⊕
...
⊕

xm, xi
∈ Rn, i = 1, ...,m, (6)

 m∑
i=1

αi = α1 [+]α2 [+] ... [+]αm, αi ∈ R, i = 1, ...,m, (7)

α [−] β = α [+]
(
(−1) [·] β

)
, α, β ∈ R. (8)

Remark 2.1. Note that, for the generalized algebraic operations given above, the following properties are true:

a) It is worth noting β [·]α may not be equal to α [·] β for any α, β ∈ R.
b) 1
⊗

x = x for any x ∈ Rn and 1 [·]α = α for any α ∈ R.
c) φ

(
α [·] β

)
= αφ

(
β
)

for any α, β ∈ R.

d) h
(
α
⊗

x
)
= αh (x) for any α ∈ R and x ∈ Rn.

e) α [−] β = φ−1 (φ (α) − φ
(
β
))

for any α, β ∈ R.

In [21], Yuan et al. gave the definition of the
(
h, φ
)
-generalized directional derivative of a Lipschitz

function and the definition of its
(
h, φ
)
-generalized gradient of f at x. Now, we re-call these definitions for

a common reader.
Let h be an n-dimensional vector-valued continuous function defined on Rn and φ be such a real-valued

continuous function defined on R that it has the inverse function φ−1.

Definition 2.2. [21] The
(
h, φ
)
-generalized Clarke directional derivative of a Lipschitz function f : Rn

→ R with
respect to the direction d is defined as follows:

f ∗ (x; d) = lim
y→x

t↓0

1
t

[·]
(

f
(
y
⊕

t
⊗

d
)

[−] f
(
y
))
.

Definition 2.3. [21] The
(
h, φ
)
-generalized gradient (in the sense of Clarke) of a Lipschitz function f : Rn

→ R at x
is defined as follows:

∂∗ f (x) =
{
ξ∗ ∈ Rn : f ∗ (x; d) ≧

(
ξ∗Td
)
(h,φ) , ∀d ∈ Rn

}
.

Let f be a vector-valued function defined on Rn, where each its component is a Lipschitz function. Then
f will be said

(
h, φ
)
-nondifferentiable on Rn if each component has the

(
h, φ
)
-generalized gradient at each

point of Rn.
The following results will be needed in the sequel (see [5], [20]):

Lemma 2.4. Assume that f is a real-valued function defined on Rn and
(
h, φ
)
-nondifferentiable at x ∈ Rn. Then, the

following statements hold:
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a) Let xi
∈ Rn, λi ∈ R, i = 1, ...,m. Then

m⊕
i=1

(
λi

⊗
xi
)
= h−1

 m∑
i=1

λih
(
xi
) ,

m⊕
i=1

xi = h−1

 m∑
i=1

h
(
xi
) .

b) Let µi, αi ∈ R, i = 1, ...,m. Then m∑
i=1

 (µi [·]αi
)
= φ−1

 m∑
i=1

µiφ (αi)

 , m∑
i=1

αi = φ
−1

 m∑
i=1

φ (αi)

 .

Lemma 2.5. For α ∈ R, α [·] f is
(
h, φ
)
-nondifferentiable at x ∈ Rn and ∂∗

(
α [·] f (x)

)
= α
⊗
∂∗ f (x).

The following properties of generalized algebraic operations were established by Ben-Tal [5].

Lemma 2.6. [5]The following statements hold:

a) α [·]
(
β [·]γ

)
= β [·]

(
α [·]γ

)
=
(
αβ
)

[·]γ for α, β, γ ∈ R.
b) β [·]

[∑m
i=1

]
(αi) =

[∑m
i=1

] (
β [·]αi

)
, β, αi ∈ R, i = 1, ...,m.

c) γ [·]
(
α [−] β

)
=
(
γ [·]α

)
[−]
(
γ [·] β

)
for α, β, γ ∈ R.

d)
[∑m

i=1

] (
αi [+] βi

)
=
[∑m

i=1

]
(αi) [+]

[∑m
i=1

] (
βi
)
,[∑m

i=1

] (
αi [−] βi

)
=
[∑m

i=1

]
(αi) [−]

[∑m
i=1

] (
βi
)
, αi, βi ∈ R, i = 1, ...,m.

Lemma 2.7. [5] Assume that the function φ appears in generalized algebraic operations is strictly monotone with
φ (0) = 0. Then, the following statements hold:

a) Let α, β, γ ∈ R, γ ≧ 0. If α ≦ β, then γ [·]α ≦ γ [·] β.
b) Let α, β, γ ∈ R, γ ≧ 0. If α < β, then γ [·]α < γ [·] β.
c) Let α, β, γ ∈ R, γ > 0. If α < β, then γ [·]α < γ [·] β.
d) Let α, β, γ ∈ R, γ < 0. If α ≧ β, then γ [·]α ≦ γ [·] β.
e) Let αi, βi ∈ R, i = 1, ...,m. If αi ≦ βi, i = 1, ...,m, then

[∑m
i=1

]
αi ≦

[∑m
i=1

]
βi.

If αi ≦ βi, i = 1, ...,m and there exists at least one i∗ ∈ {1, ...,m} such that αi∗ < βi∗ , then
[∑m

i=1

]
αi <

[∑m
i=1

]
βi.

Lemma 2.8. [5] Assume that the function φ appears in generalized algebraic operations is a continuous one-to-one
strictly monotone and onto function with φ (0) = 0. Then, the following statements hold:

a) α < β⇐⇒ α [−] β < 0, α, β ∈ R,
b) α ≦ β⇐⇒ α [−] β ≦ 0, α, β ∈ R,
c) α [+] β < 0 =⇒ α < (−1) [·] β, α, β ∈ R,
d) α [+] β ≦ 0 =⇒ α ≦ (−1) [·] β, α, β ∈ R.

Definition 2.9. Let X be a nonempty subset of Rn. A functional F : X×X×Rn
→ R is called

(
h, φ
)
-sublinear if, for

any x, z ∈ X,

F
(
x, z; a1

⊕
a2

)
≦ F (x, z; a1) [+] F (x, z; a2) , ∀a1, a2 ∈ Rn, (9)

F
(
x, z;α

⊗
a
)
≦ α [·] F (x, z; a) , ∀a ∈ Rn, α ≧ 0. (10)
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Lemma 2.10. Let φ be such a continuous function with φ (0) = 0 that it has the inverse function φ−1. If F is a(
h, φ
)
-sublinear functional, then

F (x, z; 0) = 0, ∀x, z ∈ X. (11)

It can be proved, by Definition 2.9, that if F is a
(
h, φ
)
-sublinear functional, then

F

x, z;
m⊕

i=1

ai

 ≦ [ m∑
i=1

]
F (x, z; ai) , ∀ai ∈ Rn, i = 1, ...,m. (12)

Throughout of the rest of this paper, we further assume that h is a continuous one-to-one and onto
function with h (0) = 0, andφ is a continuous one-to-one strictly monotone and onto function withφ (0) = 0.
Under the above assumption, it is clear that 0 [·]α = α [·] 0 = 0 for any α ∈ R.

Now, we introduce the definitions of
(
h, φ
)
-
(
b,F, ρ

)
-convex functions and generalized

(
h, φ
)
-
(
b,F, ρ

)
-

convex functions in a
(
h, φ
)
-nondifferentiable vectorial case.

Let F : X×X×Rn
→ R be a

(
h, φ
)
-sublinear functional, ρ f =

(
ρ f1 , ...., ρ fm

)
∈ Rm, b = (b1, ..., bm) : X×X→ Rm,

where bi : X × X→ R+\{0}, i ∈ I = {1, ...,m}, and, moreover, d : X × X→ R.
Further, let f =

(
f1, ..., fm

)
: X→ Rm, where fi, i = 1, ...,m, is a Lipschitz function on a nonempty open set

X ⊂ Rn and x ∈ X be given.

Definition 2.11. f is said to be a
(
h, φ
)
-
(
b,F, ρ

)
-convex (strictly

(
h, φ
)
-
(
F, ρ
)
-convex) function at x on X if the

following inequalities

bi (x, x) [·]
(

fi (x) [−] fi (x)
)
≧ F
(
x, x; ξ∗i

)
[+]
(
ρ fi [·] d2 (x, x)

)
, ( > ) i ∈ I, (13)

hold for all x ∈ X, (x , x) and each ξ∗i ∈ ∂
∗ fi (x), i ∈ I. If (13) is satisfied for each x ∈ X, then f is an

(
h, φ
)
-
(
F, ρ
)
-convex

(strictly
(
h, φ
)
-
(
F, ρ
)
-convex) function on X.

Definition 2.12. f is said to be a
(
h, φ
)
-
(
b,F, ρ

)
-quasi-convex function at x on X if the following relation m∑

i=1

 bi (x, x) [·] fi (x) ≦

 m∑
i=1

 bi (x, x) [·] fi (x) =⇒

 m∑
i=1

 (F (x, x; ξ∗i
)

[+]
(
ρ fi [·] d2 (x, x)

))
≦ 0 (14)

holds for all x ∈ X and each ξ∗i ∈ ∂
∗ fi (x), i ∈ I. If (14) is satisfied for each x ∈ X, then f is a

(
h, φ
)
-
(
F, ρ
)
-quasi-convex

function on X.

Definition 2.13. f is said to be a
(
h, φ
)
-
(
b,F, ρ

)
-pseudo-convex function at x on X if the following relation m∑

i=1

 (bi (x, x) [·] fi (x)
)
<

 m∑
i=1

 (bi (x, x) [·] fi (x)
)
=⇒

 m∑
i=1

 (F (x, x; ξ∗i
)

[+]
(
ρ fi [·] d2 (x, x)

))
< 0 (15)

holds for all x ∈ X and each ξ∗i ∈ ∂
∗ fi (x), i ∈ I. If (15) is satisfied for each x ∈ X, then f is a

(
h, φ
)
-
(
F, ρ
)
-pseudo-convex

function on X.

Definition 2.14. f is said to be a strictly
(
h, φ
)
-
(
b,F, ρ

)
-pseudo-convex function at x on X if the following relation m∑

i=1

 (F (x, x; ξ∗i
)

[+]
(
ρ fi [·] d2 (x, x)

))
≧ 0 (16)

=⇒

 m∑
i=1

 (bi (x, x) [·] fi (x)
)
>

 m∑
i=1

 (bi (x, x) [·] fi (x)
)

holds for all x ∈ X. If (16) is satisfied for each x ∈ X, then f is a strictly
(
h, φ
)
-
(
b,F, ρ

)
-pseudo-convex function on X.
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3.
(
h, φ
)
-nondifferentiable multiobjective programming problem and optimality

In the paper, consider the following
(
h, φ
)
-nondifferentiable multiobjective programming problem:

V- min f (x) =
(

f1 (x) , ..., fm (x)
)

subject to 1 j (x) ≦ 0, j ∈ J =
{
1, ..., p

}
,

x ∈ X
(VP)(h,φ)

where f =
(

f1, ..., fm
)

: X → Rm, 1 =
(
11, ..., 1p

)
: X → Rp, are

(
h, φ
)
-nondifferentiable on a nonempty open

set X ⊂ Rn, where fi, i ∈ I, 1 j, j ∈ J, are locally Lipschitz functions on X.
The vector optimization problem in which each functions involved is

(
h, φ
)
-nondifferentiable is called a(

h, φ
)
-nondifferentiable multiobjective programming problem.

Let D denote the set of all feasible solutions in the vector optimization problem (VP)(h,φ), that is,

D =
{
x ∈ X : 1 j (x) ≦ 0, j ∈ J

}
.

Further, for a feasible solution x ∈ D, J (x) =
{
j ∈ J : 1 j (x) = 0

}
and 1J(x) is the set of the inequality constraints

that are active at a feasible solution x ∈ D, that is, 1J(x) =
{
1 j : j ∈ J (x)

}
.

For the considered
(
h, φ
)
-nondifferentiable multiobjective programming problem (VP)(h,φ), we give the

definition of its optimal solutions in the sense of Pareto.

Definition 3.1. A point x ∈ D is said to be a weak Pareto solution or a weak minimum in the vector optimization
problem (VP)(h,φ) if f (x) ≮ f (x) for all x ∈ D.

Definition 3.2. A point x ∈ D is said to be a Pareto solution in the vector optimization problem (VP)(h,φ) if
f (x) ≰ f (x) for all x ∈ D.

Now, we establish the sufficient optimality conditions for the considered
(
h, φ
)
-nondifferentiable multi-

objective programming problem (VP)(h,φ).

Theorem 3.3. Let x ∈ D. Assume that there exist λ ∈ Rm, λ ≥ 0, µ ∈ Rp, µ ≧ 0 such that the following relations

0 ∈

 m⊕
i=1

(
λi

⊗
∂∗ fi (x)

)⊕
 p⊕

j=1

(
µ j

⊗
∂∗1 j (x)

) , (17)

µ j [·] 1 j (x) = 0, j ∈ J (18)

are fulfilled at x. Further, assume that f is a
(
h, φ
)
-
(
b f ,F, ρ f

)
-convex function at x on D and 1J(x) is a

(
h, φ
)
-
(
b1,F, ρ1

)
-

convex function at x on D, where the following inequality
 m∑

i=1

 ((λiρ fi

)
[·] d2 (x, x)

) [+]


∑

j∈J(x)

 ((µ jρ1 j

)
[·] d2 (x, x)

) ≧ 0

holds for all x ∈ D. Then x is a weak Pareto solution in the considered
(
h, φ
)
-nondifferentiable multiobjective

programming problem (VP)(h,φ).

Proof. By assumption, f is a
(
h, φ
)
-
(
F, ρ f

)
-convex function at x on D. Hence, by Definition 2.11, the following

inequalities

bi (x, x) [·]
(

fi (x) [−] fi (x)
)
≧ F
(
x, x; ξ∗i

)
[+]
(
ρ fi [·] d2 (x, x)

)
, i ∈ I (19)
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hold for all x ∈ D and for each ξ∗i ∈ ∂
∗ fi (x), i ∈ I. We proceed by contradiction. Suppose, contrary

to the result, that is not a weak Pareto solution in the considered
(
h, φ
)
-nondifferentiable multiobjective

programming problem. Then, by Definition 3.1, there exists x̃ ∈ D such that

f
(
x̃
)
< f (x) . (20)

As it follows from Definition 2.11, bi
(
x̃, x
)
> 0, i ∈ I. Hence, by Lemma 2.7 a) and b), (20) gives, respectively,

bi
(
x̃, x
)

[·] fi
(
x̃
)
≦ bi
(
x̃, x
)

[·] fi (x) , i ∈ I,

bi∗
(
x̃, x
)

[·] fi∗
(
x̃
)
< bi∗

(
x̃, x
)

[·] fi∗ (x) for at least one i∗ ∈ I. (21)

By Lemma 2.6 c) and Lemma 2.8 a) and b), the inequalities above yield, respectively,

bi
(
x̃, x
)

[·]
(

fi
(
x̃
)

[−] fi (x)
)
≦ 0, i ∈ I, (22)

bi∗
(
x̃, x
)

[·]
(

fi∗
(
x̃
)

[−] fi∗ (x)
)
< 0 for at least one i∗ ∈ I. (23)

Since λ ≥ 0, by Lemma 2.8 a) and b), (22) and (23) imply, respectively,

λi [·]
(
bi
(
x̃, x
)

[·]
(

fi
(
x̃
)

[−] fi (x)
))
≦ 0, i ∈ I, (24)

λi∗ [·]
(
bi∗
(
x̃, x
)

[·]
(

fi∗
(
x̃
)

[−] fi∗ (x)
))
< 0 for at least one i∗ ∈ I. (25)

Since x̃ ∈ D, (19) gives

bi
(
x̃, x
)

[·]
(

fi
(
x̃
)

[−] fi (x)
)
≧ F
(
x̃, x; ξ∗i

)
[+]
(
ρ fi [·] d2 (x̃, x)) , i ∈ I. (26)

Using again λ ≥ 0, by 2.6 a) and Lemma 2.8 a) and b), it follows that

λi [·]
(
bi
(
x̃, x
)

[·]
(

fi
(
x̃
)

[−] fi (x)
))
≧ λi [·] F

(
x̃, x; ξ∗i

)
[+]
((
λiρ fi

)
[·] d2 (x̃, x)) , i ∈ I. (27)

Combining (20), (21) and (23), we have, respectively,(
λi [·] F

(
x̃, x; ξ∗i

))
[+]
((
λiρ fi

)
[·] d2 (x̃, x)) ≦ 0, i ∈ I, (28)(

λi∗ [·] F
(
x̃, x; ξ∗i

))
[+]
((
λi∗ρ fi∗

)
[·] d2 (x̃, x)) < 0 for at least one i∗ ∈ I. (29)

Since F is a
(
h, φ
)
-sublinear functional, by Definition 2.9 and Lemma 2.6 a), (28) and (29) yield, respectively,

F
(
x̃, x;λi

⊗
ξ∗i
)

[+]
((
λiρ fi

)
[·] d2 (x̃, x)) ≦ 0, i ∈ I, (30)

F
(
x̃, x;λi∗

⊗
ξ∗i
)

[+]
((
λi∗ρ fi∗

)
[·] d2 (x̃, x)) < 0 for at least one i∗ ∈ I. (31)

Hence, by Lemma 2.3 e), (30) and (31) yield m∑
i=1

F (x̃, x;λi

⊗
ξ∗i
)

[+]

 m∑
i=1

 ((λiρ fi

)
[·] d2 (x̃, x)) < 0. (32)

Thus, by (10) and Definition 2.9, (32) implies

F

x̃, x;
m⊕

i=1

(
λi

⊗
ξ∗i
) [+]

 m∑
i=1

 ((λiρ fi

)
[·] d2 (x̃, x)) < 0. (33)
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By assumption, 1J(x) is a
(
h, φ
)
-
(
b1,F, ρ1

)
-convex function at x on D. Hence, by Definition 2.11, the following

inequalities

b1 j (x, x) [·]
(
1 j (x) [−] 1 j (x)

)
≧ F
(
x, x; ζ∗j

)
[+]
(
ρ1 j [·] d2 (x, x)

)
, j ∈ J (x)

hold for all x ∈ D and for each ζ∗j ∈ ∂
∗1 j (x), j ∈ J (x). Therefore, they are also satisfied for x = x̃ ∈ D. Thus,

b1 j

(
x̃, x
)

[·]
(
1 j
(
x̃
)

[−] 1 j (x)
)
≧ F
(
x̃, x; ζ∗j

)
[+]
(
ρ1 j [·] d2 (x̃, x)) , j ∈ J (x) . (34)

Since µ j ≧ 0, j ∈ J, by Lemma 2.6 a) and c), (34) gives

b1 j

(
x̃, x
)

[·]
((
µ j [·] 1 j

(
x̃
))

[−]
(
µ j [·] 1 j (x)

))
≧ µ j [·] F

(
x̃, x; ζ∗j

)
[+]
((
µ jρ1 j

)
[·] d2 (x̃, x)) , j ∈ J (x) . (35)

Using again µ j ≧ 0, j ∈ J, together with x̃ ∈ D, by Lemma 2.7 a), we obtain

µ j [·] 1 j
(
x̃
)
≦ 0, j ∈ J. (36)

Combining (36) and (18), by Lemma 2.7 a) and Lemma 2.8 b), we obtain

b1 j

(
x̃, x
)

[·]
(
µ j [·] 1 j

(
x̃
))

[−]
(
µ j [·] 1 j (x)

)
≦ 0, j ∈ J. (37)

By (35) and (37), it follows that(
µ j [·] F

(
x̃, x; ζ∗j

))
[+]
((
µ jρ1 j

)
[·] d2 (x̃, x)) ≦ 0, j ∈ J (x) .

Since F is a
(
h, φ
)
-sublinear functional, by Definition 2.9 and Lemma 2.6 a), we have

F
(
x̃, x;µ j

⊗
ζ∗j
)

[+]
((
µ jρ1 j

)
[·] d2 (x̃, x)) ≦ 0, j ∈ J (x) . (38)

Hence, by Lemma 2.7 e), inequalities (38) imply∑
j∈J(x)

F (x̃, x;µ j

⊗
ζ∗j
)

[+]

∑
j∈J(x)

 ((µ jρ1 j

)
[·] d2 (x̃, x)) ≦ 0.

Taking into account µ j = 0, j < J (x), we have m∑
j=1

F (x̃, x;µ j

⊗
ζ∗j
)

[+]

 m∑
j=1

 ((µ jρ1 j

)
[·] d2 (x̃, x)) ≦ 0. (39)

Thus, by (10) and Definition 2.9, (39) gives

F

x̃, x;
m⊕

j=1

µ j

⊗
ζ∗j

 [+]

 m∑
j=1

 ((µ jρ1 j

)
[·] d2 (x̃, x)) ≦ 0. (40)

Combining (33) and (40), we obtain

F

x̃, x;
m⊕

i=1

(
λi

⊗
ξ∗i
) [+]

 m∑
i=1

 ((λiρ fi

)
[·] d2 (x̃, x)) [+] (41)
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F

x̃, x;
⊕
j∈J(x)

µ j

⊗
ζ∗j

 [+]

∑
j∈J(x)

 ((µ jρ1 j

)
[·] d2 (x̃, x)) < 0.

By Definition 2.9 and Lemma 2.7 e), (41) gives that the following inequality

F

x̃, x;

 m⊕
i=1

(
λi

⊗
ξ∗i
)⊕

 p⊕
j=1

(
µ j

⊗
ζ∗j (x)

)
 [+]

 m∑
i=1

 ((λiρ fi

)
[·] d2 (x̃, x)) [+]

∑
j∈J(x)

 ((µ jρ1 j

)
[·] d2 (x̃, x)) < 0

holds for each ξ∗i ∈ ∂
∗ fi (x), i ∈ I, and for each ζ∗j ∈ ∂

∗1 j (x), j ∈ J (x). Hence, (17) implies

F
(
x̃, x; 0

)
[+]

 m∑
i=1

 ((λiρ fi

)
[·] d2 (x̃, x)) [+]

∑
j∈J(x)

 ((µ jρ1 j

)
[·] d2 (x̃, x)) < 0.

By (9), it follows that m∑
i=1

 ((λiρ fi

)
[·] d2 (x̃, x)) [+]

∑
j∈J(x)

 ((µ jρ1 j

)
[·] d2 (x̃, x)) < 0. (42)

By assumption, the following inequality m∑
i=1

 ((λiρ fi

)
[·] d2 (x̃, x)) [+]

∑
j∈J(x)

 ((µ jρ1 j

)
[·] d2 (x̃, x)) ≧ 0

holds, contradicting (42). Thus, the proof of this theorem is completed.

In order to prove that a feasible solution x is a Pareto solution in the considered
(
h, φ
)
-nondifferentiable

multiobjective programming problem (VP)(h,φ), the stronger assumption of
(
h, φ
)
-
(
F, ρ f

)
-convexity should

be imposed on the objective function.

Theorem 3.4. Let x ∈ D. Assume that there exist λ ∈ Rm, λ ≥ 0, µ ∈ Rp, µ ≧ 0 such that the relations (17) and
(18) are fulfilled at x. Further, assume that f is a strictly

(
h, φ
)
-
(
b f ,F, ρ f

)
-convex function at x on D and 1J(x) is a(

h, φ
)
-
(
b1,F, ρ1

)
-convex function at x on D, where the following inequality

 m∑
i=1

 ((λiρ fi

)
[·] d2 (x, x)

) [+]


∑

j∈J(x)

 ((µ jρ1 j

)
[·] d2 (x, x)

) ≧ 0

holds for all x ∈ D. Then x is a Pareto solution in the considered
(
h, φ
)
-nondifferentiable multiobjective programming

problem (VP)(h,φ).

Proof. Proof of this theorem is similar to the proof of Theorem 3.3 and, therefore, it has been omitted in the
paper.
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Now, we prove the sufficient optimality conditions for x ∈ D to be a Pareto solution in the consid-
ered

(
h, φ
)
-nondifferentiable multiobjective programming problem (VP)(h,φ) under generalized

(
h, φ
)
-
(
F, ρ
)
-

convexity hypotheses.

Theorem 3.5. Let x ∈ D. Assume that there exist λ ∈ Rm, λ ≥ 0, µ ∈ Rp, µ ≧ 0 such that the relations (17) and (18)
are fulfilled at x. Further, assume that

(
λ1 [·] f1, ..., λm [·] fm

)
is a strictly

(
h, φ
)
-
(
b f ,F, ρ f

)
-pseudo-convex function at

x on D and
(
µ1 [·] 11, ..., µp [·] 1p

)
is an

(
h, φ
)
-
(
b1,F, ρ1

)
-quasi-convex function at x on D, where the inequality

 m∑
i=1

 (ρ fi [·] d2 (x, x)
) [+]


 p∑

j=1

 (ρ1 j [·] d2 (x, x)
) ≧ 0 (43)

holds for all x ∈ D. Then x is a Pareto solution in the considered
(
h, φ
)
-nondifferentiable multiobjective programming

problem (VP)(h,φ).

Proof. Since F is an
(
h, φ
)
-sublinear functional, by Lemma 2.10, (11) gives that the relation

F (x, x; 0) = 0. (44)

holds for all x ∈ D. By assumption, there exist λ ∈ Rm, λ ≥ 0, µ ∈ Rp, µ ≧ 0 such that (17) is satisfied. This
means, by Definition 2.3, that there exist ξ∗i ∈ ∂

∗ fi (x), i ∈ I, and ζ∗j ∈ ∂
∗1 j (x), j ∈ J (x), such that m⊕

i=1

(
λi

⊗
ξ∗i
)⊕

 p⊕
j=1

(
µ j

⊗
ζ∗j
) = 0. (45)

Combining (44) and (45), for each x ∈ D, we get

F

x, x;

 m⊕
i=1

(
λi

⊗
ξ∗i
)⊕

 p⊕
j=1

(
µ j

⊗
ζ∗j
)
 = 0. (46)

Since F is a
(
h, φ
)
-sublinear functional, by (9), inequality (46) gives

F

x, x;

 m⊕
i=1

(
λi

⊗
ξ∗i
)
 [+] F

x, x;

 p⊕
j=1

(
µ j

⊗
ζ∗j
)
 ≧ 0.

By (12), it follows that m∑
i=1

F (x, x;λi

⊗
ξ∗i
)

[+]

 p∑
j=1

F (x, x;µ j

⊗
ζ∗j
)
≧ 0. (47)

By assumption, (43) holds for all x ∈ D. Hence, combining (43) and (47), by Lemma 2.8, we obtain m∑
i=1

F (x, x;λi

⊗
ξ∗i
)

[+]

 p∑
j=1

F (x, x;µ j

⊗
ζ∗j
)

[+] (48)

 m∑
i=1

 ((λiρ fi

)
[·] d2 (x, x)

)
[+]

∑
j∈J(x)

 ((µ jρ1 j

)
[·] d2 (x, x)

)
≧ 0
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By assumption, (18) is fulfilled at x. Using µ ≧ 0, together with Lemma 2.7 a), by Lemma 2.8 b), it follows
that (

µ j [·] 1 j (x)
)

[−]
(
µ j [·] 1 j (x)

)
≦ 0, j ∈ J. (49)

As it follows from Definition 2.12, b1 j (x, x) > 0, j ∈ J, for all x ∈ D. Hence, by Lemma 2.6 a) and Lemma 2.7,
(49) gives

b1 j (x, x) [·]
[(
µ j [·] 1 j (x)

)
[−]
(
µ j [·] 1 j (x)

)]
≦ 0, j ∈ J. (50)

Hence, by Lemma 2.7 e), it follows that m∑
i=1

 b1 j (x, x) [·]
[(
µ j [·] 1 j (x)

)
[−]
(
µ j [·] 1 j (x)

)]
≦ 0. (51)

Thus, by Lemma 2.6 d) and Lemma 2.8 b), we get m∑
i=1

 b1 j (x, x) [·]
(
µ j [·] 1 j (x)

)
≦

 m∑
i=1

 b1 j (x, x) [·]
(
µ j [·] 1 j (x)

)
. (52)

By assumption,
(
µ1 [·] 11, ..., µp [·] 1p

)
is a
(
h, φ
)
-
(
F, ρ1
)
-quasi-convex function at x on D. Hence, by Definition

2.12, (52) implies m∑
i=1

F (x̃, x;µ j [·] ζ∗j
)

[+]
((
µ jρ1 j

)
[·] d2 (x̃, x)) ≦ 0. (53)

Hence, by Lemma 2.6 d), we have m∑
i=1

F (x̃, x;µ j [·] ζ∗j
)

[+]

 m∑
i=1

 ((µ jρ1 j

)
[·] d2 (x̃, x)) ≦ 0. (54)

Combining (48) and (54), by Lemma 2.8, we have that the inequality m∑
i=1

F (x, x;λi

⊗
ξ∗i
)

[+]

 m∑
i=1

 ((λiρ fi

)
[·] d2 (x, x)

)
≧ 0 (55)

holds. By assumption, f is a strictly
(
h, φ
)
-
(
b f ,F, ρ f

)
-pseudo-convex function at x on D. Hence, by Definition

2.14, (55) implies that the inequality m∑
i=1

 (b fi (x, x) [·]
(
λi [·] fi (x)

))
>

 m∑
i=1

 (b fi (x, x) [·]
(
λi [·] fi (x)

))
holds. Hence, by Lemma 2.6, it follows that, for all x ∈ D, m∑

i=1

 (b fi (x, x) [·]
((
λi [·] fi (x)

)
[−]
(
λi [·] fi (x)

)))
> 0. (56)

Since b fi (x, x) > 0, i ∈ I, and for all x ∈ D, by Lemma 2.7, we have that, for each x ∈ D, there exists at least
one i ∈ I such that(

λi [·] fi (x)
)

[−]
(
λi [·] fi (x)

)
> 0.
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Thus, by Lemma 2.7 c) and Lemma 2.8 a), it follows that, for each x ∈ D, there exists at least one i ∈ I such
that

fi (x) > fi (x) .

Hence, by Definition 3.1, x is a Pareto solution in the considered
(
h, φ
)
-nondifferentiable multiobjective

programming problem (VP)(h,φ).

In order to prove that a feasible solution x is a weak Pareto solution in the considered nondifferentiable(
h, φ
)
-multiobjective programming problem (VP)(h,φ), the weaker assumption of generalized

(
h, φ
)
-
(
F, ρ f

)
-

convexity should be imposed on the objective function.

Theorem 3.6. Let x ∈ D. Assume that there exist λ ∈ Rm, λ ≥ 0, µ ∈ Rp, µ ≧ 0 such that the following relations (17)
and (18) are fulfilled at x. Further, assume that

(
λ1 [·] f1, ..., λm [·] fm

)
is a
(
h, φ
)
-
(
b f ,F, ρ f

)
-pseudo-convex function

at x on D and
(
µ1 [·] 11, ..., µp [·] 1p

)
is a
(
h, φ
)
-
(
b1,F, ρ1

)
-quasi-convex function at x on D, where the inequality m∑

i=1

 ((λiρ fi

)
[·] d2 (x, x)

)
[+]

∑
j∈J(x)

 ((µ jρ1 j

)
[·] d2 (x, x)

)
≧ 0

holds for all x ∈ D. Then x is a weak Pareto solution in the considered
(
h, φ
)
-nondifferentiable multiobjective

programming problem (VP)(h,φ).

4. Mond-Weir duality

In this section, for the considered
(
h, φ
)
-nondifferentiable multiobjective programming problem (VP)(h,φ),

we define the vector dual problem in the sense of Mond-Weir. Further, under
(
h, φ
)
-
(
b,F, ρ

)
-convexity and/or

generalized
(
h, φ
)
-
(
F, ρ
)
-convexity hypotheses, we prove duality results between the primal multiobjective

programming problem (VP)(h,φ) and its vector dual problem in the sense of Mond-Weir.
We define for problem (VP)(h,φ) its

(
h, φ
)
-nondifferentiable vector dual problem in the sense of Mond-

Weir as follows:

f
(
y
)
=
(

f1
(
y
)
, ..., fm

(
y
))
→ max

0 ∈

 m⊕
i=1

(
λi

⊗
∂∗ fi
(
y
))⊕

 p⊕
j=1

(
µ j

⊗
∂∗1 j
(
y
)) , (57)

µ j [·] 1 j
(
y
)
≧ 0, j ∈ J, (VD)(h,φ) (58)

y ∈ X, λ ≥ 0, µ ≧ 0. (59)

We denote by Ω the set of all feasible solutions in problem (VD)(h,φ), that is, Ω =
{(

y, λ, µ
)

:
(
y, λ, µ

)
verifying the constraints (57), (58) and (59) }. By Y, we denote the projection of Ω on X, that is, Y = prXΩ ={
y ∈ X : (y, λ, µ) ∈ Ω

}
. Further, for y ∈ Y, J

(
y
)
=
{
j ∈ J : 1 j

(
y
)
= 0
}
.

Theorem 4.1. (Weak duality). Let x and
(
y, λ, µ

)
be arbitrary solutions in problems (VP)(h,φ) and (VD)(h,φ),

respectively. Further, assume that any one of the following hypotheses is fulfilled:

a) f is an
(
h, φ
)
-
(
b f ,F, ρ f

)
-convex function at y on D ∪ Y and 1J(y) is an

(
h, φ
)
-
(
b1,F, ρ1

)
-convex function at y on

D ∪ Y, where
[∑m

i=1

] ((
λiρ fi

)
[·] d2 (x, y)) [+]

[∑
j∈J(y)

] ((
µ jρ1 j

)
[·] d2 (x, y)) ≧ 0,
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b)
(
λ1 [·] f1, ...., λm [·] fm

)
is an
(
h, φ
)
-
(
b f ,F, ρ f

)
-pseudo-convex function at y on D∪Y and

(
µ1 [·] 11, ..., µp [·] 1p

)
is an(

h, φ
)
-
(
b1,F, ρ1

)
-quasi-convex function at y on D∪Y, where

[∑m
i=1

] (
ρ fi [·] d2 (x, y)) [+]

[∑p
j=1

] (
ρ1 j [·] d2 (x, y)) ≧

0.

Then

f (x) ≮ f
(
y
)

.

Proof. We proceed by contradiction. Suppose, contrary to the result, that

f (x) < f
(
y
)

. (60)

Thus, by Lemma 2.8 a), the inequalities above yield

fi (x) [−] fi
(
y
)
< 0, i ∈ I. (61)

a) We now prove this theorem under hypothesis a).
Since f is an

(
h, φ
)
-
(
b f ,F, ρ f

)
-convex function at y on D∪Y, by Definition 2.11, the following inequalities

b fi
(
x, y
)

[·]
(

fi (x) [−] fi
(
y
))
≧ F
(
x, y; ξ∗i

)
[+]
(
ρ fi [·] d2 (x, y)) , i ∈ I

hold for each ξ∗i ∈ ∂
∗ fi
(
y
)
, i ∈ I. Using b fi

(
x, y
)
> 0, i ∈ I, by Lemma 2.6 a) and Lemma 2.7, the above

inequalities imply

b fi
(
x, y
)

[·]
(

fi (x) [−] fi
(
y
))
< 0, i ∈ I. (62)

Combining (61) and (62), we have

F
(
x, y; ξ∗i

)
[+]
(
ρ fi [·] d2 (x, y)) < 0, i ∈ I. (63)

From the feasibility of
(
y, λ, µ

)
in problem (VD)(h,φ), it follows that λ ≥ 0. Hence, (63) gives

λiF
(
x, y; ξ∗i

)
[+]
(
ρ fi [·] d2 (x, y)) ≦ 0, i ∈ I, (64)

λi0 [·] F
(
x, y; ξ∗i0

)
[+]
(
ρ fi0 [·] d2 (x, y)) < 0 for at least one i0 ∈ I. (65)

Since F is an
(
h, φ
)
-sublinear functional, by Definition 2.9 and Lemma 2.6 a), (64) and (65) yield, respectively,

F
(
x, y;λi

⊗
ξ∗i
)

[+]
((
λiρ fi

)
[·] d2 (x, y)) ≦ 0, i ∈ I, (66)

F
(
x, y;λi0

⊗
ξ∗i0

)
[+]
((
λi∗ρ fi∗

)
[·] d2 (x, y)) < 0 for at least one i∗ ∈ I. (67)

Thus, by Lemma 2.7 e), (66) and (67) imply m∑
i=1

F (x, y;λi

⊗
ξ∗i
)

[+]

 m∑
i=1

 ((λiρ fi

)
[·] d2 (x, y)) < 0. (68)

Thus, by (10) and Definition 2.9, (28) implies

F

x, y;
m⊕

i=1

(
λi

⊗
ξ∗i
) [+]

 m∑
i=1

 ((λiρ fi

)
[·] d2 (x, y)) < 0. (69)
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Since 1J(y) is an
(
h, φ
)
-
(
b1,F, ρ1

)
-convex function at y on D∪Y, by Definition 2.11, the following inequalities

b1 j

(
x, y
)

[·]
(
1 j (x) [−] 1 j

(
y
))
≧ F
(
x, y;∇∗1 j

(
y
))

[+]
(
ρ1 j [·] d2 (x, y)) , j ∈ J

(
y
)

(70)

hold for each ζ∗j ∈ ∂
∗1 j
(
y
)
, j ∈ J

(
y
)
. From the feasibility of

(
y, λ, µ

)
in problem (VD)(h,φ), it follows that

µ j ≧ 0, j ∈ J. Hence, by Lemma 2.6 a), (70) yields

b1 j

(
x, y
)

[·]
(
µ j [·] 1 j (x)

)
[−]
(
µ j [·] 1 j

(
y
))
≧ (71)(

µ j [·] F
(
x, y; ζ∗j

))
[+]
((
µ jρ1 j

)
[·] d2 (x, y)) , j ∈ J

(
y
)

.

Using x ∈ D and
(
y, λ, µ

)
∈ Ω together with b1 j

(
x, y
)
≧ 0, j ∈ J, by Lemma 2.8 b), it follows that

b1 j

(
x, y
)

[·]
(
µ j [·] 1 j (x)

)
[−]
(
µ j [·] 1 j

(
y
))
≦ 0, j ∈ J. (72)

Combining (71) and (72), we have(
µ j [·] F

(
x, y; ζ∗j

))
[+]
((
µ jρ1 j

)
[·] d2 (x, y)) ≦ 0, j ∈ J

(
y
)

. (73)

Since F is an
(
h, φ
)
-sublinear functional, by Definition 2.9 and Lemma 2.6 a), (73) yields

F
(
x, y;µ j

⊗
ζ∗j
)

[+]
((
µ jρ1 j

)
[·] d2 (x, y)) ≦ 0, j ∈ J

(
y
)

. (74)

Hence, by Lemma 2.7 e), (74) gives ∑
j∈J(y)

F (x, y;µ j

⊗
ζ∗j
)

[+]

 ∑
j∈J(y)

 ((µ jρ1 j

)
[·] d2 (x, y)) ≦ 0.

Taking into account µ j = 0, j < J
(
y
)
, we get p∑

j=1

F (x, y;µ j

⊗
ζ∗j
)

[+]

 ∑
j∈J(y)

 ((µ jρ1 j

)
[·] d2 (x, y)) ≦ 0.

Thus, by (10) and Definition 2.9, the above inequality implies

F

x, y;
p⊕

j=1

µ j

⊗
ζ∗j

 [+]

 ∑
j∈J(y)

 ((µ jρ1 j

)
[·] d2 (x, y)) ≦ 0. (75)

By (74) and (75), it follows that

F

x, y;
m⊕

i=1

(
λi

⊗
ξ∗i
) [+]

 ∑
j∈J(y)

 ((λiρ fi

)
[·] d2 (x, y)) [+] (76)

F

x, y;
⊕
j∈J(x)

µ j

⊗
∇
∗1 j
(
y
) [+]

 ∑
j∈J(y)

 ((µ jρ1 j

)
[·] d2 (x, y)) < 0.
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By Definition 2.9 and Lemma 2.7 e), (76) implies that the following inequality

F

x, y;

 m⊕
i=1

(
λi

⊗
ξ∗i
)⊕

 p⊕
j=1

(
µ j

⊗
ζ∗j
)
 [+]

 m∑
i=1

 ((λiρ fi

)
[·] d2 (x, y)) [+]

 ∑
j∈J(y)

 ((µ jρ1 j

)
[·] d2 (x, y)) < 0

holds for each ξ∗i ∈ ∂
∗ fi
(
y
)
, i ∈ I, and for each ζ∗j ∈ ∂

∗1 j
(
y
)
, j ∈ J

(
y
)
. Using the feasibility of

(
y, λ, µ

)
in

problem (VD)(h,φ) again, by the first constraint of (VD)(h,φ), we conclude that

F
(
x, y; 0

)
[+]

 m∑
i=1

 ((λiρ fi

)
[·] d2 (x, y)) [+]

 ∑
j∈J(y)

 ((µ jρ1 j

)
[·] d2 (x, y)) < 0.

By (9), it follows that m∑
i=1

 ((λiρ fi

)
[·] d2 (x, y)) [+]

 ∑
j∈J(y)

 ((µ jρ1 j

)
[·] d2 (x, y)) < 0. (77)

By assumption, we have that the following inequality m∑
i=1

 ((λiρ fi

)
[·] d2 (x, y)) [+]

 ∑
j∈J(y)

 ((µ jρ1 j

)
[·] d2 (x, y)) ≧ 0

holds, contradicting (77). Thus, the proof of this theorem under hypothesis a) is completed.
Now, we proof of this theorem under hypothesis b).
By hypothesis b),

(
λ1 [·] f1, ...., λm [·] fm

)
is a
(
h, φ
)
-
(
b f ,F, ρ f

)
-pseudo-convex function at y on D ∪ Y. As it

follows from Definition 2.13, b fi
(
x, y
)
> 0, i ∈ I. Hence, by Lemma 2.6 a) and Lemma 2.7, (61) gives

b fi
(
x, y
)

[·]
(

fi (x) [−] fi
(
y
))
< 0, i ∈ I. (78)

Since λ ≥ 0, by Lemma 2.6 c) and Lemma 2.7, the inequalities above imply, respectively,

b fi
(
x, y
)

[·]
(
λi [·] fi (x) [−]λi [·] fi

(
y
))
< 0, i ∈ I. (79)

b fi
(
x, y
)

[·]
(
λi [·] fi (x) [−]λi [·] fi

(
y
))
≦ 0 for at least one i ∈ I. (80)

Hence, by Lemma 2.7 e), (79) and (80) yield m∑
i=1

 (b fi
(
x, y
)

[·]
(
λi [·] fi (x) [−]λi [·] fi

(
y
)))
< 0.

Using Lemma 2.6 c), Lemma 2.7 e) and Lemma 2.8 a), we get m∑
i=1

 (b fi
(
x, y
)

[·]
(
λi [·] fi (x)

))
<

 p∑
i=1

 (b fi
(
x, y
)

[·]
(
λi [·] fi

(
y
)))

. (81)
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Since
(
λ1 [·] f1, ...., λm [·] fm

)
is an

(
h, φ
)
-
(
b f ,F, ρ f

)
-pseudo-convex function at y on D ∪ Y, by Definition 2.13,

(81) implies that the inequality m∑
i=1

 (F (x, y;λi

⊗
ξ∗i
)

[+]
(
ρ fi [·] d2 (x, y))) < 0

holds for each ξ∗i ∈ ∂
∗ fi
(
y
)
, i ∈ I. Then, by Lemma 2.6 d), we obtain m∑

i=1

F (x, y;λi

⊗
ξ∗i
)

[+]

 m∑
i=1

 (ρ fi [·] d2 (x, y)) < 0.

Since F is an
(
h, φ
)
-sublinear functional, by Definition 2.9, it follows that

F

x, y;
m⊕

i=1

(
λi

⊗
ξ∗i
) [+]

 m∑
i=1

 ((λiρ fi

)
[·] d2 (x, y)) < 0. (82)

Using x ∈ D and
(
y, λ, µ

)
∈ Ω, by Lemma 2.8, we obtain

µ j [·] 1 j (x) ≦ µ j [·] 1 j
(
y
)

, j ∈ J. (83)

By assumption, 1 is an
(
h, φ
)
-
(
b1,F, ρ1

)
-quasi-convex function at y on D ∪ Y. As it follows from Definition

2.12, b1 j

(
x, y
)
> 0, j ∈ J, for all x ∈ D and y ∈ Y. Hence, by Lemma 2.6 a) and Lemma 2.7, (83) gives

b1 j

(
x, y
)

[·]
(
µ j [·] 1 j (x)

)
≦ b1 j

(
x, y
)

[·]
(
µ j [·] 1 j

(
y
))
≦ 0, j ∈ J.

Thus, by Lemma 2.7 e), it follows that p∑
j=1

 (b1 j

(
x, y
)

[·]
(
µ j [·] 1 j (x)

))
≦

 p∑
j=1

 (b1 j

(
x, y
)

[·]
(
µ j [·] 1 j

(
y
)))

. (84)

By assumption, 1J(y) is an
(
h, φ
)
-
(
b1,F, ρ1

)
-quasi-convex function at y on D ∪ Y. Therefore, by Definition

2.12, (84) implies that the inequality p∑
j=1

 (F (x, y;µ j

⊗
ζ∗j
)

[+]
(
ρ1 j [·] d2 (x, y))) ≦ 0.

holds for each ζ∗j ∈ ∂
∗1 j
(
y
)
, j ∈ J. Then, using Lemma 2.6 d), we obtain p∑

j=1

F (x, y;µ j

⊗
ζ∗j
)

[+]

 p∑
j=1

 (ρ1 j [·] d2 (x, y)) ≦ 0. (85)

Since F is an
(
h, φ
)
-sublinear functional, by Definition 2.9 and Lemma 2.6 a), (85) implies

F

x, y;
m⊕

j=1

µ j

⊗
ζ∗j

 [+]

 p∑
j=1

 (ρ1 j [·] d2 (x, y)) ≦ 0. (86)

Combining (82) and (86), we get

F

x, y;
m⊕

i=1

(
λi

⊗
ξ∗i
) [+]

 m∑
i=1

 (ρ fi [·] d2 (x, y)) [+] F

x, y;
⊕
j∈J(y)

µ j

⊗
ζ∗j

 [+]

 p∑
j=1

 (ρ1 j [·] d2 (x, y)) < 0.

The rest of proof is the same as in the proof of this theorem under hypothesis a).
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If stronger
(
h, φ
)
-
(
F, ρ
)
-convexity and/ or generalized

(
h, φ
)
-
(
F, ρ
)
-convexity hypotheses are imposed on

the objective function, then a stronger result is true.

Theorem 4.2. (Weak duality). Let x and
(
y, λ, µ

)
be arbitrary solutions in problems (VP)(h,φ) and (VD)(h,φ),

respectively. Further, assume that any one of the following hypotheses is fulfilled:

a) f is a strictly
(
h, φ
)
-
(
b f ,F, ρ f

)
-convex function at y on D ∪ Y and 1J(y) is an

(
h, φ
)
-
(
b1,F, ρ1

)
-convex function at

y on D ∪ Y,

b) f is a strictly
(
h, φ
)
-
(
b f ,F, ρ f

)
-pseudo-convex function at y on D∪Y and 1J(y) is an

(
h, φ
)
-
(
b1,F, ρ1

)
-quasi-convex

function at y on D ∪ Y.

If the inequality m∑
i=1

 ((λiρ fi

)
[·] d2 (x, y)) [+]

 ∑
j∈J(y)

 ((µ jρ1 j

)
[·] d2 (x, y)) ≧ 0

holds, then

f (x) ≰ f
(
y
)

.

Theorem 4.3. (Direct duality). Assume that x is a weak Pareto solution (Pareto solution) in problem (VP)(h,φ) and

there exist λ ∈ Rm, λ ≥ 0, µ ∈ Rp, µ ≧ 0 such that (17) and (18) are fulfilled at x with these Lagrange multipliers.
Then

(
x, λ, µ

)
is feasible in problem (VD)(h,φ). If all hypotheses of Theorem 4.1 (Theorem 4.2) are satisfied, then(

x, λ, µ
)

is a weak efficient solution (efficient solution) of a maximum type in problem (VD)(h,φ) and optimal values
in both

(
h, φ
)
-nondifferentiable vector optimization problems are the same.

Proof. The feasibility of
(
x, λ, µ

)
in problem (VD)(h,φ) follows directly from conditions (17) and (18). The

efficiency (weak efficiency) of a maximum type of
(
x, λ, µ

)
in problem (VD)(h,φ) follows from weak duality

(Theorem 4.2 or 4.1, respectively).

Theorem 4.4. (Converse duality). Let
(
y, λ, µ

)
be efficient (weakly efficient) of a maximum type in Mond-Weir dual

problem (VD)(h,φ) with y ∈ D. Assume, furthermore, that any one of the following hypotheses is fulfilled:

a) f is a strictly
(
h, φ
)
-
(
b f ,F, ρ f

)
-convex (

(
h, φ
)
-
(
b f ,F, ρ f

)
-convex) function at y on D ∪ Y and 1J(y) is an

(
h, φ
)
-(

b1,F, ρ1
)
-convex function at y on D ∪ Y,

b) f is a strictly
(
h, φ
)
-
(
b f ,F, ρ f

)
-pseudo-convex (

(
h, φ
)
-
(
b f ,F, ρ f

)
-pseudo-convex) function at y on D∪Y and 1J(y)

is a
(
h, φ
)
-
(
b1,F, ρ1

)
-quasi-convex function at y on D ∪ Y.

If the inequality m∑
i=1

 ((λiρ fi

)
[·] d2 (x, y)) [+]

 ∑
j∈J(y)

 ((µ jρ1 j

)
[·] d2 (x, y)) ≧ 0

holds for all x ∈ D, then y is a Pareto (weak Pareto) solution in the considered
(
h, φ
)
-nondifferentiable multiobjective

programming problem (VP)(h,φ).

Proof. Follows directly from weak duality (Theorem 4.2 or 4.1, respectively).
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5. Conclusion

In the paper, a class of nonconvex
(
h, φ
)
-nondifferentiable multiobjective problems has been considered

in which every component of involved functions is a Lipschitz function. Generalized algebraic operations
introduced by Ben-Tal [5] have been used to define new classes of

(
h, φ
)
-nondifferentiable generalized

convex functions, namely
(
h, φ
)
-
(
b,F, ρ

)
-convex functions and generalized

(
h, φ
)
-
(
b,F, ρ

)
-functions. The in-

troduced concepts of
(
h, φ
)
-nondifferentiable generalized convexity turned out to be useful to development

optimality conditions for a feasible solution to be a (weak Pareto) Pareto solution and several duality re-
sults for the considered nonconvex

(
h, φ
)
-nondifferentiable multiobjective problem. Namely, the sufficient

optimality conditions and various duality results have been established for the considered nonconvex(
h, φ
)
-nondifferentiable multiobjective problem under assumptions that the functions constituting it are(

h, φ
)
-
(
F, ρ
)
-convex and/ or generalized

(
h, φ
)
-
(
b,F, ρ

)
-convex functions (not necessarily, with respect to the

same b and the same ρ). Thus, the sufficiency of Karush-Kuhn-Tucker necessary optimality conditions and
duality results in the sense of Mond-Weir have been proved for the larger class of

(
h, φ
)
-nondifferentiable

multiobjective programming problems than φ-nondifferentiable convex vector optimization problems and,
moreover, even than

(
φ, γ
)
-nondifferentiable convex ones.
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