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Abstract. In this paper, we investigate the split variational inequality problem in Hilbert spaces, in which
an operator is @-inverse strongly i-monotone operator and another operator is pseudomonotone. We

construct an iterative algorithm for solving the split variational inequality problem. We show the strong
convergence of the suggested algorithm.

1. Introduction

The split problems have received much attention due to their applications in image denoising, signal
processing and image reconstruction, see, [3, 5, 8-11, 17-20, 22, 24, 34, 47-49] and references therein. In this
paper, we continue to investigate the split problems and relevant iterative algorithms. To begin with, let

us first recall several concepts of the split problems and several popular algorithms in the literature. Recall
that the split feasibility problem is to find a point u" verifying

uteC and AuteQ 1)

where C and Q are two closed convex subsets of two Hilbert spaces H and E, respectively,and A : H — E
is a bounded linear operator.

A critical algorithm for solving (1) is Byrne’s ([3]) CQ algorithm listed as follows
Xps1 = projc(x, — @A*(I — projg)Axy),n >0, 2
where @ is step-size and projc : H — C is the orthogonal projection.
Consequently, CQ algorithm and its variant forms have been studied and developed, see, [4, 16, 28]. In
the case where C and Q in (1) are the fixed point sets Fix(S) and Fix(T) of operators S: H - Hand T: E = E,

respectively, problem (1) is called the split fixed point problem by Censor and Segal [10]. More precisely,
the split fixed point problem is to find a point u" € H such that

u' € Fix(S) and Au' € Fix(T). (3)
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There are a large number iterative algorithms for solving (3), see ([30, 32, 33, 35, 40, 44]). Among them, a
basic algorithm has the following form

Xp+1 = S(xp — @A (I - T)Ax,), n > 0. 4)

In the present paper, we are interested in the following split variational inequality problem of finding a
point u' such that

ut € VI(C, f) and Au’ € VI(C, g), ®)

where f : C - H and g : C — H are two nonlinear operators, VI(C, f) denotes the solution set of the
variational inequality of finding a point x* € C such that

(f(xM,x—x"y >0, Vx e C, (6)
and VI(C, g) means the solution set of the variational inequality of finding a point x" € C such that
(gx"),x - x>0, VxeC (7)

Variational inequalities play critical roles and provide a valuable mathematical modelling for studying
many important problems arising in water resources, finance, economics, medical images and so on ([1, 2,
6,7,9,12,25,29, 38, 4143, 46, 50]). A great deal of algorithms for solving (7) have been investigated, see,
e.g., [14, 15,26, 31, 36, 37, 39, 45]. An important technique for solving (7) is to use projection which has the
following manner

Xnt1 = projclx, — Cug(xn)], n > 0. (8)

By applying algorithms (4) and (8), Censor, Gibali and Reich [8] constructed the following iterative algorithm
for solving (5):

Xns1 = proje(l = L) — @A (L~ projo(I — Lg)Ax,], n > 0. 9)

Motivated by the work in this direction, in the present paper, we investigate the following split variational
inequality problem of finding a point u" such that

ut € VI(C, f,¢) and ¢(u') € VI(C, g), (10)

where ¢ : C — C is a nonlinear operator, f : C — H is a @-inverse strongly i-monotone operator, g is a
pseudomonotone operator and VI(C, f,{’) denotes the solution set of the generalized variational inequality
([23]) of finding a point x* € C such that

(f(xN), ¥(x) — p(x"))y 2 0, Vx e C. (11)

Here, use I to denote the solution set of problem (11), that is,

T =VIC f,9) [ ¢ (VIC ).

In this paper, we construct an iterative algorithm for solving (10). We show that the presented algorithm
strongly converges to en element in I'.

2. Preliminaries

Let H be a real Hilbert space with inner product (-,-) and norm || - ||. Let C C H be a nonempty closed
convex set. Recall that an operator f : C — H is said to be

e strongly monotone if
(f(u) — f(©),u -0y > tllu—-0l*, Yu,veC. (12)
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e @-inverse strongly -monotone if there exists a constant @ > 0 such that

(fw) = f(0), () = Y(©)) = @l f () - f@)I, Yu,v € C.
e f is pseudomonotone if
(f),u-v)20=(f(u),u—-v)=>0, Vu,veC.

e [-Lipschitz (L > 0) if
/() = f@Il < Lllu - oll, Yu,v € C.

If L <1, then f is said to be L-contraction. If L = 1, then f is said to be nonexpansive.

An operator T : H — 2 is said to be monotone iff (x — y,u — v) > 0 for all x, y € dom(T), u € T(x), and
v € T(y). A monotone operator T on H is said to be maximal iff its graph is not strictly contained in the
graph of any other monotone operator on H.

For Vx' € H, there exists a unique point in C, denoted by projc[x'] satisfying

llxt = projela1ll < Il — x|, Vx e C.
Moreover, projc is firmly nonexpansive, that is,

HIP < (projclg’] — projc[zfr],q* —oh, Vq*,v+ € H. (13)

lprojclg’] = projclv
Further, projc has the following property
(q° = projclg’l, x* — projclg’ly <0, Vg* e H,x" e C. (14)

Lemma 2.1 ([13]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let g : H — H be a
continuous and pseudomonotone operator. Then x* € VI(C, g) iff x* solves the following variational inequality

(g, ut —x*y >0, Vu' e H.

Lemma 2.2 ([27]). Let {®,} C [0, o), {a,} € (0,1) and {n,} be real number sequences. Suppose the following
conditions are satisfied

(i) @p1 < (1 - an)@n Ry Vn>1;

(i1) Yooy Qn = 00;

(iii) lim sup Tin <0o0r Y2 1l < co.

n—oo Ofn

Then lim;,—e @, = 0.

Lemma 2.3 ([21]). Let {x,} be a real number sequence. Assume there exists at least a subsequence {x,,} of {x,} such
that

xnk < lek+1

forall k > 0. For every n > Ny, define an integer sequence {$(n)} as
B(n) =max{i < n:x, < Xy}

Then B(n) — oo as n — oo and for all n > No, max{Xg(u), Xn} < Xg)+1-



L.]J. Zhu, Z. Zhu / Filomat 36:12 (2022), 3941-3953 3944

3. Main results

Let H be a real Hilbert space and C be a nonempty closed convex subset of H. Let h : C — C be
a p-contractive operator. Let ¢ : C — C be a weakly continuous and 7-strongly monotone operator
with R(y) = C. Let f : C — H be a @-inverse strongly {-monotone operator. Let the operator g be
pseudomonotone on H, weakly sequentially continuous and L-Lipschitz continuous on C. Let {®,} and {a,,}
be two real number sequences in [0, 1] and {C,} be a real number sequence in (0, ). Let o € (0,1), € (0, 1),
¢ €(0,1) and «a € (0, 2) be four constants.

In what follows, we suppose that I' # (. Here, we present an iterative algorithm for solving problem (5).

Algorithm 3.1. Let xy € C be a guess. Set n = 0.
Step 1. For given x,,, compute

zp = projel@ah(xn) + (1 = @)((xn) = Co f (xu))]- (15)
Step 2. Compute
Y = projclzs — po" 9(zn)], (16)
where n' is chosen the smallest nonnegative integer number such that
BA" N9 () = 9zl < cllyn = zull. (17)

Write ¢ f= On- If yu = 2y, then set u, = z, and go to Step 3. Otherwise, compute

) Uy
Uy = Pro]c[zn —a(l = O)llyn =zl TERTE ], (18)

where v, =z, — Yu + BOng(Yn)-
Step 3. Compute

l/’(anrl) =(01- “n)l/}(xn) + ayly. (19)

Step 4. Set n := n + 1 and return to step 1.

Proposition 3.2. (i) (17) is valid and 0 < % < g, < 1(¥n 2 0). (ii) If y, = 2y, then y, € VI(C, ). (iii) If yu # z,,
then vy, = 2y, — Y + Bong(Yn) # O.

Proof. (i) Since g is L-Lipschitz, ,BQ"*IIg(yn) =gzl £ ﬁ@”*Lllyn — z,]l. Thus, we can choose n' such that

¢" < 5. Hence, (17) holds. Tf n* = 0, then ¢" = 1. If n* > 0, then 0 < § < ¢ < 1.

(ii) is obvious. (iii) Let z € . Since y, € C and z, € C, we have (g(z"), y, —z') > 0 and (g(z"),z, - z) > 0.
By the pseudomonotonicity of g, we deduce

(g(yn), yn — 2" 20, (20)
and

(9(zn), 20 = 2") 2 0. (21)
In addition, from (14) and (16), we have

(Zn = BOng(Zn) = Yn, Yn — 2y = 0. (22)
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Thus, in accordance with (20)-(22), we obtain

O,z = 2 = (20 = Y + BOug(Yn), zn — 2"

= (Zn = Yu — POug(En), Zn — 2') + B0u(9(zn), 20 — 2")
+ BOnI(Yn), 20 = Yn) + Bon(g(Yn), yn — 2"

> (zy = Yu — POng(En), 20 = Z') + Boulg(Yn), Zn — Yn)

= (zn = Yn = Bon(9(zn) = 9(Yn)), 20 — Yn)
+4Zn = Yn — BOng(zn), Yn — 2"

> (zn = Yn — Bon(9(zn) = 9(Yn)), Zn = Yn)

> llzw = yull® = Boallg(zn) = g(ylllzn = yall

> (1= 9)llzn — yull®

> 0.

(23)

Therefore, v, = z, — yn + Bong(yn) # 0. O
Remark 3.3. (i) By the strong monotonicity of 1, we conclude from (12) that

() = W)l = Tlix = yll, Yx,y € C. (24)
Thus, the following varaitional inequality has a unique solution denoted by g,

(h(x) = 9(x), ¥(y) —¥(x)) <0, Vyel.

So, we have

(@) - ¢@), ¥(y) —P(g)) <0, VYyel. (25)

(ii) Since f is @-inverse strongly Y-monotone, for any u € C, we have

() = Tf () — (W(q") = CF@DIP
= [l () = (@I = 2CCF () = £(g7), () = (")) + Cll f(w) - fF@IP
< () = (@I = 2Callf () = f(@)IP + Cllf () — F@)IP
< lp@) — Y@ + CC - 20)lIf (1) — (@I

Theorem 3.4. Suppose that the following assumptions hold:

(26)

(C1): limy—eo @y =0and Y, @, = oo;
(C2): 0 <liminf, e @, < limsup, , a, <1;
(C3): 0<p<t<20and0 <liminf, o, <limsup,_,  C; < 2®.

Then the sequence {x,} generated by Algorithm 3.1 converges strongly to q* € I" which solves VI (25).

Proof. Note that g* € VI(C, f,¢) and ¥(g*) € VI(C,g). Then, {(g°) = projc[¥(g) — C.f(g)] for all n > 0. By
virtue of (26), we get

() = Caf () = @) = Caf @DIP < Ip(ea) = Y@ + CalCr = 20)I1f (xa) = F(TIP 27)
< () = Y@,

and

[ (xn41) = Cust f01) = () = Curr fFEDIP < 1 (Xna1) = YEIP + Gt (Cavt = 201 (s1) = fa)IP- (28)
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Based on (15), (24) and (27), we obtain

iz = Y@ = llprojcl@nh(xy) + (1 — @) (Y (xn) = Cuf(xu))] = projclip(q) — Cuf (@]
SM@n(h(xn) = P(q) + Cuf (@) + (1 = @) (P (xn) = Cuf (xn)) = W(q7) = Cuf (@I
< @ullh(xn) = K@ + @4llh(g") = P(q") + Cuf ()]

+ (1= @)Y (xn) = Cuf(xn)) = WG = Cuf @)

< @npllxy = gl + @ulln(q") = () + Cuf (@ + (1 = @u)llp(xn) — Y@l
< @np/TlY(xn) = Y@ + @ulli(g”) = P(q") + Cuf @I+ (1 = @)Y (xn) — Pl
=[1- @1 = p/D)@nu]ll(xn) = PN + @nll(q") = P(q7) + Cuf (@)l
<[1-(1 - p/D)@u)llYxn) = Y@ + @u(lh(q") = (@)l + 20l f(g)I])-

According to (27) and (29), we obtain
llzn = (@) < llon(r(xn) = P(@") + Cuf (@) + (1 = @) (Y (xn) = Cuf () = (@(q") = Cuf @I
< @ullh(xa) = ¥(g") + Cuf @ + (1 = @I (xn) = Caf () = (G = Cuf@NIP (30)
< @ullh(xa) = ¥(@") + Cuf @ + (1 = @)Y () = Y@ + CulCo = 20)I1f () = F(G)IP].

Letting zt = Y(g7) in (23), we have (v,, z, — P(9)) = (1 = O)llz, — y,,||2. This together with (18) implies that

(29)

litn = PGNP < ||z = ¥(q7) = a(l = O)llyn — zall? “;’””2
T P s T
= e =9I =0 e R AR 1)
4
< ll2w = (@R - @ - a)a(l - o) “%ﬂv 7 ”

< llzw = Y(@)IP.
Combining (19), (29) and (31), we obtain

1P (xns1) = Y@ < (1 = an)llipxn) = Y@ + aullien = P(q)l
< (1= a)llp(n) = Y@ + anllze — (gl
< (1= an)llp(xn) = Y@ + anll = A = p/D)@ulllp(xn) — PGl
+ 2, @, (I(q") = Y@ + 201 £ (4)11) (32)
=[1 -1 = p/Dan@ulllipCxn) = Y@
Ih(g7) = Pl + 201 f (gl
1-p/t ’

+(1 - p/D)an@n

An induction yields

12(q7) — (gl + 2®||f(’7*)||}
1-p/t ’

1) = w(@)ll < max {llp(xo) = ()l

It follows that

(q") = Y@l + 21 f (@)l }

1 1
Il = qll < —llpCen) = P(g)I] < — max {Ilyl}(xo) —Y(@ll, 1= p/t

Thus, {(xn)}, {xn}, {z4) and {u,,} are bounded.
By (19), we derive

Y(xne1) — Y(xn) = an(un — P(xz)), n 0. (33)
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Then,

(W(xne1) = (), P(xn) = P@)) = @ity — Y(x), P(xn) — P(G°))- (34)
It follows that
1) = PP = P e) = @I = 1 (nsn) — ()l

35
= ay[lln = Y@ = 1Y) = P@NP = lltw = ()P %)
By (31), (33) and (35), we obtain
I (s1) = @ = 1 (xa) = (g
= aullltn = Y@ = 1Y) = P@NP = it = P)IPT + allitn — () I 36)
= au[lltn = Y@ = 1Y) = P@NP] = an(l = an)lltn = ()P
< aulllze = Y@ = 1Y) = P@NPT = an(l = an)llen = ()P
In terms of (29), we get
I’l *\ * 2 * 2
o= P < [1= (1= /0@, s) = Y + 1 = pfogo, (D2 )

There are two cases. Case 1. For some large enough Ny > 0, {|[{(x,) — ¥(g7)Il} is decreasing when 1 > Nj.
Hence, lim,, .« |l1(x,) — 1(q")| exists. Based on (36), (37) and (C1), we have

(L= a)litn — PP < 1P 0rn) — @R — [P Gensn) — @R + anlllzn — PgOIE — 19 Cen) — PP
I’l *\ _ % * 2
< ) = PO = ) — P@OIE + (1 - P/T)CDn(” @) — 9@l + 2001/ )”)

1-p/t
- 0.
This together with (C2) implies that
Tim [l = (eIl = 0. (38)
Moreover, by (33), we have
lim [l e1) = Yl = 0. (39)

Thanks to (19), (30) and (31), we deduce

19 Cens1) = Y@ = 11 = @)@ (xa) = 9() + nan = @I
< (1= an)llY(ea) = @) + @ulliey — POl
< (1= an)llp () = @I + aullzy = (@I
< (1= a)llp(n) = Y@ + awdulli(xn) = () + o f ()P (40)
+ (1 = @0)Ca(Ca = 201 f(xn) = @I + an(1 = @)IP(xn) = (I
< () = p@P + andulli(xn) = (") + Cuf (@I
+ (1 = @0)Ca(Co = 20)1 f () = F()IP.
It results in that
(1 = @) Ca (20 = CILFCen) = F@OIP < ) = Y@ = 19 s1) = P@IP + an@alliCn) = (g°) + Cu fGIP
< () = Y@ + 1P (enrn) = PE@IDIP (ene1) = Pl
+ ap@ullh(a) = Y7 + S f(@IP

- 0.
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Accordingly,
lim £ () = @)l = 0.

Set wy, = Y(x,) — Cuf(xn) — (P(q") — Cuf(q7)) for all n > 0. Applying inequality (14) to (15), we have

llzw = @I = lIprojcl@nh(xs) + (1 = @u) W (xn) = Cuf ()] = projcl(q’) — Cuf (@I
< <®nh(xn) +(1- @n)(¢(xn) - Cnf(xn)) - IP(‘J*) - Cnf(q*)/ Zpy — lP(q*)}

= @n<h(xn) - 4’(17*) + Cnf(q*)/ Zpy — 11b([r)> + (1 - @n)<wn/ Zpy — 1P(‘f))
< @u(hxn) = P(@) + Caf(@7), 20 = (@)

+ %{uwnnz Uz = P@? = () = 20 = CulfGen) = F@NIP)
< @ullh(en) = P(q) + Cuf(@)lIzn — Pl

+ I @I + 1w = @I = 9Cen) = 2l = CllfCen) = F@

+ 20, () = 2, f () — £(@)))-
It yields

l12n = P@NP < MP(a) = Y@ = () = zall® + 2Callp(xn) = zalllf () = £

+ 20u[lh(xn) = (@) + Cu f(@)lzn — Pl
According to (31), (40) and (42), we obtain

Y1) = @I < (1= an)llpxn) = Y@ + anllza — (@I

< () = (@I = anllp(n) = zull® + 2Call(xn) = zalllf () = £ (@)

+ 20| Ih(xn) = P(q") + Caf (@)l = L@,
which implies that

allp(n) = zall® < (1P C) = Y@M + 1P (Xns1) = Y@ s1) = D)
+ 2Cullg(xn) = zullll f () — £
+ 2@nlh(xn) = P(g7) + Cuf(@Izn = PG
On the basis of (C1), (C2), (39), (41) and (43), we deduce
lim [19:(t) = 2]l = 0.
As a result of (31) and (40), we get

19 (eas1) = W@ < (1= @)l = Y@ + @ullun = (g

< (1= ap)llp(xn) = w@NP + anllzy = PGP = an(2 = a)a(1 -

which together with (44) implies that

“yn _Zn”4

2
a2 = a)a(l - P

< (1= an)(llp(ea) = Y@ = I Genen) = P(g)IP)

+ an(llzn = @I + 1P ns1) = PE@IDIPCenra) = zall

— 0.

Therefore,

. ”yn - Zn||2
lim =

noeo oyl

||]/n _Zn“4
T

3948

(41)

(42)

(43)

(44)

(45)
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Since {v,} is bounded, it follows from (45) that
lim [l - 2l = 0. (46)
Note that {x,} and {z,,} are bounded. Choose a subsequence {n;} of {n} verifying x,, — er and

limsup¢h(q’) = (), 20 = (7)) = Kmch(q") = ("), 20, = P(@)- (47)

n—oo

Thus, Y(x,,) = Y1), yu, = Y(p") and z,, — Y(p").
Next, we prove z € VI(C, f, ). Set

s fw) + Nc@uh), uteC
Tw’) = {(Z), ut ¢ C.

Then, T is maximal ¢-monotone. Pick up (u',u) € G(T). Hence, u — f(u') € Nc(u') and (Y(uh) — (x,), u -
f(h) > 0. Observe that

<17l)(1/l+) — Zpn, 2y — [@nh(xy) + (1 - CDn)(lab(xn) - Cnf(xn))D > 0.
It follows that

(Y -z ‘P( ), fx)y + —<¢(u = Zu, Y(n) = Cu f () = (x)) > 0.
Thus,
W) = P, u) = W) = P(x,), Fuh)
> (") = (), fU") = ') -z, 1“ ) + f ()

— %@b(lxﬁ) — Zn;, lzb(xn,') - Cn,.f(xni) - h(xni»
= (l,b(qu) = P(xn,), f(u*) = f(xn)) + (zn, — W(xn), f(xn))

_ %<17[J(M+) = Zn;s l)b(xn,-) - Cn,.f(xn,.) — h(xni» (48)
— <¢(u+) — 2z, Zp _Cl;l}(xn;)>
2 (2 = ), f0n)) = PO = 2, Z_c—w(x)>

— CD_:I<¢(M+) — Zp;, ¢(xni) - Cn,.f(xni) - h(xni»_

Note that ||z, — ¥(x,)ll = 0, @, — 0 and ¥(x,) — P(p'). Letting i — oo in (48), we conclude that
W — "), u) > 0. Thus, p' € T7H0). So, p" € VI(C, £, ¥).
Next, we show ¢(p?) € VI(C, g). From (22), we have

(Zn; = BOng(zn;) = Ynys Yni — x+) >0, Vx' e C.
It yields
1
(9(zn), x" = z0) > {9zn), Yn, — 20,y + E(:Vn,- =, Yy — zn), V' €C. (49)

Owing to (46) and (49), we obtain
lim inf(g(z,,), x* — z,,) > 0, Vx' € C. (50)
1—00
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In view of (50), there exists a positive real numbers sequence {0} such that lim; ., o; = 0. For each ¢}, there

exists the smallest positive integer k; such that
(g(znli),xJr - Zn,-/,> +0;20, Vj k.

9(@n;)

— i
- IIy(Zn,-/_ N7

Moreover, for each j > 0, g(zni/_) # 0. Setting qo(zni/_)
(51), we obtain

(g(z,,,./),xJr + ojgo(znl.j) - Zni/-> > 0.
By the pseudomonotonicity of f, we get

(g(xJr + a]-(p(zni/_)), xt+ oj(p(zn,.j_) — znl.j> >0,
which implies that

(9@, x" =20} 2 (9" - 9" + 0;0(zn, ), %" + 0jp(zn, ) = Zu, )

+(g(x"), ~0jp(zn, ).

Because of g(z,, ) — g (p")), we have

liminf gz, ) > g @Il > 0.

Then,
0j

=0.
19,

lim [lojp(z, )l = lim
j—ooo ] j—o0

This together with (52), we deduce
(g(ch), x" =)y = 0.

It follows from Lemma 2.1 that ¢(p*) € VI(C, g). Therefore, p* € VI(C, f,v) N Y~Y(VI(C,g)) =T.

From (47), we obtain
limsup(h(q’) = $(97), 20 = $(47)) = im<h(q") = (q7), 20, = P(q))

= (h(q") = v(@"), ") - ¥(g)) < 0.
By (15), we have

llzn — Y@ = llprojcl@nh(xy) + (1 = @p) (W (xn) — Cuf (x))]

—proje[¢(@") — (1 = @,)Cu f (@I

< @n(h(xn) = (@) + (1 = @n)wn, 20 — P(q7))

= @y h(xn) = 1(q"), 20 = P(@) + @u((q") = ¥(q), 20 — P(G"))
+ (1 = @n){wy, 20 — P(q"))

<[1-@1-p/Doulllpxi) = P@)lIzn — Y@
+ @, (h(q") = P(q), 20 — P(@7))

< O g+ S~ IR
+ @, (h(q") = (@), 20 — P(q7))-

It follows that

llzn = P@IP < [1 = (1 = p/D@ullp(en) = Y@ + 20uC(q") = Y(), 20 = P(q))-

(51)

we have (g(zn,.j ), (p(znij)) = 1. According to

(52)

(53)

(54)
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Therefore,

Y1) = PEOIP < (1= anllp(a) = Y@ + anllze = (g
<[1- (1= p/Day@,lllY(xa) = P (55)
+ 20,0 (W(q") = (@), 20 = Y(q))-

By Lemma 2.2 and (55), we conclude that ¢(x,) — (") and x,, — ¢".
Case 2. There exists an integer ny > N such that [|[V(x4,) — Y@ < [P(xp41) — Y@ Let ¢, =
{llp(x,) — 1p(q*)||2}. Then, we have ¢, < 1,+1. Let {8} be an integer sequence defined by, for all n > ny,

B(n) = max{l € Njng <1 < n,¢; < P}

Note that () is non-decreasing and satisfies lim; .« f(17) = 00 and Yp() < Ppuy+1, Y1 = np.
Similarly, we can deduce

lim sup(h(") = (@), Z50 ~ $(4") < 0 (56)
and
2(1 = p/)@p(n)ag(n) 2(1 = p/1)@p(m)ag(n)
e T A = O &7
@p(n) 1 . . .
(o™ + T ) ~ 900, 200 ~ Y )
Note that gy < Pguy+1- By (57), we have
@p(1) 1 . . .
Ui < 3 o rey M T 7 )~ Y00, 2500 = 9 ) (58)
Based on (56) and (58), we derive
lim sup ¢p() <0,
and thus
lim i) = 0. (59)

From (57), we can deduce
lim sup ¢g(m+1 < lim sup ¢g().

n—oo n—o0o

This together with (59) implies that
Lim ¢gg41 = 0.

By Lemma 2.3, we obtain
0 < ¢u < max{ppam), Ypm+1}-
Therefore, 1, — 0. That is, P(x,) = ¥(g°) and thus x,, — g*. This completes the proof. [J

In Algorithm 3.1, choose ¢ = I, identity operator and f : C — H is a @-inverse strongly monotone operator.
Then, we have the following algorithm and corollary.

Algorithm 3.5. Let x € C be a guess. Set n = 0.
Step 1. For given x,,, compute

Zy = pT’OjC[CDnh(Xn) + (1= @,)(xn — Cnf(xn))]
Step 2. Compute

Y = projclza — po" gz,
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where n' is chosen the smallest nonnegative integer number such that

B N9(y) = 9zl < cllyn — zall.

Write 0" = 0. If Y, = 2y, then set u, = z, and go to Step 3. Otherwise, compute

. Uy
Uy, = prO]C[Zn — a1 = O)llyn — 2l I ”2],
n

where vy = zy — Y + POng(Yn)-
Step 3. Compute

Xn+l = (1 - an)xn + aply.
Step 4. Set n := n + 1 and return to step 1.

Corollary 3.6. Suppose that I'1 .= VI(C, f) N VI(C, g) # 0. Assume that conditions (C1)-(C3) are satisfied. Then
the sequence {x,} generated by Algorithm 3.5 converges strongly to q* = projr,h(q").
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