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Abstract. In this paper, we consider pseudomonotone equilibrium problems and generalized variational
inequalities in Hilbert spaces. We suggest an iterative procedure for solving pseudomonotone equilibrium

problems and generalized variational inequalities. Strong convergence result is proved under some mild
assumptions.

1. Introduction

Let H be a real Hilbert space. Denote its inner product and norm by (-, -) and || -||, respectively. Let C ¢ H
be a nonempty closed convex set.

Definition 1.1. A bifunction g: C X C — R is said to be

(i) monotone if Yu',v" € C,
g’ ") + (", u") < 0.
(ii) pseudomonotone if the following relation holds

gu',0") > 0= g@'u") <0,vu', vt e C.

Remark 1.2. It is obviously that the monotonicity of g means the pseudomonotonicity of g. But the reverse is not
necessarily correct.
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Let g: C x C — R be a bifunction. Recall that the equilibrium problem is to find a point x € C such that
g(x,y) 20, Vye C. (1)

Denote the solution set of (1) by PME(C, g).

As an important tool, the equilibrium problem (1) incorporates in a useful way a great deal of problems,
such as variational inequality problems ([2, 4, 6, 35, 38, 41, 45]), fixed point problems ([1, 3, 10, 14, 19, 23,
31, 33, 46]) and so on. The equilibrium problem (1) has been continuously investigated and extended in the
literature, see e.g. [8, 9, 11, 15-17, 22, 26, 34, 39, 40, 47-49]).

Definition 1.3. An operator f : C — H is said to be
o w-strongly monotone if for all u,v € C,
(f(u) = f(v),u—0v) > wllu - |, (2)

where w > 0 is a constant.
o T-inverse strongly ¢-monotone if for all u,v € C,

(fu) = f©), o) = p)) = llf(u) = fOIP,

where T > 0 is a constant and ¢ : C — C is an operator.

Let f : C — H and ¢ : C — C be two operators. Recall that the generalized variational inequality ([21]) is
to find a point x* € C such that

(F(xN), p(x) = p(xM) >0, Vx e C. (3)

Use VI(C, f, ¢) to denote the solution set of problem (3).
If ¢ = I, the identity operator of C, then (3) reduces to find a point x* € C such that

(f(x",x—x"y >0, Vxe C. (4)

Variational inequality problems play important roles and provide a useful tool for studying numerous
valuable problems coming from water resources, finance, economics, medical images and so on ([5, 7, 25,
29, 37, 43]). In order to solve (4), many iterative algorithms, such as projection methods, proximal point
methods, extragradient methods, subgradient methods have been investigated, see, e.g., [12, 13, 18, 20, 24,
27,30, 32, 36, 42, 44].

In the present paper, we are interested in the pseudomonotone equilibrium problems and generalized
variational inequalities of finding a point 1" such that

ut € VI(C, f, ¢) and ¢p(u') € PME(C, g). (5)
Here, use I' to denote the solution set of problem (5), that is,
I'={x"Ix" € VI(C, f, ) and ¢(x*) € PME(C, g)}.

In this paper, we construct an iterative algorithm for solving (5). We show that the presented algorithm
strongly converges to en element in I'.

2. Preliminaries

Let C be a nonempty closed convex subset of a real Hilbert space H. Recall that an operator ¢ : C — H
is called p-Lipschitz (p > 0) if
lp(@) — (@Il < pllit — 2|, Vii, o € C.

When p < 1, ¢ is called p-contraction. When p = 1, ¢ is called nonexpansive.
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A bifunction g: C X C — R is said to be jointly sequently weakly continuous, if s,,t, € C satisfying
sy — x"and t, — y' imply that g(s,, t,) — g(x', y").

An operator F : H — 2H is called monotone iff (u — v,ii — #) > 0 for all u,v € dom(F), ii € F(u), and
¥ € F(v). A monotone operator F on H is called maximal iff its graph is not strictly contained in the graph
of any other monotone operator on H.

For given u' € H, there exists a unique point in C, denoted by projc[u'] such that

llu* = projc[u']ll < Ilx — u*, Vx e C.
It is known that projc is firmly nonexpansive, that is, projc satisfies

2
[

liprojclq*] - projclg*lI* < (projclg’] — projclqg'l, 4" — 4"), Vq',q" € H. (6)

Moreover, projc satisfies the following inequality
(q° = projclg’l,q" — projclg’]l) <0, ¥Yq € H,q" e C. (7)

Lemma 2.1 ([22]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let g: Cx C — R bea

bifunction which satisfies condition (C4) stated in Sec. 3. Let {\,} be a sequence satisfying A, € [A,A] € (0,1]. For
given r, € C, set

1
_ : + )
ty = argmin {g(rn,u )+ —ZAnllrn u'll }
Then the boundedness of {r,} implies that {t,} is bounded.

Lemma 2.2 ([26]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let g: CXC — R bea
bifunction which satisfies condition (C4) stated in Sec. 3. For given two points i1, € C and two sequences {a,} C C
and {b,} € C, ifa, — il and b, — T, respectively, then, for any € > 0, there exist « > 0 and N € IN verifying

€
329(bu,1,) € 929(0,7) + ~B
for every n > N, where B:={b € H : ||b]| < 1}.

Lemma 2.3 ([28]). Let {t,} C [0,00), {C,} < (0,1) and {n,} be real number sequences. Suppose the following
conditions are satisfied

(i) Tyl < (1 - Cn)Tn + N,y Vn>1;

(i1) ZZO:1 Cn = o0;

(iii) limsup 22 < 0 or X2 [l < oo.

n—oo n

Then lim, e T, = 0.

Lemma 2.4 ([19D. Let {y,} be a real number sequence. Assume there exists at least a subsequence {yy,,} of {y,} such
that

]/nk S yl’lk+1

forall k > 0. For every n > Ny, define an integer sequence {@(n)} as

@) =max{i <n: Yy < Yn1)-

Then ¢(n) — o0 as n — oo and for all n > No, max{Ye(m), Yn} < Yo(n)+1-
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3. Main results

In this section, we introduce an iterative algorithm for solving (5) and demonstrate its strong conver-
gence. Firstly, we state some assumptions regarding to the involved operators and parameters. Let C be a
nonempty closed convex subset of a real Hilbert space H. Assume that

(C1): ¢: C — Cis a p-contractive operator;
(C2): ¢ : C — Cis aweakly continuous and w-strongly monotone operator such that Range(¢) = C;
(C3): f:C — His a t-inverse strongly ¢-monotone operator;
(C4): g: C x C — Ris a bifunction which satisfies the following conditions
@): g(x",x")=0,vx" € C;

(ii): gis pseudomonotone on H;

(iii): g isjointly sequently weakly continuous on C X C;

(iv): Vxt € C, g(x', x) is convex and subdifferentiable on the second variable x € C.

Let{t7,}, {A,} and {C,} be three real number sequences in [0, 1] and {u,} and {8,,} be two real number sequences
in (0,00). Let y € (0,1) and a € (0, 1) be two constants. Assume that

(Al): limy—e 7y =0and Y74 T, = 00;
(A2): G, € a1, b1] € (0,1), Ay € [az,b2] C (0,1], By € [as,b3] C (0,2) and uy, € [ag, bs] C (0,27);
(A3): 0<p<w<2t
In what follows, we suppose that I' # 0. Next, we present an iterative algorithm for solving problem (5).

Algorithm 3.1. Let xg € C be a guess. Set n = 0.
Step 1. For given x,,, compute

= proje[TuP(x,) + (1 — 1) (P(xn) — pnf(x))]- (8)
Step 2. Compute

. 1
ty = arg min {g(rn,tﬁ) + mllrn - u*ll2}- )

Ift, = ry, then set y, = v, and go to Step 5. Otherwise, continuous to the next step 3.
Step 3. Find my, as the smallest positive integer number m such that

ZAn[g(wn,mr Tn) — g(wn,mz tn)] = 7”7% - tn”2 (10)
where
Wym = (1 —a™)r, +a™ty,. (11)

Write o, = o™ and wy, = Wy, .
Step 4. Compute

Yn = projc(ty — PuOndy), (12)

where 8, € Arg(wy, 1) and 0, = g(lrgn'“rzn).

Step 5. Compute

P(xu+1) = (1 = C)P(xn) + Culn- (13)
Step 6. Set n := n + 1 and return to step 1.
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Remark 3.2. We have the following conclusions:
(i) By the strong monotonicity of ¢, from (2), we have
llp(x) = Wl =z wllx = yll, Yx,y € C. (14)
Thus, the following varaitional inequality has a unique solution denoted by q*,

(Y(x) = o(x), p(y) — p(x)y <0, VyeT.

So, we have
W) - o), ¢(y) — (@) <0, VYyel. (15)

(ii) Since f is T-inverse strongly ¢-monotone, for any u € C, we have

() = pf () = (p(q") = uf@NI?
= llp() = GNP = 20 f () = £(g°), ) = (g + w2l f(w) = F(@IP
< lip(u) = p(g I = 2pll f(w) = F@IP + Il f @) = F@IP
< llp(w) = @ + (= 20N f () = F@IF.

(16)

(iii) Ift, = ry, then t, € PME(C, g). If t, # 1y, then O & dag(wy, v,,) and 9, # 0.
(iv) The linesearch rule (10) is all well-defined.

(v) g(wy,ry) > 0.

@) |lyn = x*IP < Nl = 21 = Bu(2 = Bu)(Oull94]1)? for all x* € PME(C, g).

Proposition 3.3. The sequences {x,}, {p(x,)}, {r.} and {t,} are bounded.

Proof. Note that q* € VI(C, f,¢) and ¢(5°) € PME(C, g). Then, ¢p(q*) = projcl¢(q*) — unf(g7)] for all n > 0. By
virtue of (16), we get

() = i f ) = (D) = n fF@NIP < NP () = PN + phn (i = 20N f () = F(@OIP

17
< () = SR, 17

and

”(P(xnﬂ ,Un+1f Xp41) — ((P(xn) - ,Un+1f Xn) )”2 < ||¢(xn+1) - (P (xn)l | + Hn+1(Hn+1 - ZT)Hf Xn+1) f(xn)”Z' (18)
According to (8), (14) and (17), we have

lIrn = P = llprojclTap(xn) + (1 = Ta)(P(xn) — pn f (xu))] = projclp(q”) — pn f ()]
S NTa(@n) = d@°) + i f (@) + (1= T)(P(xn) = pun f(xn)) = (P(G") = e f @I
< Tl () = Y@ + TallY(@) = (@) + waf (@)l
+(1- Tn)”(ﬂb(xn) - [Jnf(xn)) - (ﬂb(q*) - (unf(q*))”
< Tuplln = 4l + Talld (@) = P(@7) + pa f @I+ 1 = Ta)llpCen) = GG
< Tup/@llp@en) = @ + TullP(q7) — (") + pn f (@ + (1 = T)llPp(xn) — P
=[1-(1 = p/o)talllp(xn) = @ + Tall(q") — ¢(@") + pn f (@)l
<[1-Q0 - p/o)talllpxn) = @ + Tu(l(q) = G + 27l f(g7)ID)-

(19)
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By (17) and (19), we obtain

7w = @I < en(@n) = (g) + paf(G) + (1 = T)(P(xn) = i f () = (@) = pa f @I
< Tullp(xn) = (") + i f@NP + A = TID(xn) = i f(n)) = (D(q7) = pa f GNP (20)
< Tullp () = (") + pn f@NP + (1 = TP (xa) = GNP + g (it = 20N f () = F@OIP:

Note that
1y = @I < lrw = @ = pu(2 = ) (OullSull)®
|12 (21)
< it = I
Combining (13), (19) and (21), we obtain
(1) = PN < (1= Ca)lld(xn) = @M + Callyn — Pl
< (1= Collg(xn) = P@I + Callrn = (@)l
< (1= CllP(xn) = Q@ + Cull = (1 = p/w)Tu]llP(xn) = ()] 22)
+ Cita(l(q7) = PN + 27l £ (D
Y — () + 2 .
= 11— (1~ pla)Cta gt ~ H@ + (1~ pla)cye, )~ SN2
plw
Hence,
. o 1Y) — o@)I + 27l f(g)]]
Ip(aen) = d(@)ll < max {llpxo) - o, -~ )
It follows that
1 1 Y = @) + 2711 (@
= 1< 16630 = 900l < = max figtan) - (g1, - DL EZAD
Thus, {¢(x,)}, {x,} and {r,,} are bounded. By Lemma 2.1, {¢,} is bounded. O
Theorem 3.4. The sequence {x,} converges strongly to q* € I which solves VI (15).
Proof. By (13) and (21), we derive
lpCrns1) =A@ = A = C)(DCxn) = @) + Calyn = PN
= (1= Cllp(xn) = @ + Cullyn = SN = a1 = Cllyn = D)l 23)
< (1= Cllp(xn) = AP + Callrw = d@NP = Cul1 = Cllyn = p(n)I
= G2 = Bu)(OullSnll)*.
From (19), we get
. D) [\ 2
L L e I

Now we consider two cases. Case 1. There exists some large enough Ny > 0 such that {||p(x,) — P(g7)Il} is
decreasing when n > Ny. Then, lim,_, [[¢(x,) — ¢(g7)|| exists. In terms of (23), (24) and (A1), we have

Ca(1 - Cn)”yn - (P(xn)”z + Cn,gn(z - ﬁn)(en”SnH)Z
< lPp@n) = P@M = lpense1) = P@NF + Culllrn = PGP = llp(xn) — @]

Y (M + 2 A2
<105 = 9P = o) = 9@ I + (1 = proye, (D= FD )
-0,
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which together with (A2) implies that
Tim {lyn = P(x)ll = 0, (25)
and
lim 0,941 = 0. (26)
Furthermore, by (13), we obtain
Hm lp(xn+1) = Plaxa)ll = 0. (27)
Based on (20) and (23), we get
llp(ensr) = @I < (1 = C)llp(n) = PGP + Callrn = (@I
< (1= C)llpCen) = P@NP + Cuaullip(xn) = d(7) + pnf (@I
+ Cu(1 - Tn)[vln(,un - ZT)”f(xn) - f(lf)||2 + Cu(1 - Tn)”Qb(xn) - Qb(q*)llz (28)
< Mlpxn) = PN + Cutullp () — G(°) + n f(4)IP
+ (1 = T) (it = 20N f () = F@IP
It leads to

Cn(1 = T)n 2T — w)ll f () = F@IP < M) = P@NF = llp(xnsr) = @ + Cutullip(xn) = Pq7) + pn f(@OIP
< (lpCxn) = G + lp(xnr1) = @)D (xns1) — P(xn)l
+ CnTn”l,b(xn) - ¢(¢1*) + I»inf(q*)uz

- 0.
Therefore,
lim [|f(x0) = () = 0. (29)
Setd, = p(xy) — pnf(xn) — (P(g°) — unf(q")) for all n > 0. By (6) to (8), we get

lIrn = P = lprojeltap(xn) + (1 = Tu)((xn) = n fxa))] = projeld(@’) — waf (@I
<ATuP(xn) + (1 - Tn)(¢(xn) - an(xn)) - ¢(q*) - [’lﬂf(q*)/ Tn — Qb(q*»
= Tn<lp(xn) - <P(q*) + an(q*)/ Tn — ¢(q*)> + (1 = 1)dn, 10 — (P(q*»

< {1l + = S = 19) = 7o = F ) = FGDIP)
+ Tu(Q(xn) = Oq) + n f (), 10 — P(q))

< S{1660) = @ + 1 = GG = () = rll = il F ) = £
20 0) = P fn) = £+ TllP) = D)+ f@NIE — D

It results in that

I = Q@I < llp(xn) = PP = ) = Full® + 2pullp(xn) = rullll f () = £l
+ 27,19 () = P(q7) + wa f @l — (G-
From (28) and (30), we have
p(xne1) = PP < (1 = C)llPpGen) = PGP + Cullrn — PGNP

< llp(en) = GNP = Calld () = 7all® + 2uaallp(n) = rallll f () = F(@N
+ 20l (xn) = P(q7) + pn f (@M — PG,

(30)
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which implies that

Callp(x) = 1al? < (llp() = DG + (1) = P@NMNNP(Xns1) = Pl
+ 2unllPp(xn) = rullllf () = f(G)]
+ 20,1 (xn) — P(q7) + i f(@OMIrn — PG

According to (A1), (A2), (27), (29) and (31), we deduce
lim [lp(x,) = 7l = .
By Lemma 2.2, {9,} is bounded. Based on (26), we derive
Tim gy, ) = Tim @,18,)19,0 = 0.
With the help of the convexity of g(w,, -), we have
0 = g(wn, wn) = g(wy, (1 = an)ry + antn) < (1 = an)g(@n, ) + ang(wy, tn).
It follows from (10) that

Y n
2A,

g(wm Tn) > an[g(wnz n) — g(wnz tn)] > £, — 7n||2-

Combining the above inequality with (33), we deduce

lim ay ity — 7l = 0.
In addition, from (12), we have

yn = rull = llproje(rn = Bu€nSn) — proje(ra)ll < BuOullOull-
So, we get from (26) that

lim [y, —rull = 0.
n—+oo

Since {x,,} and {r,} are bounded, we can choose a subsequence {;} of {n} such that x,, — p" and

limsup(y(q°) = (@), ra = G(7)) = UmY(q") = @(F), 7, — (@))-

n—oo

Thus, ¢(xy,) = G(p"), yu, = ¢(p") and 1y, — G(p").
Now, we show p' € VI(C, f, ). Define an operator A by

n_ | f@h) +Nc@), uteC
AW = {(Z), ut ¢ C

3976

(31)

(32)

(33)

(34)

(35)

(36)

It is known that A is maximal ¢-monotone. Let (u',u) € G(A). Then, u — f(u") € Nc(u') and (p(u') -

O(xy), u— f(u)) > 0. Since
(p") = 1,10 = [Tt (i) + (1= T) (@) = ptaf ()] 2 0,

we have

(Gt -y, =2

+ Fn)) + ;—"<q>(u*> — 1 () = i f(n) — ¥(x,)) > 0.
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Thus,
(") = Pplan,), u) = (Ppu') = Pp(xy), f(u'))

2 <(P(Z/l+) - qb(xm)r f(u+)> - <¢)(u+) — Ty

- _Jf,.("—“") ¥ )

- %@(u*) — Py S 06n) =t f () — Y(X))
= <¢(u+) - (p(xn,-)r f(u+) - f(xn,-» + <7’n,- - ¢(xn,')r f(xn,»

B %<¢(u+) — Tgy O (Xn;) = o, f () — V(%)) (37)
I = Pn)

ni

— (") = 1, )

> (1, — O, f(xn,)) = (D) =7y, —

_ %«P(l[r) — Ty (P(xn,) - !’lnif(xni) - lﬁb(x”i»'

Ty — (P‘xn,) )

Note that [|r,, — ¢(xu)ll = 0, 75, = 0 and ¢(x,,) — ¢(p'). Letting i — oo in (37), we conclude that
(p@uh) — o(p),u) > 0. Thus, p* € A7(0). So, p" € VI(C, £, P).
Next, we show ¢(p") € PME(C, g). From (34), we get

lim ay,|lt, - 1’nill2 =0. (38)
i—+00
There exist two possibilities: limsup,_,,  a, > 0and lim;_,,c a,, = 0.

If limsup,_,, . a, > 0, there exists @ > 0 and a subsequence of {a,,}, still denoted by {«a,,} such that for
some Iy > 0, ay, > @ for all i > I. Consequently, by (38), we deduce

Tim |t — 7]l = 0. (39)
i—+00

Thus, ¥ — ¢(p?). According to (9), we get

1
—(tn; — 7n;) + Ne(tn,)-

0 € dag(rn,, tn,) + .

Then, there exists ‘§m € 029(rn;, ty;) such that

<\§n,-/]/ — by + /\i(tm —tp, Y=ty 20, Yy e C. (40)
Thanks to the subdifferential inequality, we have

g(rnl/ ]/) - g(rn,'/ ti’l,‘) Z <‘§n,/ ]/ - tni>/ V]/ € C (41)
Combining (40) and (41) to conclude

1
9, Y) — g(ru;, tn,) + /\_<t"i —tn, Y=ty 20, Yy e C (42)
Because of (t,, — 7y, ¥ — tn,) < Ity — ulllly — £y, I, from (42), we get
1
9t y) = 9(rny, ty) + A—Iltnf = T lllly = tull 2 0. (43)
ni

Letting i — +o0 in (43), by (39), we deduce

9PN, y) = 9(P("), p(") =0, Yy € C,
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which means that ¢(p*) € PME(C, 9).
For lim;_, ;s @y, = 0, since the sequence {t,,} is bounded, without loss of generality, we may assume that
t,, — § asi — +oo. Replacing y by r,, in (43), we get

1
g(”nf/tni) < _/\_”tn,' - T’n,»”z' (44)

nj

For m,,, — 1, from (10), we have

g(wn,‘,m"i—l/ rﬂ,‘) - g(wl’l,‘,m"i—l/ t‘/l,‘) < %”tn, - rn,'llz' (45)
According to (44) and (45), we get
2
g(rn,/ tﬂ,‘) S ;[g(wni,m”i—lr tn,-) - g(wn,-,m,,i—lr rn,-)]- (46)

Letting i — 400 in (46) and noting that r,,, — qb(p*), t,, = yand W, -1 — qb(p*) as i — +o00, we obtain

JSE™, 9) < ;Mm 7.

Then, g((j)(p*), 7) = 0 and hence lim; ., |lts, = 74|l = 0 by (44). Consequently, we can conclude that
¢(p") € PME(C, g). Therefore, p* € VI(C, f, ¢) N ¢~{(PME(C, g)) = T.
From (36), we obtain

limsup(y(q") = ¢(q), 1n = (g7)) = Mm@ (q") = ¢(q), 1, = H(q)) w
= W(@) = o), p(p") - d(g7) < 0.

By (8), we have

7w = d@IF = llprojeltatp(xn) + (1 = Tu)(@(xn) = paf ()] = projcled(q) — (1 = T)ua f (GNP
<At (xn) = () + (1 = 1), 1n = P(q7))
= TuQ(Xn) = (@), 10 = Q@) + TulP(@) = q), 70 = Q7)) + (1 = Tu)(Wn, 10 = P(T))
< [1-(1 - p/w)tulllp@n) = d@IlIra = PN + TuP(g") = P@), 70 — P(97)

1-(1- n
< %Ilqb(xn) — GNP + %Hrn — @I+ 1ul(@") = D), 10 = D))

It follows that
lIrw = d@IF < [1= (1 = p/@)tallipn) = PP +27:0(") = d@"), 10 = D).
Therefore,
llp(ensr) = @ < (1 = C)llp(n) = PGP + Callrn = D@
< [1 =1 = p/@)Cutalllp(xa) = PGNP + 20, Tl = P, 70 = S@))-

By Lemma 2.3 and (48), we conclude that ¢(x,) — ¢(g°) and x, — g".
Case 2. There exists an integer 1y > N such that [|p(x,,) — (@) < llPp(xng+1) — ¢ Let ¢, =
{llp(xn) — P(g7)I?}. Then, we have ¢y, < Pyor1. Let {p,} be an integer sequence defined by, for all n > ny,

(48)

(P(n) = maX{l €Njng <1<n, (PI < ¢1+1}-

Note that ¢(n) is non-decreasing and satisfies lim;, . ¢(1) = 00 and Py < Ppmy+1, Y1 = ng.
Similarly, we can deduce

Lim sup{y(q*) — $("), 7o) — P(g")) <0 (49)

n—o0
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and
2(1 - p/w)Ty(n)Cy(n) 2(1 - p/w)ty(n)Cy(n)
Py <1 - 1-1o(n)p/w IPoen) + 1-1,(n)p/w (50)
Tp(n) . . .
S gy M * T g7 ) ~ 9@, o) = 9D |
Note that ¢pu) < Pepm+1- By (50), we have
Tp(1) 1 . . .

Gotn) < 37 oM T 57 () = 00, 70) = 4. (51)
Based on (49) and (51), we derive

lim sup ¢y <0,
and thus

lim @y = 0. (52)

From (50), we can deduce

lim sup @y(n+1 < limsup Py m).-

n—o0o n—o0o

This together with (52) implies that

1}21;10 ¢(p(11)+1 =0.

By Lemma 2.4, we obtain

0 < ¢n < max{Pem), Poe+1}-

Therefore, ¢, — 0. That is, ¢p(x,) = ¢(9") and thus x,, — g*. This completes the proof. [
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