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Abstract. The purpose of this paper is to introduce the weighted logarithmic mean of two accretive
matrices. Among the obtained results, we present some inequalities about this weighted mean when the
involved matrices are sectorial matrices. Our approach allowed us to derive a new matrix mean which is
connected to the Heinz matrix mean.

1. Introduction

Means arise in various contexts and contribute as good tools for solving many scientific problems. It has
been proved, throughout a lot of works, that the mean-theory is useful in theoretical point of view as well
as in practical purposes. Recently, the mean-theory attracts many mathematicians by its nice properties
and various applications.
•As usual, we understand by (binary) mean a map m between two positive numbers such that min(a, b) ≤

m(a, b) ≤ max(a, b) for any a, b > 0. Among the standard means, we recall the following:

a∇b =:
a + b

2
; a♯b =:

√

ab; a!b =:
2ab

a + b
, L(a, b) =:

b − a
log b − log a

, L(a, a) = a,

which are known as the arithmetic mean, the geometric mean, the harmonic mean and the logarithmic
mean, respectively. The following chain of inequalities is well-known in the literature

a!b ≤ a♯b ≤ L(a, b) ≤ a∇b. (1)

• Let mλ be a binary map indexed by λ ∈ [0, 1]. We say that mλ is a weighted mean if the following
assertions are satisfied:
(i) mλ is a mean, for any λ ∈ [0, 1],
(ii) m1/2 =: m is a symmetric mean,
(iii) mλ(a, b) = m1−λ(b, a) for any a, b > 0 and λ ∈ [0, 1].

It is obvious that, (iii) implies (ii). The mean m =: m1/2 is called the associated symmetric mean of mλ.
The standard weighted means are the following

a∇λb =: (1 − λ)a + λb; a♯λb =: a1−λbλ; a!λb =:
(
(1 − λ)a−1 + λb−1

)−1
,
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which are called the λ-weighted arithmetic mean, the λ-weighted geometric mean and the λ-weighted
harmonic mean, respectively. For λ = 1/2 they coincide with a∇b, a♯b and a!b, respectively. These weighted
means satisfy the following inequalities

a!λb ≤ a♯λb ≤ a∇λb. (2)

•Another weighted mean, introduced in [9], is the weighted logarithmic mean defined, for a, b > 0, a , b,
by

Lλ(a, b) =:
1

log a − log b

(1 − λ
λ

(
a − a1−λbλ

)
+
λ

1 − λ

(
a1−λbλ − b

))
, (3)

with Lλ(a, a) = a. It is not hard to check that L 1
2
(a, b) = L(a, b), L0(a, b) =: lim

λ↓0
Lλ(a, b) = a and L1(a, b) =:

lim
λ↑1

Lλ(a, b) = b. One can see that Lλ satisfies the conditions (i),(ii) and (iii). It has been shown in [9, Theorem

2.4, Theorem 3.1] that the following inequalities hold true

a♯λb ≤ Lλ(a, b) ≤ (a♯λb)∇(a∇λb) ≤ a∇λb. (4)

The present paper will be organized as follows: Section 2 is focused to recall some basic notions about
accretive matrices. In Section 3, we collect some weighted means of accretive matrices that have been
introduced in the literature. Section 4 deals with the definition and properties of the weighted logarithmic
mean of two accretive matrices. This weighted mean is an extension of (3) when the positive scalar numbers
a and b are, respectively, replaced by two accretive matrices A and B. At the end, we derive a new matrix
mean and we show that it can be connected to the so-called Heinz matrix mean.

2. Background material and basic notions

Let n ≥ 2 be an integer. Throughout this paper, the notation Mn refers to the space of n × n complex
matrices.
• Every A ∈Mn can be written in the following form

A =ℜA + iℑA, with ℜA =
A + A∗

2
and ℑA =

A − A∗

2i
, (5)

where the notation A∗ refers to the adjoint of A. The decomposition (5) is known, in the literature, as the
Cartesian decomposition of A and the matricesℜA and ℑA are called the real part and the imaginary part
of A, respectively. It is clear that A∗ =ℜA − iℑA for any A ∈Mn.
•As usual, if A ∈Mn is Hermitian, i.e. A∗ = A, we say that A is positive (in short A ≥ 0) if ⟨Ax, x⟩ ≥ 0 for

all x ∈ Cn and, A is strictly positive (in short A > 0) if A is positive and invertible. For A,B ∈Mn Hermitian,
we write A ≤ B or B ≥ A for meaning that B − A is positive. We say that A, defined by (5), is accretive if
its real partℜA is strictly positive. It is clear that if A and B are accretive then so is A + B but, in general,
AB may be not accretive. In particular, A accretive does not ensure that Ak is accretive, for k ≥ 2 integer.
However, it is well known that every accretive matrix A ∈Mn is invertible and A−1 is also accretive.
•We also need to define the sector Sθ on the complex plane by the formulae

Sθ =
{
z ∈ C : ℜz > 0, |ℑz| ≤ (ℜz) tanθ

}
,

for some θ ∈ [0, π/2).
Otherwise, the numerical range of A ∈Mn is defined as follows

W(A) =
{
x∗Ax : x ∈ Cn, x∗x = 1

}
.

We say that A is a sector matrix whenever W(A) ⊂ Sθ, for some θ ∈ [0, π/2). It is obvious that if A is a sector
matrix then A is accretive. For further details about the properties of accretive matrices and sector matrices,
we refer the reader to [3, 5, 6, 8, 10, 11] and the related references cited therein.
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3. Means of accretive matrices

As already pointed before, every accretive matrix A ∈Mn is invertible and A−1 is also accretive. Further,
it is easy to check that the set of all accretive matrices is a convex cone ofMn. Throughout this paper, except
contrary mention, A,B ∈Mn are accretive matrices and λ ∈ [0, 1].
• The following expressions

A∇λB =: (1 − λ)A + λB, A!λB =:
(
(1 − λ)A−1 + λB−1

)−1
=
(
A−1
∇λB−1

)−1
, (6)

are known, in the literature, as the λ-weighted arithmetic mean and the λ-weighted harmonic mean of A
and B, respectively. The λ-weighted geometric mean of A and B is defined by, see [10]

A♯λB =:
∫ 1

0
A!tB dν(t), (7)

where, for fixed λ ∈ [0, 1], νλ(t) is the probability measure on (0, 1) defined by

dνλ(t) =
sin(λπ)
π

tλ−1

(1 − t)λ
dt. (8)

For λ = 1/2, the previous matrix means are simply denoted by A∇B, A!B and A♯B, respectively. An explicit
form of A♯λB is given by, [1] (for λ = 1/2, see also [3])

A♯λB = A1/2
(
A−1/2BA−1/2

)λ
A1/2, (9)

where the power Xλ of a matrix X is defined by the Dunford integral representation in Functional Calculus,
as usual. The following inequalities

A!λB ≤ A♯λB ≤ A∇λB (10)

hold true whenever A and B are strictly positive. We have the following relationships

A∇λB = B∇1−λA, A!λB = B!1−λA, A♯λB = B♯1−λA.

It is clear that A∇λB,A!λB and A♯λB are accretive whenever A and B are. Further, it is obvious that
ℜ

(
A∇λB

)
=
(
ℜA
)
∇λ

(
ℜB
)
. Otherwise, we have [10]

ℜ

(
A!λB

)
≥

(
ℜA
)
!λ
(
ℜB
)
, ℜ
(
A♯λB

)
≥

(
ℜA
)
♯λ
(
ℜB
)
. (11)

• The logarithmic mean of two accretive matrices A and B is defined by, [11]

L(A,B) =:
∫ 1

0
A♯tB dt. (12)

Clearly, L(A,B) is also accretive and we have L(A,B) = L(B,A). Further, the following inequality holds [11]

ℜL(A,B) ≥ L
(
ℜA,ℜB

)
. (13)

We also have the following result, see [11] for instance,

A!B ≤ A♯B ≤ L(A,B) ≤ A∇B, (14)

whenever A,B ∈Mn are strictly positive. An analog of (14) for sector matrices was proved in [11, Theorem
3.5] and reads as follows:

(cosθ)2
ℜ(A!B) ≤ (cosθ)2

ℜ(A♯B) ≤ ℜL(A,B) ≤ (secθ)2
ℜ(A∇B), (15)
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provided that A,B ∈Mn are accretive with W(A),W(B) ⊂ Sθ for some θ ∈ [0, π/2).
Also, reverses of (11) and (13) can be found in [11, Lemma 3.3, Proposition 3.4] and are given in what

follows:

ℜ(AmB) ≤ (secθ)2(ℜA)m(ℜB), (16)

whenever A,B ∈ Mn are accretive with W(A),W(B) ⊂ Sθ for some θ ∈ [0, π/2). Here, m denotes one the
three matrix means !λ, ♯λ and L.
• Let m be one of the previous matrix means i.e. m ∈ {∇λ, !λ, ♯λ,L}. It is not hard to check that the

relationship

m(T∗AT,T∗BT) = T∗m(A,B)T (17)

holds whenever T ∈Mn is invertible. In particular, we have

m(A,B) = A1/2m
(
I,A−1/2BA−1/2

)
A1/2, (18)

where I refers the identity matrix ofMn. In the case where A,B ∈ Mn are strictly positive, we summarize
what previous by saying that the above means are monotone matrix means in the sense of Kubo-Ando [4].
• Finally, for A,B ∈Mn accretive and λ ∈ [0, 1], the Heinz matrix mean of A and B is defined by

HZλ(A,B) =:
(
A♯λB

)
∇

(
B♯λA

)
=:

A♯λB + B♯λA
2

. (19)

Some basic properties of HZλ(A,B) could be immediately deduced from those of A♯λB. In particular,
HZλ(A,B) is symmetric in A and B and HZλ(A,B) = HZ1−λ(A,B). For further properties of HZλ(A,B) we
can consult [2, 7] and the related references cited therein.

4. The weighted logarithmic mean of accretive matrices

As already pointed before, the aim of this section is to answer the following question:
Question: What should be the analog of (3) when the positive real numbers a and b are replaced by two accretive

matrices A and B, respectively?
By virtue of its complicated form, (3) does not allow us to deduce its matrix version. For this, we try to

find another equivalent form of (3) which is appropriate to be extended for matrix arguments. We have the
following result.

Proposition 4.1. For any a, b > 0 and λ ∈ [0, 1], (3) is equivalent to

Lλ(a, b) = (1 − λ)L(a, a♯λb) + λL(a♯λb, b). (20)

Proof. Using the explicit form of L(a, b) = a−b
log a−log b , a , b, and starting from the right expression in (20) we

get (3) after simple algebraic operations. The details are straightforward and therefore omitted here.

Using (20), we are in the position to state the following central definition which introduces our first
weighted matrix mean.

Definition 4.2. Let A,B ∈Mn be accretive and λ ∈ [0, 1]. The λ-weighted logarithmic mean of A and B is defined
by

Lλ(A,B) =: (1 − λ)L(A,A♯λB) + λL(A♯λB,B), (21)

where A♯λB is defined by (7) and L(A,B) is given by (12).

Some basic properties of Lλ(A,B) are embodied in what follows.



M. Raı̈ssouli / Filomat 36:12 (2022), 4185–4194 4189

Proposition 4.3. Let A,B ∈Mn be accretive and λ ∈ [0, 1]. Then the following assertions are met:
(i) Lλ(A,B) is accretive.
(ii) Lλ(A,B) = L1−λ(B,A).
(iii) For any T ∈Mn invertible, we have

Lλ(T∗AT,T∗BT) = T∗Lλ(A,B)T. (22)

(iv) If A and B are strictly positive then so is Lλ(A,B).

Proof. (i) It follows from (21), with the fact that L(A,B) and A♯λB are accretive whenever A and B are.
(ii) The relationship A♯λB = B♯1−λA when substituted in (21) immediately yields the desired result.
(iii) By (21), with (17) for m = ♯λ, we get (22).
(iv) If A and B are strictly positive then so are L(A,B) and A♯λB, and thus (21) implies that Lλ(A,B) is also
strictly positive.

In order to give more results, we need to state the following lemma which will be of great interest
throughout this section.

Lemma 4.4. For any A,B ∈Mn accretive and λ ∈ [0, 1], one has

L(A,A♯λB) =
∫ 1

0
A♯λtB dt, L(A♯λB,B) =

∫ 1

0
B♯(1−λ)tA dt, (23)

and hence,

Lλ(A,B) =
∫ 1

0

(
A♯λtB

)
∇λ

(
B♯(1−λ)tA

)
dt. (24)

Proof. By (12) we have

L(A,A♯λB) =
∫ 1

0
A♯t
(
A♯λB

)
dt.

According to (9) we get

A♯t
(
A♯λB

)
= A1/2

(
I♯tA−1/2

(
A♯λB

)
A−1/2

)
A1/2 = A1/2

(
I♯t
(
A−1/2BA−1/2

)λ)
A1/2, (25)

and by (9) again we obtain

A♯t
(
A♯λB

)
= A1/2

(
A−1/2BA−1/2

)λt
A1/2 = A♯λtB.

The second relation about L(A♯λB,B) can be obtained by the same way, or simply we use that of L(A,A♯λB)
with the relationship A♯λB = B♯1−λA.

The two previous relationships when substituted in (21) immediately imply (24).

We have the following result.

Proposition 4.5. Let A,B ∈Mn be strictly positive. Then we have

A♯λB ≤ (A♯λ/2B)♯λ
(
A♯ 1+λ

2
B
)
≤ Lλ(A,B) ≤ (A♯λB)∇(A∇λB) ≤ A∇λB. (26)

Proof. We first prove the two right inequalities in (26). By (21), with the right inequality in (14), we get

Lλ(A,B) ≤ (1 − λ)A∇(A♯λB) + λ(A♯λB)∇B.
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This, with the definition of ∇, implies that

Lλ(A,B) ≤ (A♯λB)∇(A∇λB),

which, with the right inequality in (10), yields

Lλ(A,B) ≤ (A♯λB)∇(A∇λB) ≤ (A∇λB)∇(A∇λB) = A∇λB.

We now show the two left inequalities in (26). By (21) again, with the left inequality in (14), we obtain

Lλ(A,B) ≥ (1 − λ)A♯(A♯λB) + λ(A♯λB)♯B.

As for proving (25), one can check that A♯(A♯λB) = A♯λ/2B and (A♯λB)♯B = A♯ 1+λ
2

B which, when substituted
in the last inequality, yields

Lλ(A,B) ≥ (1 − λ)A♯λ/2B + λA♯ 1+λ
2

B = (A♯λ/2B)∇λ
(
A♯ 1+λ

2
B
)
≥ (A♯λ/2B)♯λ

(
A♯ 1+λ

2
B
)
.

Again, as for (25), we show that the right expression of this latter equality is simply reduced to A♯λB, so
completing the proof.

Remark 4.6. (i) We can prove the right inequality in (26) via (24) by using (10), and we obtain

Lλ(A,B) ≤
∫ 1

0

(
A∇λtB

)
∇λ

(
B∇(1−λ)tA

)
dt,

which, by the linearity of ∇λ, gives after integration and then a simple algebraic manipulation

Lλ(A,B) ≤
(
A∇λ/2B

)
∇λ

(
B∇(1−λ)/2A

)
= A∇λB.

(ii) We can also show the inequalities (26) by another different way. In fact, the matrix means A♯λB,Lλ(A,B) and
A∇λB are monotone means in the sense of Kubo-Ando [4] i.e. satisfy a similar relationship as (18). By the techniques
of functional Calculus, the proof of (26) can be reduced to that of its scalar version which can be found in [9].

The following result may be stated as well.

Proposition 4.7. Let A,B ∈Mn be accretive and λ ∈ [0, 1]. Then

ℜLλ(A,B) ≥ Lλ
(
ℜA,ℜB

)
. (27)

Proof. By (24) we have

ℜLλ(A,B) =
∫ 1

0
ℜ

(
A♯λtB

)
∇λℜ

(
B♯(1−λ)tA

)
dt, (28)

which, with the help of the second inequality in (11), yields

ℜLλ(A,B) ≥
∫ 1

0

(
ℜA♯λtℜB

)
∇λ

(
ℜB♯(1−λ)tℜA

)
dt,

and whence (27) by (24) again.

Using Lemma 4.4 again and assuming that the matrices A and B are sectorial, a reverse of (27) is recited
in the following.
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Proposition 4.8. Let A,B ∈Mn be accretive with W(A),W(B) ⊂ Sθ for some θ ∈ [0, π/2). For any λ ∈ [0, 1] there
holds:

ℜLλ(A,B) ≤ (secθ)2Lλ
(
ℜA,ℜB

)
. (29)

Proof. According to (28), with the help of (16) for m = ♯λ, we get

ℜLλ(A,B) ≤ (secθ)2
∫ 1

0

(
ℜA♯λtℜB

)
∇λ

(
ℜB♯(1−λ)tℜA

)
dt

and by (24) again we obtain (29).

The following result gives an analog of (26), and even more, when the matrices A and B are assumed to
be sectorial.

Theorem 4.9. Let A,B ∈ Mn be accretive with W(A),W(B) ⊂ Sθ for some θ ∈ [0, π/2). Then, for any λ ∈ [0, 1],
we have

(cosθ)2
ℜ(A♯λB) ≤ ℜLλ(A,B) ≤ (secθ)2L

(
ℜA∇λℜB,ℜA♯λℜB

)
≤ (secθ)2

ℜ(A∇λB). (30)

Proof. By (27) and the left inequality in (26) we get

ℜLλ(A,B) ≥ Lλ(ℜA,ℜB) ≥ ℜA♯λℜB,

which, with (16) for m = ♯λ, implies the first inequality of (30). We now prove the second and third
inequalities of (30). By (21) with (23), and the relation L(A,B) = L(B,A), one can easily check that

ℜLλ(A,B) = (1 − λ)ℜL(A,A♯λB) + λℜL(B,A♯λB)

≤ (secθ)2
{
(1 − λ)L(ℜA,ℜA♯λℜB) + λL(ℜB,ℜA♯λℜB)

}
. (31)

It is well known that, for any λ ∈ (0, 1), the map X 7−→ Xλ is matrix concave for X > 0. By (9), also valid for
A,B > 0, and the standard techniques in Functional Calculus, we then deduce that the map X 7−→ X♯λB, for
fixed B > 0, is also matrix concave. This, with (12), immediately implies that X 7−→ L(X,B), for fixed B > 0,
is matrix concave. This latter information when applied to the last expression of (31) allows us to obtain

ℜLλ(A,B) ≤ (secθ)2L
(
(1 − λ)ℜA + λℜB,ℜA♯λℜB

)
,

or, equivalently,
ℜLλ(A,B) ≤ (secθ)2L

(
ℜA∇λℜB,ℜA♯λℜB

)
.

This, with the right inequality in (14) and then (10), implies that

ℜLλ(A,B) ≤ (secθ)2
(
ℜA∇λℜB

)
∇

(
ℜA♯λℜB

)
≤ (secθ)2

ℜ

(
A∇λB

)
.

The second and third inequalities in (30) are established and the proof of the theorem is finished.

5. About a new symmetric matrix mean

As already pointed before, we will derive here a new matrix mean from the previous weighted loga-
rithmic mean in a simple way. Precisely, we state the following definition.

Definition 5.1. Let A,B ∈Mn be accretive. We set

T (A,B) =:
∫ 1

0
Lt(A,B) dt. (32)
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Some elementary properties of T (A,B) can be immediately deduce from those of the weighted loga-
rithmic mean. First, we left to the reader the routine task for formulating an analog of Proposition 4.3 for
T (A,B). Further basic properties of T (A,B) may be summarized in the following result.

Proposition 5.2. Let A,B ∈Mn be accretive. Then the following assertions hold true:
(i) If A and B are strictly positive then T (A,B) interpolates L(A,B) and A∇B in the sense that

L(A,B) ≤ T (A,B) ≤ A∇B. (33)

(ii)ℜT (A,B) ≥ T
(
ℜA,ℜB

)
.

(iii) If A,B ∈Mn are sectorial with W(A),W(B) ⊂ Sθ then

ℜT (A,B) ≤ (secθ)2
T

(
ℜA,ℜB

)
.

(iv) With the same hypothesis as in (iii), we have

(cosθ)2
ℜL(A,B) ≤ ℜT (A,B) ≤ (secθ)2

ℜ(A∇B).

Proof. They follow, by simple integrations, from (26), (27), (29) and (30), respectively. The details are
straightforward and therefore omitted here.

Now, we will see that Lemma 4.4 could be a good tool again for proving a more interesting result which
explores a relationship between T (A,B) and the Heinz matrix mean HZλ(A,B). It reads as follows.

Theorem 5.3. Let A,B ∈Mn be accretive. Then we have

T (A,B) = 2
∫ 1

0

(
t − 1 − log t

)
HZt(A,B) dt, (34)

or, equivalently,

T (A,B) =
∫ 1

0
HZt(A,B) dν(t), (35)

where ν is the probability measure on (0, 1) defined by

dν(t) =: 2
(
t − 1 − log t

)
dt.

Proof. By (32), with (20) and then (23), we get

T (A,B) =
∫ 1

0

∫ 1

0
(1 − t)A♯tsB ds dt +

∫ 1

0

∫ 1

0
t B♯(1−t)sA ds dt =: J1 + J2.

Computing the first integral, by setting ts = u, we obtain

J1 =:
∫ 1

0

∫ 1

0
(1 − t)A♯tsB ds dt =

∫ 1

0

∫ t

0

1 − t
t

A♯uB du dt,

which, with the standard Fubini formula for double integral, implies that

J1 =

∫ 1

0

∫ t

0

1 − t
t

A♯uB du dt =
∫ 1

0

∫ 1

u

1 − t
t

A♯uB dt du

=

∫ 1

0

[
log t − t

]1
t=u

A♯uB du =
∫ 1

0

(
u − 1 − log u

)
A♯uB du.
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By similar way (or shortly use a simple change of variables) one can check that

J2 =:
∫ 1

0

∫ 1

0
t B♯(1−t)sA ds =

∫ 1

0

(
u − 1 − log u

)
B♯uA du.

These, with the fact that A♯uB+ B♯uA = 2 HZu(A,B) and T (A,B) = J1 + J2, yields (34) and so (35). The proof
is finished.

From the previous theorem we can deduce another expression of T (A,B) which seems to be more
symmetric in t and 1 − t. This symmetry generates an expression of T (A,B) in terms of A♯λB. It reads as
follows.

Corollary 5.4. Let A,B ∈Mn be accretive. Then we have

T (A,B) = −
∫ 1

0

(
1 + log t(1 − t)

)
HZt(A,B) dt = −

∫ 1

0

(
1 + log t(1 − t)

)
A♯tB dt, (36)

or, equivalently,

T (A,B) =
∫ 1

0
HZt(A,B) dµ(t) =

∫ 1

0
A♯tB dµ(t), (37)

where µ is the probability measure on (0, 1) defined by

dµ(t) =: −
(
1 + log t(1 − t)

)
dt.

Proof. If in (34) we make the change of variables t = 1 − s, s ∈ [0, 1] and we use HZ1−s(A,B) = HZs(A,B) we
obtain

T (A,B) = 2
∫ 1

0

(
− t − log(1 − t)

)
HZt(A,B) dt.

Adding side to side this latter equality and (34) we get the first relation of (36), and thus that of (37), after
simple manipulations. The second relation of (36) and that of (37) follow from simple operations with a
change of variables. The details are straightforward and therefore omitted here.

Corollary 5.4 has, in its turn, an interesting consequence which gives us a relationship between the three
matrix means T (A,B), L(A,B) and HZλ(A,B) (resp. A♯λB). It reads as follows.

Corollary 5.5. For any A,B ∈Mn accretive, we have:

T (A,B) = −L(A,B) −
∫ 1

0

(
log t(1 − t)

)
HZt(A,B) dt = −L(A,B) −

∫ 1

0

(
log t(1 − t)

)
A♯tB dt. (38)

Proof. By (12) and (19), with a simple change of variables, one can easily check that
∫ 1

0 HZt(A,B) dt = L(A,B).
Whence the desired result by (36).

We have seen in Proposition 5.2 that some properties of T (A,B) can be simply deduced from those of
Lλ(A,B). In addition, Theorem 5.3 (resp. Corollary 5.4) tells us that we can also deduce some properties of
T (A,B) from those of HZλ(A,B) (resp. A♯λB). As an example, we present the following result.

Proposition 5.6. Let A,B ∈Mn be sectorial with W(A),W(B) ⊂ Sθ. Then we have

ω
(
T (A,B)

)
≤ (secθ)3

T

(
ω(A), ω(B)

)
,

where ω(A) refers to the numerical radius of A defined by:

ω(A) =: max
{
|x∗Ax| : x ∈ Cn, x∗x = 1

}
.
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Proof. It is shown in [2] that, for all t ∈ [0, 1], we have

ω
(
HZt(A,B)

)
≤ (secθ)3HZt

(
ω(A), ω(B)

)
.

Multiplying this latter inequality by p(t) =: −
(
1 + log t(1 − t)

)
≥ 0 and integrating with respect to t ∈ [0, 1],

with the subadditivity and the positive homogeneity of A 7−→ ω(A), we get

ω
( ∫ 1

0
p(t)HZt(A,B) dt

)
≤

∫ 1

0
p(t)ω

(
HZt(A,B)

)
dt ≤ (secθ)3

∫ 1

0
p(t)HZt

(
ω(A), ω(B)

)
dt. (39)

This, with Corollary 5.4, yields the desired result.
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