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Abstract. In the Hilbert space ℓ2
Ω

(Z; E) (Z := {0,±1,±2, ...}, dim E = N < ∞), the maximal dissipative
singular second-order matrix difference operators that the extensions of a minimal symmetric operator with
maximal deficiency indices (2N, 2N) (in limit-circle cases at ±∞) are considered. The maximal dissipative
operators with general boundary conditions are investigated. For the dissipative operator, a self-adjoint
dilation and is its incoming and outgoing spectral representations are constructed. These constructions
make it possible to determine the scattering matrix of the dilation. Also a functional model of the dissipative
operator is constructed. Then its characteristic function in terms of the scattering matrix of the dilation
is set. Finally, a theorem on the completeness of the system of root vectors of the dissipative operator is
proved.

1. Introduction

The contour integration method may help us to investigate the spectral analysis of the non-self-adjoint
(dissipative) operators. This method is about the separated spectrum with a sharp estimate of the resolvent.
In this method one should use the weak perturbations of self-adjoint operators and operators should have
sparse discrete spectrum. Since for wide classes of singular differential and difference equations there are
no asymptotics of the solutions, the method cannot be applied to them.

The theory of functional models of dilations represents a new trend in the spectral theory of dissipative
(contractive) operators (see [3-6, 16-18]). The characteristic function plays an important role in this the-
ory. This function carries the complete information on the spectral properties of the dissipative operator.
Hence, the dissipative operator becomes the model in the incoming spectral representation of the dilation.
The factorization of the characteristic function solves the problem of the completeness of the system of
eigenvectors and associated vectors (or root vectors). The computation of the characteristic functions of
dissipative operators is preceded by the construction and investigation of a self-adjoint dilation and of the
corresponding scattering problem. In fact, the characteristic function is realized as the scattering matrix (see
[15]). According to the Lax–Phillips scattering theory [15], the unitary group {U(s)} (s ∈ R:= (−∞,∞)) has
typical properties in the subspaces D− and D+, called the incoming and outgoing subspaces, respectively,
of the Hilbert space H, and have following properties ([15]):
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(i) U(s)D− ⊂ D−, s ≤ 0 and U(s)D+ ⊂ D+, s ≥ 0;
(ii) ∩s≤0U(s)D− = ∩s≥0U(s)D+ = {0};
(iii) ∪s≥0U(s)D− = ∪s≤0U(s)D+ = H;
(iv) D−⊥D+.
This theory for dissipative Jacobi operators and second-order difference (or discrete Sturm–Liouville)

operators has been applied in [3-6].
In this paper, the maximal dissipative singular second-order difference (or discrete Sturm–Liouville)

operators with matrix coefficients (in Weyl–Hamburger limit-circle cases at ±∞) are investigated in the
Hilbert space ℓ2

Ω
(Z; E). In fact, all maximal dissipative (accretive) and self-adjoint extensions of a minimal

symmetric operator are considered and maximal dissipative operators with general boundary conditions
are studied. A self-adjoint dilation of the maximal dissipative operator and its incoming and outgoing
spectral representations are constructed. Further the scattering matrix of the dilation, is determined by
the scheme of Lax and Phillips [15]. With the help of the incoming spectral representation, a functional
model of the maximal dissipative operator is constructed and its characteristic function is defined by the
scattering matrix of the dilation. Finally, using these results, a theorem on the completeness of the system
of eigenvectors and associated (or root) vectors of the maximal dissipative operators is proved.

2. Preliminaries

Let L1 f denote the sequence with components (L1 f ) j of the second-order matrix difference (or discrete
matrix Sturm–Liouville) equation on the whole-line for arbitrary vector sequence f =

{
f j

}
( f j ∈ E, j ∈ Z) as

(L1 f ) j := −A∗j−1 f j−1 + B j f j − A j f j+1 = λΩ j f j, (2.1)

where λ is a complex spectral parameter, A j,B j and Ω j are linear operators (matrices) acting in the N-
dimensional (N < ∞) Euclidean space E, and det A j , 0, B∗j = B j, Ω j > 0 ( j ∈ Z).

Setting P j = A j,Q j = B j −A j −A j−1, and ∆x j = x j+1 − x j, (2.1) can be written in Sturm–Liouville form (for
A j = A∗j, j ∈ Z)

−∆(P j−1∆ f j−1) +Q j f j = λΩ j f j ( j ∈ Z).

For arbitrary sequence f = { f j}, let L f denote the sequence with components (L f ) j defined by (L f ) j =

Ω−1
j (L1 f ) j ( j ∈ Z). For two vector sequences f =

{
f j

}
and 1 =

{
1 j

}
( j ∈ Z), we shall consider [ f , 1] the

sequence with components as [ f , 1] j = ( f j,A j1 j+1)E − (A j f j+1, 1 j)E ( j ∈ Z). Let m,n ∈ Z and n < m. Then we
have the Green’s formula

m∑
j=n

[(Ω j
(
L f

)
j , 1 j)E − (Ω j f j,

(
L1

)
j)E] = [ f , 1]m − [ f , 1]n−1. (2.2)

Let H := ℓ2
Ω

(Z; E) (Ω := {Ω j}, j ∈ Z) be the Hilbert space consisting of all vector sequences f =
{

f j

}
( j ∈ Z) such that

∞∑
j=−∞

(Ω j f j, f j) < ∞

with the inner product

(
f , 1

)
=

∞∑
j=−∞

(Ω j f j, 1 j)E.
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Next, denote by Dmax the set of all vectors f ∈ H such that L f ∈ H. The maximal operator Λmax is defined
on Dmax by setting Λmax f = L f . Green’s formula (2.2) implies that for arbitrary two vectors f , 1 ∈ Dmax, the
limits [ f , 1]−∞ = limn→−∞[ f , 1]n and [ f , 1]∞ = limm→∞[ f , 1]m exist and are finite.

Let Λmin denote the closure of the symmetric operator Λ′min defined by Λ′min f = Λmax f on the linear
set of finite vector sequences f = { f j} ( j ∈ Z), that is, the vector sequences f having only many nonzero
components. The minimal operator Λmin is symmetric, and Λ∗min = Λmax.

Let the symmetric operator Λmin has maximal deficiency indices (2N, 2N). This case is known as the
Weyl–Hamburger limit-circle cases hold at ±∞ for L or Λmin. There are several sufficient conditions that
guarantee Weyl–Hamburger limit-circle (or completely indeterminate) cases at ±∞ (see [2-9, 12-14]).

Let P(λ) = {P j(λ)} and Q(λ) = {Q j(λ)} ( j ∈ Z) denote the matrix solutions of (2.1) satisfying the initial
conditions

P0(λ) = I, P1(λ) = A−1
0 (λΩ0 − B0) , Q0(λ) = O, Q1(λ) = A−1

0 , (2.3)

where O (resp. I) is the zero (resp. identity) operator in E.
For the two matrix solutions U = {U j} and V = {V j} of (2.1) the Wronskian is

W j(U,V) := V∗j+1A∗jU j − V∗jA jU j+1 ( j ∈ Z).

W j(U,V) is independent of j. The solutions U and V of this equation are linearly independent if and
only ifW j(U,V) is nonzero. From (2.3) we haveW j(P,Q) = I ( j ∈ Z). Therefore, P(λ) and Q(λ) forms a
fundamental system of solutions of (2.1). For the theory of difference equations see [1, 8, 11].

Let us set Y = P(0), Z = Q(0), where Y =
{
Y j

}
and Z =

{
Z j

}
( j ∈ Z) are the matrix solutions of (2.1) with

λ = 0 satisfying the initial conditions (2.3) and

U j =

(
Y j Z j
Y j+1 Z j+1

)
( j ∈ Z).

Then, it is obtained with a direct calculation that

U−1
j =

(
Z∗j+1A∗j − Z∗jA j

−Y∗j+1A∗j Y∗jA j

)
and

U−1
j = JU∗j J

(
A∗j O
O A j

)
( j ∈ Z),

where

J = i
(

O I
−I O

)
, J = J∗, J2 = IE⊕E

and IE⊕E is the identity operator in E ⊕ E. Let us adopt the following notation:

(
S f

)
j :=

( (
S1 f

)
j(

S2 f
)

j

)
:= U−1

j

(
f j

f j+1

)

=

(
Z∗j+1A∗j f j − Z∗jA j f j+1

−Y∗j+1A∗j f j + Y∗jA j f j+1

) (
j ∈ Z

)
.

It can be seen that for f ∈ Dmax there exists a finite limit lim j→±∞(S f ) j =
(
S f

)
(±∞) (see [6]).

For arbitrary vectors f , 1 ∈ Dmax, the identity ([6])

[ f , 1]±∞ = (
(
S1 f

)
(±∞),

(
S21

)
(±∞))E − (

(
S2 f

)
(±∞),

(
S11

)
(±∞))E (2.4)
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holds.
We remind that a linear operator T (with dense domain D(T)) acting on some Hilbert spaceH is called

dissipative (accretive) if Im(T f , f ) ≥ 0 (Im(T f , f ) ≤ 0) for all f ∈ D(T) and maximal dissipative (maximal accretive)
if it does not have a proper dissipative (accretive) extension.

Let us consider the following linear maps of Dmax into E ⊕ E

Ψ1 f =
(
(S2 f )(−∞)
(S1 f )(∞)

)
, Ψ2 f =

(
(S1 f )(−∞)
(S2 f )(∞)

)
( f ∈ Dmax).

Then we have (see [6])
Theorem 2.1. For any contraction T in E ⊕ E, the restriction of the operator Λmax to the set of vectors f ∈ Dmax
satisfying the boundary condition

(T − I)Ψ1 f + i (T + I)Ψ2 f = 0 (2.5)

or

(T − I)Ψ1 f − i (T + I)Ψ2 f = 0 (2.6)

is, respectively, a maximal dissipative or a maximal accretive extension of the operator Λmin. Conversely, every
maximal dissipative (maximal accretive) extension of Λmin is the restriction of Λmax to the set of vectors f ∈ Dmax
satisfying (2.5) ((2.6)), and the contraction T is uniquely determined by the extension. These conditions define a
self-adjoint extension of Λmin if and only if T is unitary. In this case (2.5) and (2.6) are equivalent to the condition
(cos B)Ψ1 f − (sin B)Ψ2 f = 0, where B is a self-adjoint operator in E ⊕ E.

3. Self-adjoint dilation of the maximal dissipative operator

In the sequel we consider the maximal dissipative operator ΛT, where T is the strict contraction in E⊕E
(i.e., ∥T∥E⊕E < 1) generated by the expression Λmax and boundary condition (2.5).

The operator T + I must be invertible, since T is a strict contraction. Hence the boundary condition (2.5)
is equivalent to the condition

Ψ2 f + AΨ1 f = 0, (3.1)

where A = −i (T + I)−1 (T − I) , ImA > 0, and −T is the Cayley transform of the dissipative operator A. We
denote by Λ̂A (= ΛT) the maximal dissipative operator generated by the expression L and the boundary
condition (3.1).

It is known that a linear operator S acting in the Hilbert spaceH is maximal accretive if and only if −S is
maximal dissipative. Hence all results obtained for the maximal dissipative operators can be immediately
transferred to maximal accretive operators.

Let us form the orthogonal sum H := L2(R−; E⊕ E)⊕H⊕L2(R+; E⊕ E) called the main Hilbert space of the
dilation, where L2(R−; E ⊕ E) (R−:= (−∞, 0]) the ‘incoming’ and L2(R+; E ⊕ E) (R+ := [0,∞)) the ‘outgoing’
channels. The elements of H are three-component vector-valued functions g = ⟨χ−, y, χ+⟩. Let us consider
the operator LA acting in H generated by the expression

L⟨χ−, y, χ+⟩ = ⟨i
dχ−
dσ
,Λmaxy, i

dχ+
dξ
⟩ (3.2)

on the set of elements D(LA) satisfying the conditions: χ− ∈ W1
2(R−; E ⊕ E), χ+ ∈ W1

2(R+; E ⊕ E), y ∈ Dmax
and

Ψ2y + AΨ1y = Bχ−(0), Ψ2y + A∗Ψ1y = Bχ+(0), (3.3)

where B2:= 2ImA, B > 0, and W1
2 (R∓; E ⊕ E) is the Sobolev space. Then we have
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Theorem 3.1. The operator LA is self-adjoint in H. Moreover LA is a self-adjoint dilation of the maximal dissipative
operator Λ̂A (= ΛT).
Proof. For g,h ∈ D (LA) and g = ⟨χ−, y, χ+⟩, h = ⟨θ−, z, θ+⟩ one gets that(

LAg,h
)

H −
(
g,LAh

)
H = i (χ−(0), θ−(0))E⊕E

−i (χ+(0), θ+(0))E⊕E +
[
y, z

]
∞
−

[
y, z

]
−∞
. (3.4)

Using the boundary conditions (3.3) and (2.4), we obtain by direct computation that

i (χ−(0), θ−(0))E⊕E − i (χ+(0), θ+(0))E⊕E +
[
y, z

]
∞
−

[
y, z

]
−∞
= 0.

Thus, the operator LA is symmetric, and D(LA) ⊆ D(L∗A).
The operators LA and L∗A are generated by the same expression (3.2). Let us describe the domain of

L∗A. The sum that is outside the integral sign in bilinear form
(
LAg,h

)
H , g ∈ D(LA), h ∈ D

(
L∗A

)
, which are

obtained by integration by parts, is equal to zero:[
y, z

]
∞
−

[
y, z

]
−∞
+ i (χ−(0), θ−(0))E⊕E − i (χ+(0), θ+(0))E⊕E = 0. (3.5)

Further, from (3.3) we obtain that

Ψ1y = −iB−1 (χ−(0) − χ+(0)) , Ψ2y = Bχ−(0) + iAB−1 (χ−(0) − χ+(0)) .

Hence, using (2.4), we find that (3.5) is equivalent to the equality

i (χ+(0), θ+(0))E⊕E − i (χ−(0), θ−(0))E⊕E =
[
y, z

]
∞
−

[
y, z

]
−∞

=
(
Ψ1y,Ψ2z

)
E⊕E −

(
Ψ2y,Ψ1z

)
E⊕E = −i

(
B−1 (χ−(0) − χ+(0)) ,Ψ2z

)
E⊕E

− (Bχ−(0),Ψ1z)E⊕E − i
(
AB−1 (χ−(0) − χ+(0)) ,Ψ1z

)
E⊕E
.

Since the values χ±(0) can be arbitrary vectors, a comparison of the coefficients of χi±(0) (i = 1, 2, ..., 2N) on
the left and right of this equality gives that the vector h = ⟨θ−, z, θ+⟩ satisfies the boundary conditions (3.3):

Ψ2z + AΨ1z = Bθ−(0), Ψ2z + A∗Ψ1z = Bθ+(0).

This implies that D(L∗A) ⊆ D(LA), and hence, LA = L∗A.
Let us define V(s) := PU(s)P1, s ≥ 0, where U(s) := exp [iLAs] (s ∈ R) is the unitary group on H,

P : H→ H and P1 : H→ H the mappings defined by P : ⟨χ−, y, χ+⟩ → y and P1 : y→ ⟨0, y, 0⟩, respectively.
The operator family {V(s)} (s ≥ 0) is a strongly continuous semigroup of completely nonunitary contractions
on H. Let SA be the generator of this semigroup, i.e.,

SAy = lim
s→+0

[(is)−1(V(s)y − y)].

The domain of SA consists of all the vectors for which the limit exists and SA is a maximal dissipative.
Further the operator LA is called the self-adjoint dilation of SA ([16-18]). Our aim is to show that Λ̂A = SA,
and hence, LA is a self-adjoint dilation of Λ̂A. To do this, we first prove that the equality

P(LA − λI)−1P1y = (Λ̂A − λI)−1y, y ∈ H, Imλ < 0 (3.6)

holds. Let (LA − λI)−1P1y = h = ⟨θ−, z, θ+⟩. Then (LA − λI)h = P1y, and hence,

Λmaxz − λz = y, θ−(σ) = θ−(0)e−iλσ, θ+(ξ) = θ+(0)e−iλξ.
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Since h ∈ D(LA), we have θ− ∈ W1
2 (R−; E), and so θ−(0) = 0. Consequently, z satisfies the boundary

conditionΨ2z+AΨ1z = 0. Therefore, z ∈ D(Λ̂A), and since a point λwith Imλ < 0 cannot be an eigenvalue
of dissipative operator, then z = (Λ̂A − λI)y. Thus we have

(LA − λI)−1P1y = ⟨0, (Λ̂A − λI)−1y,B−1(Ψ2y + A∗Ψ1y)e−iλξ
⟩

for y ∈ H and Imλ < 0. Applying the mapping P to this equality, we obtain (3.5) and

(Λ̂A − λI)−1 = P(LA − λI)−1P1 = −iP
∫
∞

0
U(s)e−iλsdtP1

= −i
∫
∞

0
V(s)e−iλsds = (SA − λI)−1 , Imλ < 0.

Hence Λ̂A = SA, and this proves the theorem. □

4. Scattering theory of the dilation, functional model and completeness of the system of root vectors of
the dissipative operator

According to the Lax–Phillip’s scattering theory ([15]) the ‘incoming’ and ‘outgoing’ subspaces D−:=
⟨L2(R−; E ⊕ E), 0, 0⟩ andD+:= ⟨0, 0,L2(R+; E ⊕ E)⟩ in H = D− ⊕ H ⊕D+ has the following properties:

(1)U(s)D− ⊂ D−, s ≤ 0 andU(s)D+ ⊂ D+, s ≥ 0;
(2) ∩s≤0U(s)D− = ∩s≥0U(s)D+ = {0};
(3) ∪s≥0U(s)D− = ∪s≤0U(s)D+ = H;
(4)D− ⊥ D+;

where {U(s)} (U(s) := exp[iLAs], s ∈ R) is the unitary group on H.
The property (4) is obvious. For the property (1) (forD−, the proof is analogous) let us set Rλ = (LA−λI)−1.

For all λwith Imλ < 0 and for all g = ⟨0, 0, χ+⟩ ∈ D+, we have

Rλg = ⟨0, 0,−ie−iλξ
∫ ξ

0
eiλσχ+ (σ) dσ⟩

and hence Rλg ∈ D+. This implies that if h ⊥ D+, then

0 = (Rλg,h)H = −i
∫
∞

0
e−iλs(U(s)g,h)Hds, Imλ < 0,

and hence ((U(s)g,h)H = 0 for all s ≥ 0. Consequently, U(s)D+ ⊂ D+ for s ≥ 0, and the property (1) is
proved forD+.

To prove the property (2), let us define P+ : H → L2(R+; E ⊕ E) and P+1 : L2(R+; E ⊕ E) → D+ the
mappings defined by P+ : ⟨χ−, y, χ+⟩ → χ+ and P+1 : χ→ ⟨0, 0, χ⟩, respectively. Observe that the semigroup
of isometries U+(s) = P+U(s)P+1 , s ≥ 0 is the one-side shift in L2(R+; E ⊕ E). Indeed, the generator of the
semigroup of the shift Z(s) in L2(R+; E ⊕ E) is the differential operator i d

dσ with the boundary condition
χ(0) = 0. On the other hand, the generator B of semigroup of isometriesU+(s) (s ≥ 0) is the operator

Bχ = P+LAP+1χ = P+LA⟨0, 0, χ⟩ = P+⟨0, 0, i
dχ
dσ
⟩ = i

dχ
dσ
,

where χ ∈W1
2(R+; E⊕E) and χ(0) = 0. But since the generator determine the semigroup uniquely, it follows

thatU+(s) = Z(s), and hence,

∩s≥0U(s)D+ = ⟨0, 0,∩s≥0Z(s)L2(R+; E ⊕ E)⟩ = {0},
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i.e., the property (2) is proved.
According to the Lax–Phillips scattering theory, the scattering matrix is defined with the help of the

spectral representations. We shall construct these representations. In these process, we also prove the
property (3) of the incoming and outgoing subspaces.

We remind that the linear operatorL (with domainD(L)) acting in the Hilbert spaceH is called completely
non-self-adjoint (or pure) if there is no invariant subspaceM ⊆ D(L) (M , {0}) of the operator L on which
the restriction L toM is self-adjoint.
Lemma 4.1. Λ̂A is completely non-self-adjoint (pure).
Proof. Let Λ̂A be the self-adjoint part of Λ̂A in the subspace H0 ⊆ H. For g ∈ H0 ∩D(Λ̂A), g ∈ D(Λ̂∗A), one gets

0 = (Λ̂′Ag,g)E⊕E − (g, Λ̂′Ag)E⊕E = (Ψ1g,Ψ2g)E − (Ψ2g,Ψ1g)E

= (Ψ1g,−AΨ1g)E⊕E − (−AΨ1g,Ψ1g)E⊕E

= ((A − A∗)Ψ1g,Ψ1g)E⊕E = 2i(ImAΨ1g,Ψ1g)E⊕E.

Hence Ψ1g = 0. For eigenvectors yλ ∈ H0 of the operator Λ̂A, we have Ψ1yλ = 0. Using this result with
boundary condition Ψ2y + AΨ1y = 0, we have Ψ2yλ = 0 and yλ ≡ 0. Since all solutions of Ly = λy belong
to H, it can be concluded that the resolvent Rλ(Λ̂A) of the operator Λ̂A is a compact operator, and hence,
the spectrum of Λ̂A is purely discrete. So with the help of the theorem on expansion in eigenvectors of the
self-adjoint operator Λ̂′A,we have H0 = {0}, i.e., the operator Λ̂A is pure. The lemma is proved. □

For proving the property (3) let us set

H− = ∪s≥0U(s)D−, H+ = ∪s≤0U(s)D+.

Lemma 4.2. The equality H− +H+ = H holds.
Proof. Using the property (1) of the subspacesD±, we shall show that the subspace H′ = H⊖ (H− +H+) with
the form H′ = ⟨0,H′, 0⟩, is invariant with respect to the group {U(s)}, whereH′ is a subspace ofH. Therefore,
if the subspace H′ (and hence, also H′) were nontrivial, then the unitary group {U′(s)} restricted to this
subspace, would be a unitary part of the group {U(s)}, and therefore, the restriction Λ′A of the operator Λ̂A
to H′ would be the self-adjoint operator in H′. But the purity of the operator Λ′A implies that H′ = {0} and
H′ = {0}. So, the lemma is proved. □

Let φ = {φ j} and θ = {θ j} ( j ∈ Z) be the matrix solutions of the (2.1) with conditions

φ−1(λ) = O, φ0(λ) = −I, θ−1(λ) = A−1
−1, θ0(λ) = O. (4.1)

LetM(λ) be the matrix-valued function satisfying the conditions

M(λ)Ψ1φ = Ψ2φ, M(λ)Ψ1θ = Ψ2θ. (4.2)

The matrix-valued functionM(λ) is meromorphic in C with all its poles on real axis R, and that it has the
following properties:

(a) ImM(λ) ≤ 0 for Imλ > 0, and ImM(λ) ≥ 0 for Imλ < 0;
(b)M∗(λ) =M(λ̄) for all λ ∈ C, except the real poles ofM(λ).
Let χ j(λ) and θ j(λ) ( j = 1, 2, ..., 2N) denote the solutions of (2.1) satisfying the conditions

Ψ1χ j = (M(λ) + A)−1Be j, (4.3)

Ψ1θ j = (M(λ) + A∗)−1Be j ( j = 1, 2, ..., 2N), (4.4)

where e1, e2, ..., e2N are the orthonormal basis for E ⊕ E.
Let Υ−λ j ( j = 1, 2, ..., 2N) be the vector defined by

Υ−λ j (x, σ, ξ) = ⟨e−iλσe j, χ j(λ),B−1(M + A∗)(M + A)−1Be−iλξe j⟩.
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It must be noted that vectors Υ−λ j ( j = 1, 2, ..., 2N) for all λ ∈ R do not belong to H. However, Υ−λ j ( j =
1, 2, ..., 2N) satisfies the equation LΥ = λΥ and the boundary conditions (3.2). We define the transformation
F− : g→ 1̃−(λ) for the vectors g = ⟨χ−, y, χ+⟩ by

(
F−g

)
(λ) := 1̃−(λ) :=

2N∑
j=1

1̃−j (λ)e j,

where χ−, χ+ are smooth, compactly supported vector-valued functions, y = {y j} ( j ∈ Z) is a finite sequence,
and

1̃−j (λ) :=
1
√

2π
(g,Υ−λ j)H ( j = 1, 2, ..., 2N).

Lemma 4.3. H− is isometrically mapped by the transformation F− onto L2(R; E ⊕ E). For all vectors g,h ∈ H−, the
Parseval equality

(g,h)H = (1̃−, h̃−)L2 =

∫
∞

−∞

2N∑
j=1

1̃−j (λ)h̃−j (λ)dλ,

and the inversion formula

g =
1
√

2π

∫
∞

−∞

2N∑
j=1

Υ−λ j1̃
−

j (λ)dλ,

hold, where 1̃−(λ) = (F−g)(λ), h̃−(λ) = (F−h)(λ).
Proof. Let H2

±
(E ⊕ E) denote the Hardy classes in L2(R;E ⊕ E) consisting of the vector-valued functions

analytically extendable to the upper and lower half-planes, respectively. It needs to be showed that the
transformation F− mapsD− to H2

−
(E ⊕ E). For g,h ∈ D−, g = ⟨1−, 0, 0⟩, h = ⟨h−, 0, 0⟩, 1−, h− ∈ L2(R−; E ⊕ E),

we have

1̃−j (λ) =
1
√

2π
(g,Υ−λ j)H

=
1

2π

∫ 0

−∞

(
1− (σ) , e−iλσe j

)
E⊕E

dσ ∈ H2
−,

1̃−(λ) =
2N∑
j=1

1̃−j (λ)e j ∈ H2
−(E ⊕ E),

and the Parseval equality:

(g,h)H = (1̃−, h̃−)L2 =

∫
∞

−∞

2N∑
j=1

1̃−j (λ)h̃−j (λ)dλ.

Let us extend this equality to the all of the subspace H−. For this purpose, let us consider the dense set H′
−

in H− consisting of vectors, obtained on smooth, compactly supported vector-valued functions belonging
to D− by the following way: g ∈ H′

−
, g = U(s)g0, g0 = ⟨χ−, 0, 0⟩, χ− ∈ C∞0 (R−; E ⊕ E)). Using LA = L∗A,

U(−s)g ∈ ⟨C∞0 (R−; E ⊕ E), 0, 0⟩ and

(U(−s)g,Υ−λ j)H = e−iλs(g,Υ−λ j)H
(
j = 1, 2, ..., 2N

)
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for s > sg, sh, one gets that

(g,h)H = (U(−s)g,U(−s)h)H

=
1

2π

∫
∞

−∞

2N∑
j=1

((U(−s)g,Υ−λ j))H(U(−s)h,Υ−λ j)Hdλ

=

∫
∞

−∞

2N∑
j=1

1̃−j (λ)h̃−j (λ)dλ.

Passing to the closure, one obtains that the Parseval equality holds for all of the space H−. The inversion
formula follows from the Parseval equality if all integrals in it are understood as limits in the mean of the
integrals on a finite intervals. Finally, we have

F−H− = ∪s≥0F−U(s)D−

= ∪s≥0eiλsH2
−

(E ⊕ E) = L2(R; E ⊕ E).

This means that the transformation F− maps H− onto whole L2(R; E ⊕ E). So, the lemma is proved. □
Let

Υ+λ j (x, σ, ξ) = ⟨ΘA(λ)e−iλσe j, θ j(λ), e−iλξe j⟩ ( j = 1, 2, ..., 2N),

where

ΘA(λ) = B−1(M(λ) + A)(M(λ) + A∗)−1B. (4.5)

It can be seen that the transformation F+ : g → 1̃+(λ) for the vectors g = ⟨χ−, y, χ+⟩ is determined by the
formula

(F+g)(λ) := 1̃+(λ) :=
2N∑
j=1

1̃+j (λ)e j,

where χ−, χ+ are smooth, compactly supported functions, y = {y j} ( j ∈ Z) is a finite sequence, and

1̃+j (λ) :=
1
√

2π
(g,Υ+λ j)H ( j = 1, 2, ..., 2N).

The proof of the next result is analogous to that of Lemma 4.3.
Lemma 4.4. H+ is isometrically mapped by the transformation F+ onto L2(R; E ⊕ E). For all vectors g,h ∈ H+, the
Parseval equality

(g,h)H = (1̃+, h̃+)L2 =

∫
∞

−∞

2N∑
j=1

1̃−j (λ)h̃−j (λ)dλ,

and the inversion formula

g =
1
√

2π

∫
∞

−∞

2N∑
j=1

Υ+λ j1̃
+
j (λ)dλ,

are valid, where 1̃+j (λ) :=
(
F+g

)
(λ), h̃+(λ) := (F+h)(λ).
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The matrix-valued function ΘA(λ) is meromorphic in C, and all poles are in the lower half-plane. It is
obtained from (4.5) that that ∥ΘA(λ)∥E ≤ 1 for Imλ > 0 and ΘA(λ) is the unitary matrix for all λ ∈ R. Hence
for λ ∈ R, we get that

Υ+λ j =

2N∑
j=1

Θ jk(λ)Υ−λk ( j = 1, 2, ..., 2N),

where Θ jk(λ) ( j, k = 1, 2, ..., 2N) are entries of the matrix ΘA(λ). Hence, by Lemmas 4.3 and 4.4, this implies
H− = H+ and by Lemma 4.2, this shows that H− = H+ = H. Hence, the property (3) for {U(s)} above has
been established for the incoming and outgoing subspaces.

Hence we have the mappings: the transformation F− maps H isometrically onto L2(R; E ⊕ E); the
subspaceD− is mapped onto H2

−
(E ⊕ E), and the operatorsU(s) mapped to operators of multiplication by

eiλs. According to the Lax-Phillips theory ([15]), F− is an incoming spectral representation of the group
{U(s)}. Similarly, F+ is an outgoing spectral representation of {U(s)}. From the explicit formulas for Υ−λ j
and Υ+λ j ( j = 1, 2, ..., 2N), it follows that the passage from the F−-representation of a vector g ∈ H to its
F+-representation is accomplished as follows: 1̃+(λ) = Θ−1

A (λ)1̃−(λ) ([15]). Hence we have now proved
Theorem 4.5. The matrix Θ−1

A (λ) is the scattering matrix of the unitary group {U(s)} (of the self-adjoint operator
LA).

Recall that the analytic matrix-valued function S(λ) on the upper half-plane C+ is called inner function
on C+ if ∥S(λ)∥ ≤ 1 for λ ∈ C+ and S(λ) is a unitary matrix for almost all λ ∈ R. Let S(λ) be an arbitrary non-
constant inner matrix-valued function on the upper half-plane. Let us consider the subspace M = H2

+⊖SH2
+.

Then M , {0} is a subspace of the Hilbert space H2
+. We consider the semigroup of the operatorsZ(s) (s ≥ 0)

acting in M according to the formulaZ(s)χ = P
[
eiλsχ

]
, χ := χ(λ) ∈M, where P is the orthogonal projection

from H2
+ onto M. The generator of the semigroup {Z(s)} is denoted by C :

Cχ = lim
s→+0

[(is)−1(Z(s)χ − χ)]

and it is a maximal dissipative operator acting in M. Clearly, its domainD(C) consist of all vectors χ ∈M for
which the above limit exists. In the literature, the operator C is called a model dissipative operator. It should
be noted that the model dissipative operator, which is associated with the names of Lax and Phillips [15],
is a special case of a more general model dissipative operator constructed by Sz.-Nagy and Foiaş [16]. We
claim that S(λ) is the characteristic function of the operator C.

Under the unitary transformation F−, we have:

H→ L2(R; E ⊕ E), g→ 1̃−(λ) =
(
F−g

)
(λ),

D
−
→ H2

−(E ⊕ E),D+ → ΘAH2
+(E ⊕ E),

H ⊖
(
D
−
⊕D

+)
→ H2

+(E ⊕ E) ⊖ΘAH2
+(E ⊕ E),

U(s)g→ (F−U(s)F−1
− 1̃−)(λ) = eiλs1̃−(λ).

Using these formulas, we obtain that the operator Λ̂A (ΛT) is a unitary equivalent to the model dissipative
operator with the characteristic function ΘA(λ). Since the characteristic functions of unitary equivalent
dissipative operators coincide [16-18], we have proved
Theorem 4.6. The characteristic function of the maximal dissipative operator Λ̂A (ΛT) coincides with the matrix-
valued function ΘA(λ) determined by formula (4.5). The matrix-valued function ΘA(λ) is meromorphic in the
complex plane C and is an inner function in the upper half-plane.

Let L denote the linear operator with the domain D(L) in the Hilbert spaceH. The complex number λ0
is called an eigenvalue of the operator L if there exist a nonzero element u0 ∈ D(L) such that Lu0 = λ0u0.
Such vector u0 is called the eigenvector of the operator L corresponding to the eigenvalue λ0. The vectors
u1,u2, ...,uk are called the associated vectors of the eigenvector u0 if they belong toD(L) andLu j = λ0u j+u j−1,
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j = 1, 2, ..., k. The vector u ∈ D(L), u , 0 is called a root vector of the operator L corresponding to the
eigenvalue λ0, if all powers of L are defined on this vector and (L − λ0I)mu = 0 for some integer m. The set
of all root vectors of L corresponding to the same eigenvalue λ0 with the vector u = 0 forms a linear set
Mλ0 and is called the root lineal. The dimension of the linealMλ0 is called the algebraic multiplicity of the
eigenvalue λ0. The root linealMλ0 coincides with the linear span of all eigenvectors and associated vectors
of L corresponding to the eigenvalue λ0. Consequently, the completeness of the system of all eigenvectors
and associated vectors ofL is equivalent to the completeness of the system of all root vectors of this operator.

Characteristic function of the maximal dissipative operator Λ̂A (ΛT) can help us to know some spectral
properties of maximal dissipative operator. For example, showing the absence of the singular factor s(λ) in
the factorization detΘA(λ) = s(λ)B(λ) (B(λ) is the Blaschke product) one ensures that the completeness of
the system of eigenvectors and associated (or root) vectors of the operator ΛT (Λ̂A) in the space H (see [10,
16-18]).

We first use the following
Lemma 4.7. The characteristic function Θ̂T(λ) of the operator ΛT has the form

Θ̂T(λ) := ΘA(λ)

= Z1(I − T1T∗1)−
1
2 (Φ (σ) − T1)(I − T∗1Φ (σ))−1(I − T∗1T1)

1
2 Z2,

where T1 = −T is the Cayley transformation of the dissipative operator A, and Φ (σ) is the Cayley transformation of
the matrix-valued functionM(λ), σ = (λ − i) (λ + i)−1, and

Z1 := (ImA)−
1
2 (I − T1)−1(I − T1T∗1)

1
2 ,

Z2 := (I − T∗1T1)−
1
2 (I − T∗1)(ImA)

1
2 ,

|det Z1| = |det Z2| = 1.

Proof. From Theorem 4.6, one obtains that

ΘA(λ) = (ImA)−
1
2 (M(λ) + A)(M(λ) + A∗)−1(ImA)

1
2 .

Hence

ImA =
1
2i

(A − A∗) =
1
2

[(I − T1)−1 (I + T1) +
(
I + T∗1

)
(I − T∗1)−1]

=
1
2

[(I − T1)−1 + (I − T1)−1T1 + (I − T∗1)−1 + T∗1(I − T∗1)−1]

=
1
2

[(I − T1)−1 + (I − T1)−1
− I + (I − T∗1)−1 + (I − T∗1)−1

− I]

= (I − T1)−1 + (I − T∗1)−1
− I

= (I − T1)−1
[
I − T∗1 + I − T1 − (I − T1)(I − T∗1)

]
(I − T∗1)−1

= (I − T1)−1(I − T1T∗1)(I − T∗1)
−1
. (4.6)

Similarly,

ImA = (I − T∗1)−1(I − T∗1T1)(I − T1)−1. (4.7)

Let Φ1(λ) denote the Cayley transformation of the accretive operator

M(λ) = −i(I −Φ1(λ))−1(I + Φ1(λ))
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for Imλ > 0. Hence we obtain that

M(λ) + A = −i[(I −Φ1(λ))−1(I + Φ1(λ)) − (I − T1)−1(I + T1)]

= −i[−(I −Φ1(λ))−1(I −Φ1(λ) − 2I) + (I − T1)−1(I − T1 − 2I)]

= −i[−I + 2(I −Φ1(λ))−1 + I − 2(I − T1)−1]

= −2i[(I −Φ1(λ))−1
− (I − T1)−1]

= −2i(I − T1)−1(Φ1(λ) − T1)(I −Φ1(λ))−1. (4.8)

With the similar calculation one obtains that and

M(λ) + A∗ = −2i(I − T∗1)−1(I − T∗1Φ1(λ))(I −Φ1(λ))−1,

(M(λ) + A∗)−1 = −
1
2i

(I −Φ1(λ))(I − T∗1Φ1(λ))−1(I − T∗1). (4.9)

Using (4.7)-(4.9), we have

Θ̂T(λ) = ΘA(λ)

= Z1(I − T1T∗1)−
1
2 (Φ (σ) − T1)(I − T∗1Φ (σ))(I − T∗1T1)

1
2 Z2,

where

Φ(σ) := Φ1(−i(σ + 1) (σ − 1)−1),

Z1 := (ImA)−
1
2 (I − T1)−1(I − T∗1T1)

1
2 ,

Z2: = (I − T∗1T1)−
1
2 (I − T∗1)(ImA)

1
2 .

Clearly |det Z1| = |det Z2| = 1. Hence, the lemma is proved. □
The inner matrix-valued function Θ̂T(λ) is a Blaschke–Potapov product if and only if det Θ̂T(λ) is a

Blaschke product ([10, 16-18]). Then it follows from Lemma 4.7 that the characteristic function Θ̂T(λ) is a
Blaschke–Potapov product if and only if the matrix-valued function

ZT (σ) = (I − T1T∗1)−
1
2 (Φ (σ) − T1)(I − T∗1Φ (σ))−1(I − T∗1T1)

1
2

is a Blaschke–Potapov product in a unit disk.
In order to state the completeness theorem, we will first define a suitable form for the Γ-capacity (see

[10, 19]).
Let E be an n-dimensional (n < +∞) Euclidean space. In E, we fix an orthonormal basis v1, v2, ..., vn and

denote by Ek (k = 1, 2, ...,n) the linear span vectors v1, v2, ..., vk. If K ⊂ Ek, then the set of u ∈ Ek−1 with the
property Cap{ξ : ξ ∈ C, (u + ξvk) ∈ K} > 0 will be denoted by Γk−1K. (CapG is the inner logarithmic capacity
of the set G ⊂ C). The Γ-capacity of the set K ⊂ E is a number Γ-CapK:= sup Cap{ξ : ξ ∈ C, ξv1 ⊂ Γ1Γ2...Γm−1K},
where the sup is taken with respect to all orthonormal basics in E. It is known [10, 19] that every set K ⊂ E
of zero Γ-capacity has zero 2n-dimensional Lebesgue measure (in the decomplexified space E), however,
the converse is false.

Denote by L[E ⊕ E] the set of all linear operators acting in E ⊕ E. Let trS∗T denote the trace of the
operator S∗T. To convertL[E⊕E] into the 4N2-dimensional Euclidean space, we consider the inner product
⟨T,S⟩ = trS∗T for T,S ∈ L[E ⊕ E]. Hence, we may introduce the Γ-capacity of a set of L[E ⊕ E].

We will utilize the following important result of [10].
Lemma 4.8. Let Z(ξ) (|ξ| < 1) be a holomorphic function with the values to be contractive operators in L[E ⊕ E]
(i.e., ∥Z(ξ)∥ ≤ 1). Then for Γ-quasi-every strictly contractive operators T in L[E⊕ E] (i.e., for all strictly contractive
T ∈ L[E ⊕ E] with the possible exception of a set of Γ-capacity zero), the inner part of the contractive function

ZT(ξ) = (I − TT∗)−
1
2 (Z(ξ) − T)(I − T∗Z(ξ))−1(I − T∗T)

1
2
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is a Blaschke–Potapov product.
Summarizing all the obtained results for the maximal dissipative operators ΛT (Λ̂A), we have proved

the following
Theorem 4.9. For Γ-quasi-every strictly contractive T ∈ L[E⊕ E], the characteristic function Θ̂T(λ) of the maximal
dissipative operator ΛT is a Blaschke–Potapov product, and the spectrum of ΛT is purely discrete and belongs to the
open upper half-plane. For Γ-quasi-every strictly contractive T ∈ L[E ⊕ E], the operator ΛT has a countable number
of isolated eigenvalues with finite algebraic multiplicity and limit point at infinity, and the system of all eigenvectors
and associated vectors (or all root vectors) of this operator is complete in the space ℓ2

Ω
(Z; E).
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