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On Hermite-Hadamard Type Inequalities Associated with the
Generalized Fractional Integrals
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Abstract. In this paper, we obtain new generalization of Hermite-Hadamard inequalities via generalized
fractional integrals defined by Sarikaya and Ertugral in [12]. We establish some midpoint and trapezoid

type inequalities for functions whose first derivatives in absolute value are convex involving generalized
fractional integrals.

1. Introduction

The inequalities discovered by C. Hermite and J. Hadamard for convex functions are considerable

significant in the literature (see, e.g.,[1], [5], [11, p.137]). These inequalities state thatif f : I — R is a convex
function on the interval I of real numbers and a4,b € I with a < b, then

b b
f(”;b)sﬁfa f(x)dxsf—(a);f( ) M

Both inequalities hold in the reversed direction if f is concave. We note that Hadamard’s inequality may
be regarded as a refinement of the concept of convexity and it follows easily from Jensen’s inequality.

The Hermite-Hadamard inequality, which is the first fundamental result for convex mappings with a
natural geometrical interpretation and many applications, has drawn attention much interest in elementary
mathematics. A number of mathematicians have devoted their efforts to generalise, refine, counterpart
and extend it for different classes of functions such as using convex mappings. For some papers on
Hermite-Hadamard type inequalities please refer to [2]-[4], [6], [9], [13]-[18].

The overall structure of the study takes the form of six sections including introduction. The remainder
of this work is organized as follows: we first mention some works which focus on Hermite-Hadamard
inequality. In Section 2, we summarize the generalized fractional integrals defined by Sarikaya and Ertugral.
In section 3 new Hermite-Hadamard type inequalities for generalized fractional integrals are proved. In
Section 4 and Section 5 midpoint and trapezoid type inequalities for functions whose first derivatives in

absolute value are convex via generalized fractional integrals are presented, respectively. Some conclusions
and further directions of research are discussed in Section 6.
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2. New Generalized Fractional Integral Operators

In this section, we summarize the generalized fractional integrals defined by Sarikaya and Ertugral in
[12].
Let’s define a function ¢ : [0, 0) — [0, o0) satisfying the following conditions :

1
f(P—(t)dt
, t

We define the following left-sided and right-sided generalized fractional integral operators, respectively, as
follows:

whof@ = [ EED s, x>a, )

b —
p-lpf(x) = f qot(t_ xx)f(t)dt, x <b. 3)

The most important feature of generalized fractional integrals is that they generalize some types of fractional
integrals such as Riemann-Liouville fractional integral, k-Riemann-Liouville fractional integral, Katugam-
pola fractional integrals, conformable fractional integral, Hadamard fractional integrals, etc. These impor-
tant special cases of the integral operators (2) and (3) are mentioned below.

i) If we take ¢ (t) = t, the operator (2) and (3) reduce to the Riemann integral as follows:

I f(x)= fx fHdt, x>a,

b
I-f(x) = f fHdt, x <b.

ii) If we take @ (f) = %, the operator (2) and (3) reduce to the Riemann-Liouville fractional integral [7]
as follows:

J* f(x —F()f(x—t)“lf(t)dt x>a,

Jp_f(x) = % f (t—x)*" f(t)dt, x <b.

iii) If we take ¢ (t) = 7 (a) %, the operator (2) and (3) reduce to the k-Riemann-Liouville fractional integral
as follows:

IT, f(x) kI‘( f(X—t)k_lf(t)dt x>a

B 4f0) = s f (-0t fot, x<b
where

Ty (a) = fo Tt an R@) > 0
and

T, (@) = k%-lr(%), R(a) > 0;k > 0

are given by Mubeen and Habibullah in [10].
In [12], Sarikaya and Ertugral also establish the following Hermite-Hadamard inequality for the gener-
alized fractional integral operators:
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Theorem 2.1. Let f : [a,b] — R be a convex function on [a,b] with a < b, then the following inequalities for
fractional integral operators hold

b b)
/ (Wzr )S 70D 1o f O + o-lpf@)] < f(a);f( @

where the mapping W : [0, 1] — R is defined by

 Ce-ab
W(x) = f — .
0

3. Hermite-Hadamard Type Inequalities for GeneralizeD Fractional Integral Operators

In this section, we will present a new Hermite-Hadamard inequality associated with the generalized
fractional integral operators.

Theorem 3.1. Let f : [a,b] — R be a function witha < band f € Ly [a,b]. If f is a convex function on [a, b], then
we have the following inequalities for generalized fractional integral operators:

a+b 1 a+b a+b\| _ f@@)+ f(b)
15 b (5 e (57| < 75 ©
where the mapping A : [0,1] — R is defined by
x b—a
-t
A(x)szdt.
0
Proof. Since f is a convex function on [g, b], we have
f(x+y)s [+ )
2 2
for x,y € [a,b] For x = &t + b and y = ¥a + b, we obtain
a+b 1-t 1+t 1+t 1-t
Zf( ) f( o+ — b)+f(—2 a+— b). 6)

(b "t)

Multiplying both sides of (6) by

we get
1
(1) [
0

1 b_ 1 _a
< f‘P 2 l—t 1+t dt+f(p 2 1+ta+1_tb)dt.
0 0

, then integrating the resulting inequality with respect to t over [0, 1],

2

For u = o+ Hpand v = $Ha + b, we obtain

a+b

2 f( )A(l)dt
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— atb ;
ij)f(u)du+f S )f(v)dv

IA

and the first inequality is proved.
For the proof of the second inequality (5), we first note that if f is a convex function, it yields

1-t¢ 1+¢ 1-t¢ 1+t
f(z“zb)szf PAL

and

IN

f(lgta+1;tb) 1;tf(a)+1;tf(b).

By adding these inequalities together, one has the following inequality:

f(l;m1;tb)+f(1;ta+1;tb)sf(a)+f(b). %

Then multiplying both sides of (7) by == e(51) n 2

[0,1], we obtain

[

That is,

and integrating the resulting inequality with respect to t over

bﬂt

1 b_ 1 b_
—t 1+t dt+f(p 2 1+ta )dt<f(a)+f(b)fqo 2
0 0

a+b

a+ b
atlpf(57) + b-lpf(—=) < A [f(@) + fO)]-
Hence, the proof is completed. [J
Remark 3.2. Under assumption of Theorem 3.1 with ¢ (t) = t, then inequalities (5) reduce to inequalities (1).

Corollary 3.3. Under assumption of Theorem 3.1 with ¢ (t) = then, we have the following inequalities

F(a) ’

a+b\ 2T (a+1)[, (a+b) ., [(a+] f(a) + f(b)
159 B 2 e () (5]« 245

Corollary 3.4. Under assumption of Theorem 3.1 with ¢ (t) = #%(a), then, we have the following inequalities
a+b\ Tp(a+k)2it a+b a+b fa)+ f(b)
f( 5 ) < 0 g)% Ig+,kf > + Ib—,kf > < > .

4. Midpoint Type Inequalities for Differentiable Functions with Generalized Fractional Integral Oper-
ators

In this section, firstly we need to give a lemma for differentiable functions which will help us to prove
our main theorems. Then, we present some midpoint type inequalities which are the generalization of
those given in earlier works.
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Lemma 4.1. Let f : [a,b] — R be differentiable function on (a,b) with a < b. If f* € L[a,b], then we have the
following identity for generalized fractional integral operators:

1 a+b a+b a+b
2A(1>“””f( )l"*"f( ) f(Z) ®
1 1
b—a ,(1—t 1+t 1-t¢
= 0 fA(t)f (Ta fA(t)f et b)dt]
Lo 0
where the mapping A(t) is defined by
1 b—a
-t
A(x):f@dt.
X
Proof. Integrating by parts, we have
1
L o= fA(t)f’(¥a 1”19) ©)
0
1 b—a
2 1—t 1+t\' 2 @(Tf) 1—-t 1+t
B b—aA(t)f( 2 at 2 b)o b—af t f( 2 2 b)dt
0

_ ——A(O)f(a+b) bz bl(pf(a+b)

and similarly we get

1

= [aor (Gt h)a= i 2oa0r(50) - 55 e (50 (10)
0
By subtracting equation (10) from (9), we have
b- b b b
2 1 ["”ﬂf(ﬁ) s (13) 4A0)f(a+)

By re-arranging the last equality above, we get the desired result. [

Corollary 4.2. Under assumption of Lemma (4.1) with ¢ (t) = t, then we have the following inequalities

—ff()dx f(Hb) U(l—t)f -4 ﬂb dt — f(l—t)f 1” ar 1t b)dt]

Corollary 4.3. Under assumption of Lemma 4.1 with ¢ (t) =

2“‘1F(a+1)[a (a+b) (a+b)
(b_a)a a+ ]

F(a then we have the following inequalities

-f(“ib)

—t“)f’(lgt ub dt—f(l t“)f 1” ;tb)dt.
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Corollary 4.4. Under assumption of Lemma (4.1)with ¢ (t) = a(a), then we have the following inequalities

28711 k b b b

o ’[mf(“ s iy
f aq t 1+t ag 1+t

= — | a-+¢F )f —b dt—f(l—t )f( —b)dt

Theorem 4.5. Let f : [a,b]
have the following inequality for generalized fractional integral operators:

o (15) - oo (5 ()

1
b_
K«)‘l)[fm(t)mt][ ].
0

’l, we have
1 b b b
o (157) (55 )]—f(“%)\
[ 1
b-a —t 1+t —t
< o f (Ta ‘dt+ b)ldt‘
L0
b-a ,
o f ol f pol[ | @) dt}

1
b-a ,
= 120 { f IA(H) dt] | +|r o]
0
This completes the proof. [J

Remark 4.6. Under assumption of Theorem 4.5 with ¢ (t) = t, then we have the inequality

i [

which was proved by Kirmaci in [8].

Corollary 4.7. Under assumption of Theorem 4.5 with ¢ (t) = r( a), then we have the following inequality
2¢7 1T (a + 1) a+b a+b a+b a(b—a)® +f
- <
ey Ay C: )“2(«“1) 2
Corollary 4.8. Under assumption of Theorem 4.5 with ¢ (t) = 7= (a) then we have the following inequality

a a+b o a+b a+b a(b—a)l_% ’ r
Ik (T)"'Ib_,k(T) _f( 2 )lS 2@+ b [ 5 ]

25 T (a + k)
(b-a)t
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Theorem 4.9. Let f : [a, , q > 1, is convex function,

then we have the following mequalztzes for generalized fractional mtegml opemtors

1 +b +b +b
i o (5 ot (5] (5
W3l oY (37 @+ o)
< 4A(0)[f|A Ipdt] [[ ; + .
o !
. o
o { Of A dt] |

1,1
where + + = = 1.
P q

(11)

IA

Proof. Taking modulus of (8) and using the well-known Holder inequality, we obtain

sl (2

< :A_(g) fl ’(¥a+¥b)‘dt+fl f’(¥a+¥b)'dt‘
Lo 0
< :A_(g) f]IA(t)I”dt]p [flf(%a =) ]q U (5 _tb)th]q
0 0
Since f’q,q > 1, is convex, we have
[l (s g s [l o+ 5t popja- VORI Ol
0 0

and similarly
1
of

By substituting inequalities (13) and (14) in (12) we obtain the first inequalty in (11).

(14)

_ q
1+t tb)d_

For the proof of second inequality, let a; = ) i ,a =3|f (a)|q and b, = ’ f (b)(q . Using
the fact that
Z(ak+bk) <Zak+Zb5,0<s<1 (15)

k=1

and 1+ 37 < 4, then the desired result can be obtained straightforwardly. O

Corollary 4.10. Under assumption of Lemma (4.9)with ¢ (t) = t, then we hve the following inequalities

o)
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[ £ @ +3|f <b>|f’]3 ) (3 £ @l +|f (b)rﬂ
4 4

b—af 1 7
4 \p+1

%[

26 (p+1)7
t()(

Corollary 4.11. Under assumption of Lemma (4.9)with ¢ (t) = 5, then we hve the following inequalities

f @]+

£ o).

27 T @+ 1) [, [(a+b\ ., [a+D a+b
o () e (5045
1 1 ol PN N PPNTAY:
< b;u f(l—x“)vdx [[‘f @ +43f (b)|] +[3f @) 4+f () H
0
1 ’
< bz_ga f(l—x"‘)”dx [IF @]+ |7 @]

0

Theorem 4.12. Let f : [a,b] — R be differentiable function on (a,b) witha < b. If
then we have the following inequality for generalized fractional integral operators:

‘%(1) [Hﬂpf(#) + b_Iﬁ(#)] ~ f(” er b)‘

1 1-
f ING) dt] [(B1
0

where the constants By and B, are defined by

q . .
,q =1, is a convex function,

f/

b—a
221 A(1)

f @[ +B,

PO + @l @f « 5l of)]

1

1
By = f IA(D)| (1 = t) dt and B, = f A (1 + t) dt.
0

0

Proof. The case of g = 1 is obvious from Theorem 4.5.
For q > 1 we proceed as follows. Taking modulus of (8) and using well-known power mean inequality,

we obtain
1 a+b a+b a+b
‘_2A<1> l“f@f (7) +olef (T)] -/ (T)\
[ 1 1
b—a (11—t 1+t 1+t 1-—t¢
e flA(t)| £ (Ta+7b)‘dt+f|A(t)| lf (Ta+Tb)‘dt}
L O 0
) 1 =001 . i
—-a
s Of |A<t>|dt] { Of A dtJ
1
f A
0

IA

,(1—-t 14+t
f(z‘” zb)

IN

1

1+t 1=t
f(—z o+ b)’ dtJ

+
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(5 “wf(“b)]‘f(”ib)\

f |A(t>|dt] [ [ w4
f|A(t)| Lr! o ar ];
_

b;u{ f 'A“)'df] [(B: 17 @I + Bl @) + (B2 @] + Bl @) |
0

22 A(1)

Since

1+t

4A(1

o]

which completes the proof. 0O

5. Trapezoid Type Inequalities for Differentiable Functions with Generalized Fractional Integral Oper-
ators

In this section, firstly we need to give a lemma for differentiable functions which will help us to prove
our main theorems. Then, we present some trapezoid type inequalities which are the generalization of
those given in earlier studies.

Lemma 5.1. Let f : [a,b] — R be differentiable function on (a,b) with a < b. If f* € L[a,b], then we have the
following identity for generalized fractional integral operators:

b
f(a)‘sz()_zj\l(1 [H wf(Hb) . I({)f(a+b)] 16)
1 1
b- t 1+t 1+t 1-t
= o fA(t)f( —b)dt—fA(t)f (—a - b)dt}
0 0

Proof. Integrating by parts, we have

1
—t 1+t
I A(t)f —a ——b]|dt (17)
f £

2 1-t 1+t
et 0f (e )

a+b
AW O) - T f ( 5 )
and similarly we get

1

fA(t)f(l+t %b)dz——/\(l)f(a)+ - M,f(“b) (18)

0
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Thus, we have

bh— f@+fb) 1 a+b a+b
4A(1) ( 3= 14) 5 2A(1) [u+ (pf( ) b— IfPf( )] :

This completes the proof. [J

Corollary 5.2. Under assumption of Lemma (5.1)with ¢ (t) = t, then we have the following inequalities

f(“+f(b) ff( U tf( —t, ﬁb)dt—ftf(l” %b)dt].

Corollary 5.3. Under assumption of Lemma (5.1) with ¢ (t) = F(a)’ then we have the following inequalities

f(a)+f(b)_2“‘11’(a+1)[a (a+b) (u+b)]
2 o-ay '™ J;-

b—al (", (1-t 1+t ap(Ltt 1t
- T[fotf(Ta —b)dt ftf( - b)dt].

Corollary 5.4. Under assumption of Lemma (5.1) with ¢ () = g (X then we have the following inequalities
f@+f®) 28Ty (a+k

a+b a+b
2 (b—a)% a+k b k 2
ob—al (M el (1-t 1+t a1+t 1t

Theorem 5.5. Let f : [a,b]
have the following inequality for generalized fractional integral operators:

f(a);f(b) 2[\1(1) [M (Pf(a+b) N I(Pf(a+b)]

1

f D)t

0

b—
AA(D)

1%

f @l

’| ,we have

‘f(a);f(b) 2{\1(1) [ q)f(a+b) thf(a+b)]

< :A_(f) Ofl '(%Lw%b)'dzwofl %b)'dt‘
o e P (I e e
L0
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[If @]+

£ o]

f D)t

which completes the proof. [

4A(1

q . .
"I, q > 1, is a convex function,

Theorem 5.6. Let f : [a,b] — R be differentiable function on (a, b)
then we have the following inequality for generalized fractional integral operators:

b
f(a);rf( ) 21\1(1) [M gDf(a+b) - I@f(“b)]l 19)
1 ) g " (a ’ “7 % 3¢ + | F |11 %
flA(t)l dt 1 + 1
0

f AP dt

IA(D)

[If @]+

wherer—]+ i 1.

we obtain
b 1 b b
‘f(a);rf() ZA(l)[Mf(H) hl@f(ﬁ )”
[ 1
b—a (2t (22—t ¢
et f(§a+—2 b)'dt+ f (—2 a+§b)'dt]
L0

1 % 1
b—a £ @|"+3]f ) 1
A f AP dt [[ 1 ]
0

1
3¢ ) q +
i 1
This completes the proof of first inequality in (19)
The proof of second inequality in (19) is obvious from the inequality (15). O

Theorem 5.7. Let f : | ,q =1, is convex function,

then we have the followzng mequulzty for generalized fractional mtegml opemtors

fO+10) 2A1<1> [ @f(“b) v-lof (+b)]|

f A dt

where the constants B3 and By are defined by

1_,

)‘q +Bs

i

)+ (B

Ba

1 1

Bs = f IA()| (1 — t)dt and By = f IA(H)| (1 + £)dt.

0 0
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Proof. The case of the g = 1 is obvious from the Theorem 5.5.
For q > 1, using well-known power mean inequality in Lemma 5.1, we obtain

i b () ()

< f/\_(f) fl (¥a 1+tb)’dt+j '(%a+%b)'dt
,ol ) )
< fA‘(f) f A dt
:
-t 1+t 1+t +%b)thq
'|?, we have
b))
NS
< :A;(la) f |A@)|" dt
:
f |A<t>| f A0 =17 @[ + %]dt q
S | |
_ zzqu;/\c:l) Bfm(t)wdt [(B3jf'(a)|"+B4ﬂf'(b)1‘7)ﬁ+(B4 +Bs )4]

The proof is completely completed. [

Remark 5.8. By special choice of the function ¢ in Theorem 5.5-Theorem 5.7, it can be written some remarks and
corollaries. We left them to interested readers.

6. Concluding Remarks

In this study, we consider the Hermite-Hadamard for convex function involving generalized fractional
integrals defined by Sarikaya and Ertugral in [12]. We also focus on midpoint and trapezoid type inequalities
for functions whose first derivatives in absolute value are convex via generalized fractional integrals. The
results presented in this study would provide generalizations of those given in earlier works.
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