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Abstract. In this paper, we introduce and study some new classes of invex sets and preinvex functions
with respect to an arbitrary function k and the bifunction η(., .); which are called the generalized preinvex
functions. These functions are nonconvex functions and include the preinvex function, convex functions
and k-convex as special cases. We study some properties of generalized preinvex functions. It is shown that
the minimum of generalized preinvex functions on the generalized invex sets can be characterized by a class
of variational inequalities, which is called the directional variational-like inequalities. Using the auxiliary
technique, several new inertial type methods for solving the directional variational-like inequalities are
proposed and analyzed . Convergence analysis of the proposed methods is considered under suitable
conditions. Some open problems are also suggested for future research.

1. Introduction

In recent years, several extensions and generalizations of the convex sets and convex functions have
been considered and investigated. Hanson [6] introduced the concept of invex function for the differen-
tiable functions, which played significant part in the mathematical programming. Ben-Israel and Mond
[1] introduced the concept of invex set and preinvex functions. It is known that the differentiable preinvex
function are invex functions. The converse also holds under certain conditions, see [11]. Noor [17] proved
that the minimum of the differentiable preinvex functions on the invex set can be characterized by a class
of variational inequalities, which is known as the variational-like inequality. It is worth mentioning that
variational-like inequalities include variational inequalities, the origin of which can be traced back to Stam-
pachia [36]. Variational inequalities can be viewed as a novel and significant extension of the variational
principles. For the recent developments in variational-like inequalities and invex equilibrium problems, see
[15, 17, 18, 32, 33] and the references therein. These results have inspired a great deal of subsequent work,
which has expanded the role and applications of the convexity in nonlinear optimization and engineering
sciences. Noor et al. [26–29] investigated the properties of the strongly preinvex functions and their variant
forms.
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In a many problems, a set may not be a convex set. To overcome this drawback, the underlying set can be
made a k-convex set with respect to an arbitrary function. Micherda et al [10] and Hazy [7] defined the so-
called (h, k) convex function which is a natural generalization of the usual convexity, the s-convexity in the
first and second sense. Noor [21, 25] introduced the k-convex functions and studied their characterizations.
It is worth mentioning that for k(t) = teiφ, theφ-convex functions were introduced and studied by Noor [21].

We would like to point out that invex sets, preinvex functions and k-convex sets, k-convex functions
are distinctly different generalizations of convex sets and convex functions in various directions. These
type of functions have played a leading role in the developments of various branches of pure and applied
sciences. It is natural to unify these classes and investigate their characterizations. Motivated and inspired
by the recent activities in these ares, we introduce some new classes of invex sets and preinvex functions
which are called modified generalized invex sets and generalized preinvex functions. These new class of
generalized invex sets and generalized preinvex functions include the φ-invex sets, φ-preinvex and Toader
type k-convex sets and k-convex functions. The new class of generalized preinvex functions can be viewed
as modified refinement of the (h, k) convex functions of Hazy. Several new concepts are defined and their
properties have been studied. We prove that the minimum of the differential generalized preinvex functions
on the generalized invex sets can be characterized by a class of variational-like inequalities, which are called
directional variational-like inequalities. This results inspired us to consider the directional variational-like
inequalities. It is well known that the projection methods, resolvent methods and their variant forms can not
be used to solve the directional variational-like inequalities due to their nature. To overcome this drawback,
one usually use the auxiliary principle technique, which is mainly due to Glowinski et al [5], which has been
used [15–18, 20, 32, 33, 40]to suggest and analyze several new iterative methods for solving a wide class of
unrelated problems arising in pure and applied sciences.. We again use the auxiliary principle technique
to suggest some inertial proximal iterative methods for solving directional variational-like inequalities.
Convergence analysis of the new proposed methods is considered under pseudomonontoncity and partially
strongly monotonicity. Our method of convergence proof is very simple as compared with other methods.
We have tried to convey the basic characterizations of these new classes of generalized preinvex functions
and their applications in optimization theory along with some open problems.

2. Preliminaries

Let Kk be a nonempty closed set in a normed space H.We denote by ⟨·, ·⟩ and ∥ · ∥ the inner product and
norm, respectively.

Definition 2.1. The set Kkη is said to be generalized invex set with respect to arbitrary function k and the bifunction
η(., .),if

u + k(t)η(v,u) ∈ Kkη, ∀u, v ∈ Kkη, t ∈ [0, 1].

Clearly, for k(t) = t, the set Kkη is an invex set Kη, which was introduced and studied by Ben-Israel and
Mond[1]

If k(t) = ts, s ∈ (0, 1] then the generalized invex set Kkη reduces to:

u + tsη(v,u) ∈ Kkη, ∀u, v ∈ Kkη, t ∈ [0, 1],

which is known as Toader type kη-invex set and appears to be a new one.
If η(v,u) = v − u, then the sets Kkη reduces to the set k-convex sets Kk, which have been introduced and
studied in [2, 7, 10].

From now onwards, the set Kkη is a generalized invex set, unless otherwise specified.
We now introduce the concept of generalized preinvex function with respect to an arbitrary function k and
bifunction η(., .).
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Definition 2.2. The function f on Kkη is called generalized preinvex function, if there exists an arbitrary function k
and bifunction η(., .), such that

f (u + k(t)η(v,u)) ≤ (1 − k(t)) f (u) + k(t) f (v), ∀u, v ∈ Kkη, t ∈ [0, 1].

Obviously every preinvex function with k(t) = t is a generalized preinvex function, but the converse
may not be true. For the properties and applications of preinvex functions, see [11, 17, 18, 21–23, 26–
28, 30, 31, 35, 38, 39] and the references therein
Also for t = 1, the generalized convex function reduces to:

f (u + k(1)η(v,u)) ≤ f (v), ∀u, v ∈ Kkη. (2.1)

If k(t) = ts, s ∈ (0, 1], then we have a new class of preinvex functions, which is called Toader’s type
preinvex functions.

Definition 2.3. The function f on Kkη is said to be quasi generalized preinvex function , if there exist a function k
and the bifunction η(., .), such that

f (u + k(t)η(v,u)) ≤ max{ f (u), f (v)}, ∀u, v ∈ Kkη, t ∈ [0, 1].

Definition 2.4. The function f on Kkη is said to be logarithmic generalized preinvex function, if there exist a function
k and the bifunction η(., .),such that

f (u + k(t)η(v,u)) ≤ ( f (u))1−k(t)( f (v))k(t), ∀u, v ∈ Kkη, t ∈ [0, 1],

where f (·) > 0.

From the above definitions, we have

f (u + k(t)η(v,u)) ≤ ( f (u))1−k(t)( f (v))k(t)

≤ (1 − k(t)) f (u) + k(t) f (v)
≤ max{ f (u), f (v)}, ∀u, v ∈ Kkη, t ∈ [0, 1],

Logarithmic generalized preinvex function −→ generalized preinvex functions and generalized preinvex
functions −→ quasi generalized preinvex functions, but the converse is not true.

We also need the following assumption regarding the bifunction η(·, ·) and the function k(t).
Condition M. Let η(·, ·) : Kkη × Kkη → H satisfy assumptions

η(u,u + k(t)η(v,u)) = −k(t)η(v,u)
η(v,u + k(t)η(v,u)) = (1 − k(t))η(v,u), ∀u, v ∈ Kkη, t ∈ [0, 1].

Clearly for k(t) = 0, we have η(u, v) = 0, if and only if u = v,∀u, v ∈ Kkη. One can easily show [11, 12] that
η(u + k(t)η(v,u),u) = k(t)η(v,u),∀u, v ∈ Kkη.
For k(t) = t, Condition M reduces to the Condition C, which is mainly due to Mohan and Neogy [11].

3. Properties of generalized preinvex functions

In this section, we discuss the properties of generalized preinvex functions and their variant forms.

Lemma 3.1. Let f be a generalized preinvex function. Then any local minimum of f on Kkη is a global minimum.
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Proof. Let the generalized preinvex function f have a local minimum at u ∈ Kkη. Assume the contrary, that
is, f (v) < f (u) for some v ∈ Kkη. Since f is a k-preinvex function, so

f (u + k(t)η(v,u)) ≤ f (u) + k(t)( f (v) − f (u)),

which implies that

f (u + k(t)η(v,u)) − f (u) < 0,

for arbitrary small k(t) > 0, contradicting the local minimum.

Essentially using the technique and ideas of the classical convexity [12], one can easily prove the
following results.

Theorem 3.2. If f is a generalized preinvex function on the generalized invex set Kkη, then the level set Lα = {u ∈
Kkη : f (u) ≤ α, α ∈ R} is a generalized invex set with respect to the function k and bifunction η(., .).

Theorem 3.3. The function f is a generalized preinvex function, if and only if, epi( f ) = {(u, α) : u ∈ Kkη, α ∈
R, f (u) ≤ α} is a generalized invex set with respect to the function k and bifunction η(., .).

Theorem 3.4. The function f is a quasi generalized preinvex function, if and only if, the level set Lα = {u ∈ Kkη :
f (u) ≤ α, α ∈ R} is a generalized invex set with respect to the function k and the bifunction η(., .).

Definition 3.5. The function f is said to be a pseudo generalized preinvex function with respect to the function k
and the bifunction η(., .), if there exists a strictly positive bifunction W(·, ·) such that

f (v) < f (u)⇒
f (u + k(t)η(v,u)) ≤ f (u) + k(t)(k(t) − 1)W(u, v), ∀u, v ∈ Kkη, t ∈ (0, 1).

Theorem 3.6. If the function f is a generalized preinvex function, then f is pseudo generalized preinvex function.

Proof. Without loss of generality, we assume that f (v) < f (u), ∀u, v ∈ Kkη. For every t ∈ [0, 1],we have

f (u + k(t)η(v,u)) ≤ (1 − k(t)) f (u) + k(t) f (v)
< f (u) + k(t)(k(t) − 1){ f (u) − f (v)}
= f (u) + k(t)(k(t) − 1)W(u, v),

where W(u, v) = f (u) − f (v) > 0. Thus, it follows the function f is a pseudo generalized preinvex function,
which is the required result.

Theorem 3.7. Let f be a generalized preinvex function. If 1 : L → R is a nondecreasing function, then 1 ◦ f is a
generalized preinvex function.

Proof. Since f is a generalized preinvex function and 1 is decreasing, we have, ∀u, v ∈ Kkη, t ∈ [0, 1]

1 ◦ f (u + k(t)η(v,u)) ≤ 1[(1 − k(t)) f (u) + k(t) f (v)]
≤ (1 − k(t))1 ◦ f (u) + k(t)1 ◦ f (v),

from which it follows that 1 ◦ f is a generalized preinvex function.

We now introduce the concept of k-directional derivative.

Definition 3.8. We define the k-directional derivative of f at a point u ∈ Kkη in the direction v ∈ Kkη by

D f (u, η(v,u)) : = f ′kη(u; η(v,u))

= lim
k(t)→0+

{
f (u + k(t)η(v,u)) − f (u)

k(t)
}.
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Note that for k(t) = t and η(v,u) = v, the k-directional derivative of f at u ∈ K in the direction v ∈ K coincides
with the usual directional derivative of f at u in a direction v given by

D f (u, v) := f ′(u; v) = lim
t→0+

f (u + tv) − f (u)
t

.

It is well known that the function v→ f ′kη(u; η(v,u)) is subadditive, positively homogeneous.

Definition 3.9. The differentiable function f on Kkη is said to be k-invex, if

f (v) − f (u) ≥ f ′kη(u; η(v,u)), ∀u, v ∈ Kkη,

where f ′kη(u; η(v,u)) is the k-directional derivative of f at u ∈ Kkη in the direction of v ∈ Kkη.

Theorem 3.10. Let f be a differential k-preinvex function on the k-invex set Kkη.Then the function v→ f ′kη(u; η(v,u))
is positively homogeneous and generalized preinvex function.

Proof. It is follow from the definition of the k-directional derivative that f ′kη(u;λη(v,u)) = λ f ′kη(u; η(v,u)),
whenever v ∈ Kkη and λ ≥ 0. Thus the function v→ f ′kη(u; η(v,u)) is positively homogeneous.
To prove the generalized preinvexity of the function v→ f ′kη(u; η(v,u)),we consider ∀u, v, z ∈ Kkη, k(t) ≥ 0,
λ ∈ (0, 1),

1
t

[ f (u + k(t)(λv + (1 − λ)η(v, z))) − f (u)]

=
1

k(t)
[ f (λ(u + k(t)η(v,u)) + (1 − λ)(u + k(t)η(z,u))) − f (u)]

≤
1

k(t)
[λ f (u + k(t)η(v,u)) + (1 − λ) f (u + k(t)η(z,u)) − f (u)]

= λ
f (u + k(t)η(v,u)) − f (u)

k(t)
+ (1 − λ)

f (u + k(t)η(z,u)) − f (u)
k(t)

. (3.1)

Taking the limit as k(t)→ 0+ in (3.1), we have

f ′kη(u;λη(v,u) + (1 − λ)z) ≤ λ f ′kη(u; η(v,u)) + (1 − λ) f ′kη(u; η(z,u)),

which shows that the function v→ f ′kη(u; η(v,u)) is k-preinvex, which is the required result.

For k(t) = t, the generalized preinvex function f becomes the preinvex function and the generalized invex
set Kk is an invex set.

Theorem 3.11. Let Kkη be a generalized invex set. If function f : Kkη → R is differentiable generalized preinvex
function such that k(0) = 0, and (2.1) holds, then the following statements are equivalent.

1. f is a generalized invex function.
2. f (v) − f (u) ≥ f ′(u; η(v,u)), ∀u, v ∈ Kkη.
3. kη-directional derivative f ′kη(·, ·) of f is k-monotone, that is,

f ′kη(u; η(v,u)) + f ′kη(v; η(u, v)) ≤ 0, ∀u, v ∈ Kkη.

Proof. Let f be a generalized preinvex function. Then

f (u + k(t)η(v,u)) ≤ f (u) + k(t){ f (v) − f (u)} ∀u, v ∈ Kkη, t ∈ [0, 1],

which can be written as

( f (v) − f (u)) ≥ {
f (u + k(t)η((v,u)) − f (u)

k(t)
}. (3.2)
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Taking the limit as k(t)→ 0+ in (3.2), we have

f (v) − f (u) ≥ f ′kη(u; η(v,u)), ∀u, v ∈ Kkη, (3.3)

showing that the generalized preinvex function f is a generalized invex function.

Changing the role of u and v in (3.3), we have

f (u) − f (v) ≥ f ′kη(v; η(u, v)), ∀u, v ∈ Kkη, (3.4)

Adding (3.3) and (3.4), we have

f ′kη(u; η(v,u)) + f ′kη(v; η(u, v)) ≤ 0, ∀u, v ∈ Kkη, (3.5)

which shows that the k-directional derivative f ′kη(·, ·) is k-monotone.

Conversely, let (3.5) hold. Since Kkη is a k-invex set, so

∀u, v ∈ Kkη, t ∈ [0, 1], vt = u + k(t)η(v,u) ∈ Kkη.

Replacing v by vt in (3.5) and simplifying, we have

f ′kη(vt; η(v,u)) ≥ f ′kη(u; η(v,u)), ∀u, v ∈ Kkη. (3.6)

Consider the auxiliary function

ζ(t) = f (u + k(t)η(v,u))) − f (u)
+t f ′kη(u; η(v,u)),∀u, v ∈ Kkη. (3.7)

Using k(0) = 0,we have

ζ(0) = 0 ,

ζ(1) = f (u + k(1)η(v,u)) − f (u) + f ′kη(u : η(v,u)). (3.8)

Since f is differentiable, so the function ζ(t) is also differentiable. Hence, using (3.6), we have

ζ′(t) = f ′(u + k(t)η(v,u)), η(v,u))
≥ f ′kη(u; η(v,u)). (3.9)

Integrating the inequality (3.9) on the interval [0, 1] and using (3.8), we have

f (u + k(1)η(v,u)) − f (u) + f ′kη(u : η(v − u)) = ζ(1) − ζ(0)

≥

∫ 1

0
f ′kη(u; η(v,u))dt

= f ′kη(u; η(v,u)),

from which, using (2.1), we obtain

f ′kη(u; η(v,u)) ≤ f (u + k(1)η(v,u)) − f (u) ≤ f (v) − f (u).

which is the required(3.3).
Now from (3.3), we have

f (v) − f (u + k(t)η(v,u)) ≥ f ′kη(u + k(t)η(v,u)); η(v,u + k(t)η(v,u)))

= (1 − k(t)) f ′kη(u + k(t)η(v,u)); η(v,u))) (3.10)

f (u) − f (u + k(t)η(v,u)) ≥ f ′kη(u + k(t)η(v,u)); η(u,u + k(t)η(v,u)))

= −k(t) f ′kη(u + k(t)η(v,u)); η(v,u))).. (3.11)
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Multiplying (3.10) by k(t), (3.11) by (1 − k(t)) and adding the resultant, we have

f (u + k(t)η(v,u)) ≤ f (u) + k(t){ f (v) − f (u)} ∀u, v ∈ Kkη, ∈ [0, 1],

which shows that the function f is a generalized preinvex function.

Theorem 3.12. Let the differential f ′kη(.; .) of the generalized preinvex function f be Lipschitz continuous with
constant β ≥ 0. If k(0) = 0, then

f (u + k(1)η(v,u)) − f (u)

≤ f ′kη(u; η(v,u)) + β∥η(v,u)∥2
∫
′

0
k(t)dt, ∀u, v ∈ Kkη. (3.12)

Proof. Since Kkη is a generalized invex set, ∀u, v ∈ Kkη, t ∈ [0, 1],we consider the function

φ(t) = f (u + k(t)η(v,u)) − f (u) − t f ′kη(u; η(v,u)).

Using k(0) = 0,we obtain

φ(0) = 0, φ(1) = f (u + k(1)η(v,u)) − f (u) − f ′kη(u; η(v,u)).

Also

φ′(t) = f ′k (u + k(t)η(v,u); η(v,u)) − f ′k(u; η(v,u)). (3.13)

Integrating (3.13) on the interval [0, 1] and using the Lipschitz continuity of f ′k (.; .) with constant β ≥ 0, we
have

φ(1) = f (u + k(1)η(v,u)) − f (u) − f ′k (u; η(v,u))

≤

∫ 1

0
|φ′(t)|dt

=

∫
′

0
| f ′k (u + k(t)η(v,u)); η(v,u)) − f ′k(u; η(v,u))|dt

≤ β

∫
′

0
k(t)∥η(v,u)∥2dt = β∥η(v,u)∥2

∫
′

0
k(t)dt,

4. Directional variational-like inequalities

In this section, we introduce and consider a new class of variational-like inequalities, which is called
directional variational-like inequality.
For given bifunctions D(., .), η(., .) : Kkη × Kkη −→ R,we consider the problem of finding u ∈ Kkη such that

D(u, η(v,u)) ≥ 0, ∀v ∈ Kkη, (4.1)

which is called the directional variational-like inequality.
We now show that the inequality (4.1) naturally arises as a minimum of the differentiable generalized
preinvex functions on the generalized invex sets. This is the main motivation of our next result.

Theorem 4.1. Let f be a differentiable generalized preinvex function on the generalizedinvex Kkη. Then the u ∈ Kkη
is the minimum of the differentiable generalized preinvex function f on the generalized invex set Kkη, if and only if,
u ∈ Kkη satisfies the inequality

f ′kη(u; η(v,u)) ≥ 0, ∀u, v ∈ Kkη. (4.2)
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Proof. Let u ∈ Kkη be a minimum of the generalized preinvex function f . Then

f (u) ≤ f (v), ∀v ∈ Kkη. (4.3)

Since K is generalized invex set, so, ∀u, v,∈ Kkη, t ∈ [0, 1],
vt = u + k(t)η(v,u) ∈ Kkη. Taking v = vt in (4.3), we have

f (u) ≤ f (vt) = f (u + k(t)η(v,u)),

which implies that

f (u + k(t)η(v,u)) − f (u)
k(t)

≥ 0.

Taking the limit as t→ 0+ in the above inequality, we have

f ′k (u; η(v,u)) ≥ 0 ∀v ∈ Kkη,

the required (4.2).
Conversely, let u ∈ Kkη be a solution of (4.2). Since f is a generalized preinvex function, it follows that

f (v) − f (u) ≥ f ′kη(u; η(v,u)) ≥ 0,

which implies that

f (u) ≤ f (v), ∀v ∈ Kkη,

showing that u ∈ Kkη is the minimum of the generalized preinvex function f , the required result.

The inequality of the type (4.2) is called the directional variational-like inequality, which is a special case
of directional variational-like inequality (4.1).

For k(t) = t, the generalized preinvex functions reduces to preinvex function, then the problem (4.2)
coincides with classical directional variational-like inequalities. It is worth mentioning that even the direc-
tional variational-like inequalities have not been studied in the literature.

We now discuss some important special cases of directional variational-like inequalities.

Special Cases

(I). We note that, if Kkη ≡ Kη, the invex set in H, then problem (4.1) is equivalent to finding u ∈ Kη such that

D(u, η(v,u)) ≥ 0, ∀v ∈ Kη. (4.4)

Inequality of type (4.4) is called the directional variational-like inequality, which appears to be a new one.

(II). If D(u, η(v,u)) = ⟨Tu, η(v,u)⟩, Kkη = Kη, where T is a nonlinear operator, then problem (4.1) is
equivalent to finding u ∈ Kη such that

⟨Tu, η(v,u)⟩ ≥ 0, ∀v ∈ Kη, (4.5)

which is called the variational-like inequality, see Noor [16–21].

(III). If D(u, η(v,u)) = ⟨Tu, v−u)⟩,where T is a nonlinear operator and Kkη = K, the convex set, then problem
(4.3) is equivalent to finding u ∈ H : 1(u) ∈ Kr such that

⟨Tu, v − u⟩ ≥ 0, ∀v ∈ K, (4.6)

which is called variational inequality, introduced and studied by Stampachia [36]. It has been shown a
wide class of obstacle boundary value and initial value problems which arise in various branches of pure
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and applied sciences can be studied in the general framework of variational inequalities (4.11). For the
applications, numerical methods, sensitivity analysis, dynamical system, merit functions and other aspects
of variational inequalities, see [5, 8, 13, 16–18, 20, 32, 33, 36, 40] and the references therein.

It is worth mentioning that for suitable and appropriate choice of the operators, generalized invex sets
and spaces, one can obtain a wide class of variational inequalities and optimization programming. This
shows that the directional variational-like inequalities are quite flexible and unified ones.

We now recall the following concepts and results.

Definition 4.2. A bifunction D(., .) : H ×H→ H is said to be:
(i) k-monotone, if and only if,

D(u, η(v,u)) +D(v, η(u, v)) ≤ 0, ∀u, v ∈ H.

(ii) k-pseudomonotone, if and only if,

D(u, η(v.u))) ≥ 0 implies that −D(v, η(u, v)),≥ 0, ∀u, v ∈ H.

(iii) partially relaxed strongly k-monotone, if and only if, there exists a constant α > 0 such that

D(u, η(v,u))) +D(v, η(z, v)) ≤ α∥η(z,u)∥2, ∀u, v, z ∈ H.

Note that for z = u, partially relaxed strongly k-monotonicity reduces to η-monotonicity. It is known that η-
monotonicity implies k-pseudomonotonicity; but the converse is not true.

We also recall the well-known result.

2⟨u, v⟩ = ∥u + v∥2 − ∥u∥2 − ∥v∥2, ∀u, v ∈ H. (4.7)

Theorem 4.3. Let the bifucntion D(., .) be k-pseudo-monotone, hemicontinuous and limt−→0 k(t) = 0. If Condition
M holds, then the directional variational-like inequality is equivalent to finding u ∈ Kkη such that

D(v, η(u, v)) ≥ 0, ∀v ∈ Kkη. (4.8)

Proof. Let u ∈ Kkη be a solution of inequality (4.1). Then, using
the k-pseudo monotonicity of the bifunction D(., .),we have

−D(v, η(u, v)) ≥ 0, ∀v ∈ Kkη. (4.9)

Since Kkη is a generalized invex set, so, ∀u, v ∈ Kkη, t ∈ [0, 1],
vt = u + k(t)η(v,u) ∈ Kkη.
Replacing v by vt in (4.9) and using Condition M, we obtain

−D(vt, η(u, vt)) = −D(u + k(t)η(v,u); η(u,u + k(t)η(v,u)))
= k(t)D(u + k(t)η(v,u); η(v,u)) ≥ 0,

which implies that

D(u + k(t)η(v,u), η(v,u)) ≥ 0, ∀v ∈ Kkη

Using the hemicontinuity of the bifunction D(., .) and taking the limit, we obtain the inequality (4.1),
since limt−→0 k(t) = 0.

Remark 4.4. We would like to mention that the inequality of the type (4.9) is known as the Minty directional
variational-like inequality or dual directional variational-like inequality. Using this equivalent result, one can show
that the solution set of the directional variational-like inequalities is a closed generalized invex set.
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Due to the inherent nonlinearity, the projection method and its variant form can not be used to suggest the
iterative methods for solving these directional variational-like inequalities. To overcome these drawback,
we now use the auxiliary principle technique of Glowinski et al.[10] as developed in [15–18, 20, 32, 33, 40]
to suggest and analyze some iterative methods for solving the directional k-variational-like inequality (4.1).
This technique does not involve the concept of the projection, which is the main advantage of this technique.

For a given u ∈ Kkη satisfying (4.1), consider the problem of finding w ∈∈ Kkη such that

ρD(w, η(v,w)) + ⟨w − u, v − w⟩ ≥ 0,∀v ∈ Kkη, (4.10)

where ρ > 0 is a constant. Inequality of type (4.10) is called the auxiliary directional variational-like
inequality. Note that if w = u, then w is a solution of (4.1). This simple observation enables us to suggest
the following iterative method for solving the directional k-variational-like inequalities (4.1).

Algorithm 4.5. For a given u0 ∈ Kkη, compute the approximate solution un+1 by the iterative scheme

ρD(un+1, η(u,un+1)) + ⟨un+1 − un, v − un+1⟩ ≥ 0,∀v ∈ Kkη. (4.11)

Algorithm 4.5 is called the proximal point algorithm for solving directional k-variational-like inequality
(4.1).
If Kkη = Kη, then the k-invex set Kkη becomes the standard invex set Kη, and consequently Algorithm 4.5
reduces to:

Algorithm 4.6. For a given u0 ∈ Kη, compute the approximate solution un+1 by the iterative scheme

ρD(un+1, η(v,un+1)) + ⟨un+1 − un, v − un+1⟩ ≥ 0, ∀v ∈ Kη,

which is known as the proximal point algorithm for solving directional variational-like inequalities (4.2) ,
which appears to be a new one.

We now consider the convergence criteria of Algorithm 4.5 and this is the main motivation of our next
result.

Theorem 4.7. Let the operator D(., .) : Kkη × Kkη −→ H be k-pseudomonotone. If un+1 is the approximate solution
obtained from Algorithm 4.5 and u ∈ Kkη is a solution of (4.1), then

∥u − un+1∥
2
≤ ∥u − un∥

2
− ∥un − un+1∥

2. (4.12)

Proof. Let u ∈ Kkη be a solution of (4.1). Then

−D(1(v, η(u, v)) ≥ 0, ∀v ∈ Kkη, (4.13)

since D(., .) is k-pseudomonotone.
Taking v = un+1 in (4.13), we have

−D(1(un+1), η(u,un+1)) ≥ 0. (4.14)

Setting v = u in (4.2), and using (4.11), we have

⟨un+1 − un,u − un+1⟩ ≥ −ρD(un+1, η(u,un+1)) ≥ 0. (4.15)

Setting v = u − un+1 and u = un+1 − un in (4.7), we obtain

2⟨un+1 − un,u − un+1⟩ = ∥u − un∥
2
− ∥un − un+1∥

2

−∥u − un+1∥
2. (4.16)

From (4.15) and (4.16), we obtain (4.12), which is the required result.
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Theorem 4.8. Let H be a finite dimension subspace and let un+1 be the approximate solution obtained from Algorithm
4.5. If u ∈ Kkη is a solution of (4.1), then limn−→∞ un = u.

Proof. Let u ∈ Kkη be a solution of(4.1). Then it follows from (4.12) that the sequence {un} is bounded and
∞∑

n=0

∥un − un+1∥
2
≤ ∥u0 − u∥2,

which implies that

lim
n−→∞

∥un − un+1∥ = 0. (4.17)

Let û be a cluster point of the sequence {un} and let the subsequence {u j } of the sequence {un} converge to
û ∈ Kkη. replacing un by un j in (4.17) and taking the limit n j −→ ∞ and using (4.11), we have

D(û, η(v, û)) ≥ 0, ∀v ∈ Kkη,

which implies that û solves the directional variational-like inequality (4.1) and

∥un − un+1∥
2
≤ ∥û − un∥

2.

Thus it follows from the above inequality that the sequence {un} has exactly one cluster point û and
limn−→∞ un = û. the required result.

It is well-known that to implement the proximal point methods, one has to calculate the approximate
solution implicitly, which is in itself a difficult problem. To overcome this drawback, we suggest another
iterative method, the convergence of which requires only partially relaxed strongly monotonicity, which is
a weaker condition that monotonicity.

For a given u ∈ Kkη satisfying (4.1), consider the problem of finding w ∈ Kkη such that

ρD(u, η(v,w)) + ⟨w − u, v − w⟩ ≥ 0, ∀ v ∈ Kkη, (4.18)

which is also called the auxiliary directional variational-like inequality. Note that problems (4.3) and (4.18)
are quite different. If w = u, then clearly w is a solution of the directional variational-like inequality
(4.1). This fact enables us to suggest and analyze the following iterative method for solving the directional
variational-like inequality (4.1).

Algorithm 4.9. For a given u0 ∈ H, compute the approximate solution un+1 by the iterative scheme

ρD(un, η(v,un+1)) + ⟨un+1 − un, v − un+1⟩ ≥ 0,∀v ∈ Kkη. (4.19)

Note that, for Kkη = Kη, the generalizedinvex set Kkη becomes an invex set Kη and Algorithm 4.9 reduces to:

Algorithm 4.10. For a given u0 ∈ K, calculate the approximate solution un+1 by the iterative scheme

ρD(un, η(v,un+1)) + ⟨un+1 − un, v − un+1⟩ ≥ 0, ∀v ∈ Kη,

which is known as the iterative method for solving the directional variational-like inequalities (4.2).

We now study the convergence of Algorithm 4.9 and this is the main motivation of our next result.

Theorem 4.11. Let the operator D(., .) be partially relaxed strongly monotone with constant α > 0. If un+1 is the
approximate solution obtained from Algorithm 4.9 and u ∈ Kkη is a solution of (4.1), then

∥u − un+1∥
2
≤ ∥u − un∥

2
− {1 − 2ρα}∥un − un+1∥

2. (4.20)
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Proof. Let u ∈ Kkη be a solution of (4.1). Then

D(u, η(v,u)) ≥ 0, ∀v ∈ Kkη. (4.21)

Taking v = un+1 in (4.21), we have

D(u, η(un+1,u)) ≥ 0. (4.22)

Letting v = u in (4.19), we obtain

ρD(un, η(u,un+1) + ⟨un+1 − un,u − un+1⟩ ≥ 0,

which implies that

⟨un+1 − un,u − un+1⟩ ≥ −ρD(un, η(u,un+1))
≥ −ρ{D(un, η(u,un+1))
+D(u, η(un+1,u)}

≥ −αρ∥un − un+1∥
2. (4.23)

since D(., .) is partially relaxed strongly monotone with constant α > 0.
Combining (4.22) and (4.23), we obtain the required result (4.20).

Using essentially the technique of Theorem 4.8, one can study the convergence analysis of Algorithm
4.9.

Using again the auxiliary principle technique, we can consider the following the following problems

For a given u ∈ Kkη satisfying (4.1), consider the problem of finding w ∈ Kkη such that

ρD(w, η(v,w)) + ⟨w − u + α(u − u), v − w⟩ ≥ 0,∀v ∈ Kkη, (4.24)

where ρ > 0 and α are constants. Note that, if w = u, then w is a solution of (4.1). Consequently, one can
suggest and analyze the following iterative method for solving the directional variational-like inequality
(4.1).

Algorithm 4.12. For a given u0 ∈ Kkη, compute the approximate solution un+1 by the iterative scheme

ρD(un+1, η(v,un+1)) + ⟨un+1 − un + α(un − un−1), v − un+1⟩

≥ 0, ∀v ∈ Kkη. (4.25)

Algorithm 4.12 is called the inertial proximal point algorithm for solving directional variational-like in-
equality (4.1).

Using again the auxiliary principle technique, we can consider the following the following problems.

For a given u ∈ Kkη satisfying (4.1), consider the problem of finding w ∈ Kkη such that

ρD(u, η(v,w)) + ⟨w − u + α(u − u), v − w⟩ ≥ 0,∀v ∈ Kkη, (4.26)

where ρ > 0 and α are constants. Note that, if w = u, then w is a solution of (4.1). Consequently, one can sug-
gest and analyze the following iterative method for solving the directional k-variational-like inequality (4.1).

Algorithm 4.13. For a given u0 ∈ Kkη, compute the approximate solution un+1 by the iterative scheme

ρD(un, η(v,un+1)) + ⟨un+1 − un + α(un − un−1), v − un+1⟩

≥ 0, ∀v ∈ Kkη. (4.27)
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Algorithm 4.13 is called the inertial explicit algorithm for solving directional variational-like inequality
(4.1).

Convergence analysis of Algorithm 4.12 and Algorithm 4.13 can be studied using the above ideas and
techniques of Noor [17] and Noor at al. [22, 23].

Remark 4.14. For k(t) = k, the directional variational-like inequalities reduce to variational-like inequalities. For
the applications, numerical methods and other aspects of variational-like inequalities, see [15, 17, 18, 32, 33] and
the references therein. Interested readers may explore the applications and other aspects such as gap functions, error
bounds, sensitivity of directional variational-like inequalities in various branches of pure and applied sciences.

Conclusion

In this paper, we have introduced and studied some new classes preinvex functions, which is called
the generalized preinvex functions. These concepts are more general and unifying ones than the previous
ones. Several new properties of these generalized preinvex functions are discussed and their relations with
previously known results are highlighted. It is shown that the optimality conditions of the differentiable
generalized preinvex functions can be characterised by a class of directional variational-like inequalities.
This result is used to introduce some new classes of directional variational-like inequalities (4.1). Some new
inertial type proximal methods are proposed using the auxiliary principle technique and their convergence
analysis is considered under some suitable conditions. It is itself an interesting problem to develop some
efficient numerical methods for solving directional variational-like inequalities along with their applications
in pure and applied sciences. Despite the current activity, much clearly remains to be done in these fields.
It is expected that the ideas and techniques of this paper may be starting point for future research activities.

Acknowledgements

We wish to express our deepest gratitude to our teachers, colleagues, students, collaborators and friends,
who have direct or indirect contributions in the process of this paper. We are also thankful to the Rector,
COMSATS University Islamabad, Pakistan for the research facilities and support in our research endeavors.
Authors are grateful to the referees for their valuable comments and suggestions.

References

[1] A. Ben-Isreal and B. Mond, What is invexity? J. Austral. Math. Soc., Ser. B, 28(1)(1986),1-9.
[2] G. Crestescu, M. Gaianu and M. U. Awan, Regularity properties and integral inequalities realted to (k, h1, h2)-convexity of

functions, Analele Universit. Vest Timisoara, Ser. Math.-Informat. LIII(1)(2015),19-35.
[3] G. Cristescu and L. Lupsa, Non-Connected Convexities and Applications, Kluwer Academic Publisher, Dordrechet, (2002)
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