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Abstract. In this paper, we first get further consideration of the first order perturbation with normwise
condition number of the MTLS problem. For easy estimation, we show a lower bound for the normwise
condition number which is proved to be optimal. In order to overcome the problems encountered in
calculating the normwise condition number, we give an upper bound for computing more effectively
and nonstandard and unusual perturbation bounds for the MTLS problem. Both of the two types of the
perturbation bounds can enjoy storage and computational advantages. For getting more insight into the
sensitivity of the MTLS technique with respect to perturbations in all data, we analyze the corrections
applied by MTLS to the data in Ax ≈ b to make the set compatible and indicate how closely the data A, b fit
the so-called general errors-in-variables model. On how to estimate the conditioning of the MTLS problem
more effectively, we propose statistical algorithms by taking advantage of the superiority of small sample
statistical condition estimation (SCE) techniques.

1. Introduction

The problem of linear parameter estimation arises in a broad class of scientific disciplines such as signal
processing, automatic control, system theory, general engineering, statistics, physics, economics, biology,
and medicine. It can be described by a linear equation:

a1x1 + a2x2 + · · · + anxn = b,

where a1, · · · , an and b denote the variables and x = [x1, x2, · · · , xn]T
∈ Rn plays the role of a parameter

vector that characterizes the special system. A basic problem of applied mathematics is to determine an
estimate of the true but unknown parameters from certain measurements of the variables. This gives rise
to an overdetermined set of m linear equations (m ≥ n):

Ax ≈ b for A ∈ Rm×n and b ∈ Rm, m ≥ n. (1)

In the classical least squares (LS) approach the measurements A of the variables ai (the left-hand side of
(1) are assumed to be free of error and, hence, all errors are confined to the observation vector b. But
this assumption is frequently unrealistic: sampling errors, human errors, modelling errors, and instrument
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errors may imply inaccuracies of the data matrix A. For those cases, TLS has been devised and amounts
to fitting a ”best” subspace to the measurement points (AT

i , bi), i = 1, · · · ,m, where AT
i is the i-th row of A.

Much of the literature concerns the classical TLS problem in which all variables are observed with errors,
see e.g., [8], [12–14], [19–21] and so on. However in many linear parameter estimation problems, some of
the variables ai in (1) may be observed without error. For instance, in regression analysis, e.g., in curve
fitting and intercept models, we often encounter such problems, as well as in system identification and
signal processing applications whenever some signals can be observed without error while the other ones
are disturbed by zero-mean white noise. This implies that some of the columns of A in (1) are assumed to
be known exactly. To maximize the accuracy of the estimated parameters x it is natural to require that the
corresponding columns of A be unperturbed since they are known exactly. In order to maintain consistency
of the result when solving these problems, the classical TLS formulation can be generalized, the mixed least
squares-total least squares (MTLS) problems just as posed in [1, 25]. About the approximate solution of
the MTLS problem (2), one can have them by Cho-INV iteration, Rayleigh quotient iteration method, see
[1, 28], the generalized TLS Algorithm GTLS [24].

Perturbation analysis is an important research area in numerical analysis. In this paper, we get further
consideration of the first order perturbation with normwise condition number of the MTLS problem posed
in [17]. It should be noted that computing the matrix cross product ATA for normwise condition number
is a source of rounding errors and is potentially numerical unstable. For easy estimation, we show a lower
bound for the normwise condition number which is proved to be optimal. Then, we give nonstandard and
unusual perturbation bounds for computing more effectively based Wei’s results [14]. The upper bound
are easy to compute and do not need to compute matrix cross product. The efficiency of our bounds will
be demonstrated by numerical examples.

For getting more insight into the sensitivity of the MTLS technique with respect to perturbations in all
data, we analyze the corrections applied by MTLS to the data in Ax ≈ b to make the set compatible. We also
deduce the assumptions about the underlying pertubation model. Thus indicates how closely the data A, b
fit the so-called general errors-in-variables model.

In practice, the efficient estimation for the condition number is difficult. Thus, practical algorithms for
approximating the condition numbers are worth studying. We propose statistical algorithms by taking
advantage of the superiority of the small sample statistical condition estimation (SCE), that a small number
of function evaluations at perturbed arguments suffices to give a highly reliable condition estimate.

Throughout this paper, the following notations are used:

• Rm×n denotes the set of m × n matrices with real entries.

• In stands for the identity matrix with order n , ei is the i-th canonical vector.

• Single vertical bars around a matrix or vector indicate the componentwise absolute value of a matrix or
vector.

• For a matrix A ∈ Rm×n, AT denotes the transpose of A, ∥A∥2 and ∥A∥F denote the spectral norm and the
Frobenius norm of A, respectively.

• We define vec(A) = [aT
1 , a

T
2 , · · · , a

T
n ]T
∈ Rmn and the ’unvec’ operator undoes the operation.

• For a vector a, diag(a) is a diagonal matrix whose diagonals are given as components of a.

• The uniform continuous distribution between a and b is abbreviatedU(a, b).

• X† the Moore-Penrose inverse of X.

• For any a, b ∈ Rn, we define a
b = [c1, c2, · · · , cn]T by

ci =


ai
bi

i f bi , 0,
0 i f ai = bi = 0,
∞ otherwise.
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2. Preliminaries

First of all, we give a brief description of the MTLS problem [1, 22–25] in Frobenius norm (F-norm)
stated as: min

E2, f
∥(E2, f )∥F,

s.t. R(b + f ) ⊆ R(A1,A2 + E2),
(2)

where A1 ∈ Rm×n1 , A2 ∈ Rm×n2 , and n1 + n2 = n. Let (E2, f ) be the minimizer of (2), the MTLS solution set
belonging to (E2, f ) is defined by

X = {x = (xT
1 , x

T
2 )T
|A1x1 + (A2 + E2)x2 = b + f }.

Obviously, if n1 = 0, the MTLS problem will become an TLS problem, while n2 = 0, it will reduce to an LS
problem. We can factorize (A, b) into the QR form to solve MTLS problem:

QT(A1,A2, b) = R =

n1 n2 1( )R11 R1a R1b n1
0 R2a R2b m − n1 , (3)

then reduce to TLS problem R2ax2 ≈ R2b. The vector x1 can be obtained from R11x1 = R1b − R1ax2 by back
substitution. Let σ j(A) denotes the j-th largest singular value of A. We know that, under the condition

σ = σn2 (R22) > σn2+1(R22,R2b) = σ̃, (4)

the reduced TLS problem and therefore the MTLS have a unique solution [23]

xMTLS = (ATA − σ̃2C)−1ATb, (5)

where C =
(

0 0
0 In2

)
.

In [1], it’s proved that the MTLS problem is mathematically equivalent to the WTLS problems (6) to (7). min
E, f
∥(E, f )∥F,

s.t. (Aε + E)Cεxε = b + f
, (6)

where

Aε = AC−1
ε , E = ẼC−1

ε with Cε =
(
εIn1 0

0 In2

)
, (7)

ε is a small positive number. In practical computations, with a possible choice for ε such that

ε∗ = µ
1
2
∥A1∥2

∥Ã2∥2
κ(A1)−1,

where κ(A1) = ∥A1∥2∥A†1∥2 is the condition number of A1, Ã2 = (A2, b), µ is the machine precision.
Throughout the paper, let ÛTAV̂ = dia1(σ̂1, · · · , σ̂n) = Σ̂ be the thin SVD of A ∈ Rm×n, where σ̂1 ≥ · · · ≥ σ̂n,

Û ∈ Rm×n, V̂ ∈ Rn×n, and let UT[A, b]V = dia1(σ1, · · · , σn+1) = Σ be the thin SVD of [A, b] ∈ Rm×(n+1), where
σ1 ≥ · · · ≥ σn+1. Let ǓTAεV̌ = dia1(σ̌1, · · · , σ̌n) = Σ̌ be the thin SVD of Aε ∈ Rm×n, where σ̌1 ≥ · · · ≥ σ̌n,
Ǔ ∈ Rm×n, V̌ ∈ Rn×n, and let ŪT[Aε, b]V̄ = dia1(σ̄1, · · · , σ̄n+1) = Σ̄ be the thin SVD of [Aε, b] ∈ Rm×(n+1), where
σ̄1 ≥ · · · ≥ σ̄n+1, Ū, V̄, and Σ̄ are partitioned as follows:

Ū =
(

Ū1, ūn+1

)
, V̄ =

n 1( )V̄11 v̄12 n
v̄T

21 v̄22 1 , Σ̄ =
(
Σ̄1 0
0 σ̄n+1

)
(8)
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We assume the genericity condition:

σ̌n > σ̄n+1 (9)

to ensure the existence and uniqueness of the WTLS solution xε throughout this paper.
From [1], we know that the unique WTLS solution is determined by

xε = C−1
ε (AT

εAε − σ̄2
n+1I)−1AT

ε b, (10)

and

lim
ε→0+

xε = lim
ε→0+

C−1
ε (AT

εAε − σ̄2
n+1I)−1AT

ε b,

= (ATA − σ̃2C)−1ATb = xMTLS

(11)

under the condition (4) and the assumption

ε2
∥A†1∥

2
2∥Ã2∥

2
2 <
σ2
− σ̃2

2σ2 . (12)

Throughout this paper, we assume that the conditions in Equations (4) and (12) hold.
Let Ãε = Aε + ∆Aε and b̃ = b + δb, where ∆Aε and δb are the perturbations of the input data Aε and b

respectively. Consider the perturbed WTLS problem

min
∆Aε,δb

∥(∆Aε, δb)∥F s.t. (Aε + ∆Aε)Cεx̃ε = b + δb, (13)

and denote the singular values of the matrix [Ãε, b̃] by σ̃1 ≥ σ̃2 ≥ · · · ≥ σ̃n+1 ≥ 0. If the norm ∥(∆Aε, δb)∥F of
the perturbations is sufficiently small, then the well-known perturbation analysis of singular values ensures
that the perturbed WTLS problem above has a unique solution x̃ε and it can be expressed as

x̃ε = C−1
ε (ÃT

ε Ãε − σ̃2
n+1I)−1ÃT

ε b̃.

For convenience, let the change in the solution be

∆xε = x̃ε − xε. (14)

Kronecker product turns out to be convenient for deriving the results in this paper. For clarity we briefly
state a few of its useful properties here.

Lemma 2.1. [5] Let A, B, X ∈ RN×N, D ∈ RM×N, Y ∈ RN×K, E ∈ RK×L, F ∈ RM×L, P =
N∑

i=1

N∑
j=1

Ei j ⊗ ET
ij, where

Ei j = (ekl), k, l = 1, · · · ,N, is a N ×N matrix, and

ekl =

{
1 k = i and l = j,
0 k , i or l , j.

Then

(1) vec(X)T =Pvec(X);

(2) (B ⊗ A) = PT(A ⊗ B)P;

(3) DYE = F⇐⇒ (ET
⊗D)vec(Y)=vec(F).
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3. First-order perturbation for the MTLS problem

We know that, by (14) using the definition of the normwise condition number of the WTLS problem
and the expression of f ′ (Aε, b).(∆Aε, δb), the upper bound for ∥∆x∥2

∥x∥2
and the explicit formula for the MTLS

condition number can be obtained with some ∆x corresponding to ∆xε, which profits from the connection
between the MTLS problem and the WTLS problem.

Theorem 3.1. [17] We consider the MTLS problem and assume that the genericity assumption holds. Setting
Bλ = ATA − σ̃2C, then the condition number of xMTLS of the MTLS solution is given by

κMTLS(A, b) = ∥M∥
1
2
2 , (15)

and the upper bound for ∥∆x∥2
∥x∥2

is expressed by

∥∆x∥2
∥x∥2

≤ ∥M∥
1
2
2
∥(A, b)∥F
∥x∥2

∥∆A, δb)∥F
∥(A, b)∥F

≡ BBY, (16)

where M is the n × n matrix

M = γB−1
λ ATAB−1

λ + σ̃
2γ̄B−1

λ (I − 2
CxxTC
γ̄

)B−1
λ , (17)

γ̄ = 1 + ∥Cx∥22, γ = 1 + ∥x∥22, x is the exact solution of the MTLS problem, r is the MTLS residual.

In addition, we have the relative condition number of the MTLS problem

κrel
MTLS(A, b) = ∥M∥1/22

∥(A, b)∥F
∥x∥2

. (18)

In many applications, an upper or a lower bound would be sufficient to estimate the normwise condition
number. We next present a lower bound for κMTLS(A, b), which only involves the singular values of matrix
K. Let first see the theorem [28] about perturbation of the eigenvalues of a matrix.

Theorem 3.2. Let A, B = A+E ∈ Cn×n,A, B, and E are all Hermitian matrices, their eigenvalues are λ1 ≥ · · · ≥ λn,
µ1 ≥ · · · ≥ µn and ϵ1 ≥ · · · ≥ ϵn respectively. Then

|µi − λi| ≤ ∥B − A∥2, i = 1, 2, · · · ,n.

Theorem 3.3. We have

∥M∥2 ≥ |σ2
1 − µ

2
1|,

where σ1 be largest singular value of K, K = B−1
λ

( √
γAT

∥r∥2I
)
, µ1 =

√
yT y and y =

√
2σ̃B−1

λ Cx.

Proof. From the proof of Theorem 3.1, we have

M = γB−1
λ ATAB−1

λ + ∥r∥
2
2B−2
λ − 2σ̃2B−1

λ CxxTCB−1
λ

= B−1
λ

( √
γAT

∥r∥2I
) ( √γA
∥r∥2I

)
B−1
λ −

(√
2σ̃B−1

λ Cx
)(√

2σ̃B−1
λ Cx

)T

= KKT
− yyT,

where K = B−1
λ

( √
γAT

∥r∥2I
)
, y =

√
2σ̃B−1

λ Cx. And we know

yT y =
(√

2σ̃B−1
λ Cx

)T(√
2σ̃B−1

λ Cx
)

= 2σ̃2xT(RT
2aR2a − σ̃

2I)−1
(

0 0
−(R−1

11 R1a)T I

) (
0 −R−1

11 R1a

0 I

)
(RT

2aR2a − σ̃
2I)−1x

= 2σ̃2xT
2 (RT

2aR2a − σ̃
2I)−1(I + (R−1

11 R1a)TR−1
11 R1a)(RT

2aR2a − σ̃
2I)−1x2 = µ

2
1.
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Let σ1 be the largest singular value of K, then by Theorem 3.2, we get the bound

∥M∥2 ≥ |σ2
1 − µ

2
1|.

We find that we only need to calculate the product of matrices and vectors, since B−1
λ and (RT

2aR2a − σ̃2I)−1

can be the intermediate result when the MTLS problem is solved. So the bound enjoys storage and
computational advantages. Moreover, this bound can be attained when y is the left singular vector of K,
see Theorem 2.1 in [27].

In addition, we find that computing the matrix cross product ATA for normwise condition number is
a source of rounding errors and is potentially numerical unstable. In order to overcome these difficulties,
we present a perturbation bound for computing more effectively without using the already well-known
condition number and nonstandard and unusual perturbation bounds which will be shown in Section 4.

4. Nonstandard and unusual perturbation bounds

In this section we derive another perturbation estimates, based on Wei’s results [14], for the MTLS
problem.

Wei [14] derive the perturbation bounds for the TLS solutions, with or without minimal length. We can
use the result in WTLS problems and get the following theorem:

Theorem 4.1. Consider the WTLS problem (6) to (7). Assume that the genericity condition (9) holds. Partition V̄ as
in (8) and let A′ε ∈ Rm×n, b′ ∈ Rm, and (A′ε, b′) = (Aε, b) + (∆Aε, δb) with ∥(∆Aε, δb)∥ = ηε ≤ 1

6 (σ̌n − σ̄n+1), and let
A′ε, (A′ε, b′) be Ǔ′TA′εV̌′ = dia1(σ̌′1, · · · , σ̌′n) = Σ̌′ be the thin SVD of A′ε ∈ Rm×n, where σ̌′1 ≥ · · · ≥ σ̌′n, Ǔ′ ∈ Rm×n,
V̌′ ∈ Rm×n, and let Ū′T[A′ε, b′]V̄′ = dia1(σ̄′1, · · · , σ̄′n+1) = Σ̄′ be the thin SVD of [A′ε, b′] ∈ Rm×(n+1), Partition V̄′

conformally with V̄ as in (8), and replace V̄i j by V̄′i j. for i, j = 1, 2. Define Cεx′ε = ((V̄′11)T))†(v̄′21)T. Then one has the
following estimates:

∥Cεxε − Cεx′ε∥ ≤
ηε + σ̄n+1

σ̌n − σ̄n+1
(3 + 5∥Cεxε∥)

≤ 6
ηε + σ̄n+1

σ̌n − σ̄n+1
(
√

1 + ∥Cεxε∥2).
(19)

Then one can attain the following theorem for the MTLS problem by (11) with the same way

Theorem 4.2. Consider the MTLS problem (2). Assume that the genericity condition (4) holds. Let A′ ∈ Rm×n,
b′ ∈ Rm, and (A′, b′) = (A, b) + (∆A, δb) with ∥(∆A, δb)∥ = η ≤ 1

6 (σ − σ̃), and let R′22, (R′22,R
′

2b) be Û′TR′22V̂′ =
dia1(σ̂′1, · · · , σ̂′n2 ) = Σ̂′ be the thin SVD of R′22 ∈ R(m−n1)×n2 , where σ̂′1 ≥ · · · ≥ σ̂′n2 , Û′ ∈ R(m−n1)×n2 , V̂′ ∈ Rn2×n2 ,
and let U′T[R′22,R

′

2b]V′ = dia1(σ′1, · · · , σ′n2+1) = Σ′ be the thin SVD of [R′22,R
′

2b] ∈ R(m−n1)×(n2+1), Partition V′ as
in (8). Define x′2 = ((V′11)T))†(v′21)T. Let x′2 = x2 + ∆x2, then one has the following estimates:

∥x2 − x′2∥ ≤
η + σ̃

σ − σ̃
(3 + 5∥x2∥)

≤ 6
η + σ̃

σ − σ̃
(
√

1 + ∥x2∥
2),

(20)

where σ = σn2 (R22), σ̃ = σn2+1(R22,R2b).

The proof is easy and we omit it.
We turn now to the problem of obtaining perturbation bounds of Q and R, which is needed for obtaining

the perturbation bound of ∥x1 − x′1∥, for the QR factorization of the matrix A. Stewart [26] show us that
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Theorem 4.3. Let A = QR, where A has rank n and QTQ = I. Let ∆A ∈ Rm×n satisfy ∥A∥∥∆A∥ < 1
2 . Then there

are matrices ∆Q ∈ Rm×n and ∆R ∈ Rn×n such that A + ∆A = (Q + ∆Q)(R + ∆R), (Q + ∆Q)T(Q + ∆Q) = I. Let
τ = n∥R−1

∥

[
1+ 1

√
2
κ(R)

]
, ς = n(2+

√
2)κ(R).Define the operator T that maps the space of upper triangular matrices

into the space of symmetric, let F1 = T−1[RT(QT∆A) + (∆ATQ)R]. If τ∥F1∥ < 1
4 , then there is a unique solution of

T∆R = RT(QT∆A) + ((∆A)TQ)R + (∆A)T(∆A) − (∆R)T(∆R) (21)

that satisfies

∥∆R∥ < 2∥F1∥ ≤ 2ς∥∆A∥. (22)

Moreover A + ∆A = (Q + ∆Q)(R + ∆R), where Q + ∆Q has orthonormal columns

∥∆Q∥ <
3κ(A) ∥∆A∥

∥A∥

1 − 2κ(A) ∥∆A∥
∥A∥

, (23)

and
∥∆R∥
∥A∥

≤
∥∆A∥
∥A∥

+ ∥∆Q∥
(
1 +
∥∆A∥
∥A∥

)
. (24)

At this point, it is natural that the perturbation domain of ∥x1 − x′1∥ is coming.

Theorem 4.4. Consider the MTLS problem (2). Assume that the conditions in Theorems 4.2 and 4.3 hold. Let
x′1 = x1 + ∆x1, then one has the following estimates:

∥x1 − x′1∥ ≤
σ́(η + σ̃)
σ − σ̃

(3 + 5∥x2∥) + ∥R−1
11 ∥(1 + ∥x∥

2)2ςη + O(η2)

≤
6σ́(η + σ̃)
σ − σ̃

(
√

1 + ∥x2∥
2) + ∥R−1

11 ∥(1 + ∥x∥
2)2ςη + O(η2),

(25)

or

∥x1 − x′1∥ ≤
σ́(η + σ̃)
σ − σ̃

(3 + 5∥x2∥) + ∥R−1
11 ∥

(
η +

3κ(A) η
∥A∥

1 − 2κ(A) η
∥A∥

(∥A∥ + η)
)
+ O(η2)

≤
6σ́(η + σ̃)
σ − σ̃

(
√

1 + ∥x2∥
2) + ∥R−1

11 ∥
(
η +

3κ(A) η
∥A∥

1 − 2κ(A) η
∥A∥

(∥A∥ + η)
)
+ O(η2),

(26)

where σ́ is the maximum singular value of the matrix R−1
11 R12

Proof. From equation R11x1 = R1b − R1ax2 and genericity condition (4), we have

x1 = R−1
11 (R1b − R1ax2)

and

x′1 = x1 + ∆x1 = (R11 + ∆R11)−1((R1b + ∆R1b) − (R1a + ∆R1a)(x2 + ∆x2)).

Only retaining the first-order terms gives

x′1 = x1 + R−1
11 (∆R1b − R1a∆x2 − ∆R1ax2) − R−1

11∆R11R−1
11 (R1b − R1ax2) + O(∥(∆A, δb)∥2),

in which

R−1
11 (∆R1b − R1a∆x2 − ∆R1ax2) − R−1

11∆R11R−1
11 (R1b − R1ax2)

= −R−1
11 R1a∆x2 + R−1

11

[
∆R1b − ∆R1ax2 − ∆R11R−1

11 (R1b − R1ax2)
]

= −R−1
11 R1a∆x2 + R−1

11 (∆R1b − ∆R1ax2 − ∆R11x1)

= −R−1
11 R1a∆x2 + R−1

11

(
−xT

1 ⊗ I −xT
2 ⊗ I I

)  vec(∆R11)
vec(∆R1a)
vec(∆R1b)

 .
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Hence,

∥x1 − x′1∥ ≤ ∥R−1
11 R1a∥∥∆x2∥ + ∥R−1

11 ∥(1 + ∥x∥
2)∥∆R∥F + O(∥(∆A, δb)∥2)

≤ ∥R−1
11 R1a∥

η + σ̃

σ − σ̃
(3 + 5∥x2∥) + ∥R−1

11 ∥(1 + ∥x∥
2)2ςη + O(η2)

≤ ∥R−1
11 R1a∥

6(η + σ̃)
σ − σ̃

(
√

1 + ∥x2∥
2) + ∥R−1

11 ∥(1 + ∥x∥
2)2ςη + O(η2),

where we use ∥vec(A)∥ = ∥A∥F and ∥A∥2 = ∥AAT
∥.

Also there is another bound can be found by (23) and (24). Because we have

∥∆R∥ ≤ η +
3κ(A) η

∥A∥

1 − 2κ(A) η
∥A∥

(∥A∥ + η),

so there comes the result (26).

It is not difficult to find that (25) and (26) can enjoy storage and computational advantages, and a good
estimation for the perturbation of the MTLS solution is provided by it with this point being well illustrated
by examples.

5. General errors-in-variables model

Because we have already established the formulas for the MTLS, the work is rather straightforward.
Comparing (5) with the LS solution shows that σ̃ and C determines the differences between both solutions,
in a sense, we could say that σ̃ measures the difference between both solutions, as well as the degree of
incompatibility of the set AX ≈ b and thus indicates how closely the data A, b fit the so-called general
errors-in-variables model, which is exactly expressed below

Proposition 5.1. Consider the linear system (2), let x = (xT
1 , x

T
2 )T be any n-dimensional column vector with x2 ∈ Rn2 .

Then

M(x) = (∆A2, δb) = (b − Ax)(xT
2 x2 + 1)−1(xT

2 , I)

has the minimal Frobenius norm which makes

(A1,A2 + ∆A2)x = b − δb

consistent.

Proof. For any fixed x, let the matrix (A1,A2 + ∆A2) be such that

(A1,A2 + ∆A2)x = b − δb

is consistent. Then

A1x1 + A2x2 + ∆A2x2 = b − δb
∆A2x2 − δb = b − (A1x1 + A2x2)(

∆A2 δb
) ( x2
−1

)
= b − Ax.

Among all those (∆A2, δb)s’,(
∆A2 δb

)
= (b − Ax)(xT

2 x2 + 1)−1(xT
2 , I) (27)

has the minimal Frobenius norm.
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This implies that the MTLS residual is orthogonal to the MTLS approximate subspace R([Â, b̂]), and the
length of the MTLS residual follows immediately

Proposition 5.2. Let x be a solution of the MTLS problem (2) with corresponding correction matrix (∆A2, δb), and
r be the MTLS residual, then

∥r∥2 = σ̃
√

1 + ∥x2∥
2
2,

∆A2 =
rxT

2

1 + ∥x2∥
2
2

,

δb = −
r

1 + ∥x2∥
2
2

,

and

∥∆A2∥
2
F =
∥(∆A2, δb)∥2F∥x2∥

2
2

1 + ∥x2∥
2
2

= σ̃2 ∥x2∥
2
2

1 + ∥x2∥
2
2

,

∥δb∥22 =
∥(∆A2, δb)∥2F

1 + ∥x2∥
2
2

= σ̃2 1
1 + ∥x2∥

2
2

.

Proof. By Liu [1], the MTLS problem (2) is equivalent to the following optimization problem

min
x

∥b − Ax∥22
1 + xTCx

= min
x

∥b − Ax∥22
1 + xT

2 x2
= σ̃2,

thereby

∥r∥2 = σ̃
√

1 + ∥x2∥
2
2.

(27) tells us that

∆A2 =
rxT

2

1 + ∥x2∥
2
2

,

δb = −
r

1 + ∥x2∥
2
2

,

and

∆AT
2∆A2 = σ̃

2 x2xT
2

xT
2 x2 + 1

,

δbTδb = σ̃2 1
xT

2 x2 + 1
,

then we have

∥(∆A2, δb)∥2F = σ̃
2,

and using the above three relationships reduce to

∥∆A2∥
2
F =
∥(∆A2, δb)∥2F∥x2∥

2
2

1 + ∥x2∥
2
2

,

∥δb∥22 =
∥(∆A2, δb)∥2F

1 + ∥x2∥
2
2

.
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In this section, we find that the parameters (σ̃ and C) are useful tools for getting more insight into the
sensitivity of both techniques with respect to perturbations.

6. Small sample statistical condition estimation

Although the expressions of the condition numbers presented are explicit, they involve the solution and
their computation is intensive when the problem size is large. Thus, practical algorithms for approximating
the condition numbers are worth studying. We propose statistical algorithms by taking advantage of the
superiority of the small sample statistical condition estimation(SCE) techniques.

We apply SCE that a small number of function evaluations at perturbed arguments suffices to give a
highly reliable condition estimate. Based on SCE method, we present a practical method for estimating the
condition numbers for the MTLS problem.

Given a differentiable function f : Rp
→ R, we are interested in the sensitivity at some input vector x.

Let z be a unit vector and δ be a small positive number. For the perturbation z of x, the gradient of f at
x ∈ Rp is the row vector ∇ f (x) = (∂ f (x)/∂x1, ∂ f (x)/∂x2, · · · ,
∂ f (x)/∂xp), and the Taylor expansion of f has the form

f (x + δz) = f (x) + δ∇ f (x)z + O(δ2).

It is easy to see that up to first-order in δ, we have

| f (x + δz) − f (x)| ≈ δ∇ f (x)z,

then the local sensitivity can be measured by ∥∇ f (x)∥2. We can see that the norm of the gradient can measure
the local sensitivity of f appropriately. If z is selected uniformly and randomly from the unit sphere Sp−1 in
Rp, which is denoted by z ∈ U(Sp−1). Then from [9], the expected value of the condition estimator ξ = |∇ f (x)z|

ωp

satisfies that

E(ξ) = ∥∇ f (x)∥2,

where ωp is the Wallis factor which only depends on p. For θ > 1 we have

Prob
(
∥∇ f (x)∥2
θ

≤ ξ ≤ θ∥∇ f (x)∥2
)
≥ 1 −

2
πθ
+ O(

1
θ2 ).

Thus ξ is a linear or first-order condition estimate in the sense that the chance of a catastrophically low
or high estimate is inversely proportional to the size of the error. In practice, the Wallis factor can be
approximated accurately [9] by

ωp ≈

√
2

π(p − 1
2 )
. (28)

While this is good, there are some situations in which we need more reliability. One way to achieve this is
to use more function evaluations to get different values ξ(1), ξ(2), · · · , ξ(m) corresponding to independently
randomly generated vectors z(1), z(2), · · · , z(m) in Sn−1 and then to take the average

ξ(m) ≡
ξ(1) + ξ(2) + · · · + ξ(m)

m
.

This is the so called ”averaged small-sample statistical method” [9] and it can be shown that for θ > 1,

Prob
(
∥∇ f (x)∥2
θ

≤ ξ(m) ≤ θ∥∇ f (x)∥2
)
≥ 1 −

1
m!

(2m
πθ

)m

+ O(
1
θm+1 ),

with asymptotic equality as θ → +∞ or m → +∞. Thus ξ(m) is an mth-order condition estimator. In
condition number estimation, usually we are interested in finding an estimate that is accurate to a factor
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of 10 (θ = 10). We can use multiple samples of z, denoted z j, to increase the accuracy of the condition
estimator. From [9], we know that

E
(√
|∇ f (x)z1|

2 + |∇ f (x)z2|
2 + · · · + |∇ f (x)z1|

k
)
=
ωp

ωk
∥∇ f (x)∥2.

Therefore, we can define the subspace condition estimator as

ν(k) =
ωk

ωp

√
|∇ f (x)z1|

2 + |∇ f (x)z2|
2 + · · · + |∇ f (x)zk|

2,

where (z1, z2, · · · , zk) is orthonormalized after z1, z2, · · · , zk are selected uniformly and randomly from
U(Sp−1). As shown in [9], these condition estimators give better results than the averaged statistical
estimators and are analytically very tractable. Usually, at most two or three samples are sufficient for high
accuracy. As an illustration, for k = 3, the estimator ν(3) has probability 0.9989 of being within a relative
factor of 10 of the true condition number ∥∇ f (x)∥2. These estimates are generally very accurate for θ > 10.

These results can be conveniently extended to vector-valued or matrix-valued functions through viewing
f as a map from Rs to Rt by means of the operations vec and unvec to transform between matrices and
vectors, where each of the t entries of f is a scalar-valued function. The unvec operation is defined as
A = unvec(v) which sets the entries of A to ai j = vi+( j−1)n for v = (v1, v2, · · · , vmn) ∈ R1×mn.

Here, we use SCE to give an algorithm for computing the normwise condition number. Denote κ j the
condition number of the function zT

j x, where z′js are random orthogonal vectors selected uniformly and

randomly from the unit sphere in n dimensions. From [3], we know that κ j can be computed by ∥M j∥
1
2
2

M j = zT
j

(
γB−1
λ ATAB−1

λ + σ̃
2γ̄B−1

λ (I − 2
CxxTC
γ̄

)B−1
λ

)
z j, (29)

taking the technique and notations adopted in [10], we see that

κ̃MTLS =
ωq

ωn

√√√ q∑
j=1

M2
j (30)

is an estimate for κMTLS(A, b).
We use the results above to give the SCE-based method for estimating the condition of the solution to

the MTLS problem under the genericity condition (4). Inputs of the method are the matrix A ∈ Rm×n and
the vector b ∈ Rm, and the output is the statistical estimate for the absolute condition number. In Algorithm
SCE-NCE the integer q ≥ 1 refers to the number of SCE samples.

Algorithm 1 SCE-NCE: Subspace condition estimate for κMTLS(A, b) of MTLS solution
1: Generate q vectors z1, z2, · · · , zq ∈ Rn with entries in the uniform continuous distribution U(0, 1). Or-

thonormalize the vectors using a QR factorization.
2: For j = 1, 2, · · · , q, calculate M j by (29).
3: compute the absolute condition number κ̃MTLS by (30) for κMTLS(A, b).

The sensitivity of componentwise perturbations can be measured by the SCE method similarly. It often
leads to a more realistic indication of the accuracy of a computed solution than that from the normwise
condition number. Just as shown in [3], the exact value of the condition number for the j-th component of
x is computed by

κc
j = ∥e

T
j

(
γB−1
λ ATAB−1

λ + σ̃
2γ̄B−1

λ (I − 2
CxxTC
γ̄

)B−1
λ

)
e j∥

1/2
2 , (31)

This algorithm is based on the original idea of SCE [9], which means that we estimate the Fréchet derivative.
To see the process more clearly, the readers need to notice that y j’s are just the Fréchet derivative estimates
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for the components of the MTLS solution. After generating and normalizing the random elements in
the first step, these random elements are overwritten by the componentwise product of (A, b) and these
elements. In the main step we need to calculate y j as

y j = B−1
λ (AT + 2

CxrT

γ̄
)(δb j − ∆A jx) + B−1

λ ∆AT
j r. (32)

At last, the condition vector containing κc
j’s are computed by

Algorithm 2 SCE-CCE: Subspace condition estimate for Componentwise condition estimate

1: Generate matrices (∆A(1), δb(1)), (∆A(2), δb(2)), · · · , (∆A(k), δb(k))with entries in N (0, 1). Orthonormalize
the following matrix(

⃗∆A(1) ⃗∆A(2) · · · ⃗∆A(k)

δb(1) δb(2)
· · · δb(k)

)
to obtain (q1, q2, · · · , qk) via modified Gram-Schmidt orthogonalization process. Each qi can be converted
into the desired matrices (∆A(i), δb(i)) with the unvec operation.

2: Let p = m(n + 1). Approximate ωp and ωk by using (28).
3: For j = 1, 2, · · · , k, calculate y j by (32).
4: compute the absolute condition vector κ̄abs by (33).

κ̄abs =
ωk

ωp

√
|y1|

2 + |y2|
2 + · · · + |yk|

2, (33)

where the square root and power operation are performed componentwise.

7. Numerical tests

In this section we give numerical examples to check the perturbation bounds, the statistical condition
estimates. The following numerical tests are performed via Matlab R2015a with machine precision µ =
2.22e − 16 in a laptop with Intel Core (TM)2 Duo CPU by using double precision.

Example 7.1. Take m = 100, n = 60, n1 = 30, n2 = 30. Choose 0 as the rand seed and use command rand in Matlab
to generate a random m × n matrix A with a uniform distribution on the interval (0,1).

(1) Choose 1 as the rand seed and generate a random vector b in Matlab. Then σ2 = 9.88e− 1, σ̃2 = 8.38e− 1,
σ̃2/σ̃2

−
= 0.85, where σ̃2

−
is the second smallest singular value of (R22,R2b). The MTLS problem is well

conditioned .

(2) Let b = 1m be an all-1 vector. Then σ2 = 9.88e − 1, σ̃2 = 1.89e − 1, σ̃2/σ̃2
−
= 0.19. Therefore, the MTLS

problem is well conditioned.

b ε ∥x̃−x∥2
∥x∥2

(16) (20), (25) κrel
MTLS(A, b) ∥(∆A,δb)∥F

∥(A,b)∥F
∥ρ̃−ρ∥2
∥ρ∥2

rand(m,1) 1e-6 2.609047e-09 9.726393e-8 4.726393e-8 7.412667e-7 1.0203e-09
ones(m,1) 1e-6 4.1806e-11 4.34547e-9 1.34547e-9 3.05349e-8 2.3019e-11

Table 1: Comparisons of forward error and upper bounds for a perturbed MTLS problem and the relative condition number of the
MTLS problem

In Table 1, we compare the exact relative error about MTLS solution with the upper bounds (16), (20) with
(25) and the above bounds κrel

MTLS(A, b) ∥(∆A,δb)∥F
∥(A,b)∥F

derived from (18). In actual calculation, we omit the high
order term in (25). In addition, we give the exact relative error about smallest sinular value of (Aε, b).
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Example 7.2. In this example [16] we consider the MTLS problem Ax ≈ b, where (A, b) is defined by

(A, b) = Y
(

D
0

)
ZT
∈ Rm×(n+1),

where Y = Im − 2yyT, y ∈ Rm, Z = In+1 − 2zzT, z ∈ Rn+1 are random unit vectors, D = dia1(n,n − 1, · · · , 1, 1 − εp)
for a given parameter εp.

Throughout this section, we take two samples and the average of the ratios are obtained by 1000 random
tests.

We compare the statistical result obtained via Algorithm SCE-NCE with the exact condition number
given in (17). Figure 1 shows the performance of SCE on the case where m = 200, n1 = 40, n2 = 40. It
shows the accuracy of our estimates, and we can find that if εp = 9.99976032e − 1, ratio = 0.97453, while
εp = 9.99952397e − 5, ratio = 1.03608,which confirms the accuracy of the statistical results.

Number of random tests

0 100 200 300 400 500 600

ra
ti
o

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
(a)

Number of random tests

0 100 200 300 400 500 600

ra
ti
o

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
(b)

Figure 1: SCE results κ̄mtls compared with the exact condition numbers κMTLS(A, b) of MTLS. Ratio = κ̄MTLS/κMTLS(A, b). The tested matrices are
of size 200 × 80 (a): εp = 9.99976032e − 1 and (b): εp = 9.99952397e − 5. The horizontal dotted lines stand for the average ratios.

For componentwise condition estimation, we take m = 200, n1 = 40, n2 = 40. in this part. In Figure 2,
we plot the ratio for εp = 9.99976032e− 1 and εp = 9.99952397e− 5 between the statistical condition estimate
via Algorithm SCE-CCE and the exact value computed by (31). It is observed that the ratio is close to 1 for
every component of MTLS solution. Therefore the statistical estimate is accurate with high probability in
practical computing.
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Figure 2: SCE results κ̄abs compared with the exact condition numbers κc
j of MTLS. Ratio = κ̄abs/κ

c
j . The tested matrices are of size 200 × 80 (a):

εp = 9.99976032e − 1 and (b): εp = 9.99952397e − 5. The horizontal dotted lines stand for the average ratios.

8. Conclusions

In this paper, we mainly present the perturbation analysis of the mixed least squares-total least squares
(MTLS). In the analysis of the first order perturbation, we first provide an upper bound that one can establish
the normwise condition number formulas for the MTLS problem from it. For easy estimation, we show
a lower bound for the normwise condition number which is proved to be optimal. In order to overcome
the problems encountered in calculating the normwise condition number, we give an upper bound for
computing more effectively and nonstandard and unusual perturbation bounds for the MTLS problem.
Both of the two types of the perturbation bounds can enjoy storage and computational advantages, and
demonstrate the superiority of them by the numerical examples. For getting more insight into the sensitivity
of the MTLS technique with respect to perturbations in all data, we analyze the corrections applied by MTLS
to the data in Ax ≈ b to make the set compatible. We also deduce the assumptions about the underlying
pertubation model. Thus indicates how closely the data A, b fit the so-called general errors-in-variables
model. They all reveal that the same parameters (σ̃ and C) mainly determine the correspondences and
differences between both techniques. On how to estimate the conditioning of the MTLS problem more
effectively, we propose statistical algorithms by taking advantage of the superiority of SCE techniques. The
SCE results are compared with the exact values in numerical experiments.
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