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Abstract. In this paper, we study the nonconvex nonsmooth optimization problem (P) of minimizing a
tangentially convex function with inequality constraints where the constraint functions are tangentially
convex. This is done by using the cone of tangential subdifferentials together with a new constraint
qualification. Indeed, we present a new constraint qualification to guarantee that Karush-Kuhn-Tucker
conditions are necessary and sufficient for optimality of the problem (P). Moreover, various nonsmooth
(generalized) constraint qualifications that are a modification of the well known constraint qualifications
are investigated. Several illustrative examples are presented to clarify the connection between nonsmooth
constraint qualifications and new constraint qualification.

1. Introduction

Consider the following general nonlinear programming:

min f (x),
s.t.

1i(x) ≤ 0, i = 1, 2, . . . ,m,
x ∈ X0,

(NLP)

where f , 1i : Rn
−→ R (i = 1, 2, . . . ,m) are real valued functions and X0 is a subset of Rn. The most

important subjects in optimization problems are of finding the optimal solutions and optimality conditions.
Optimality conditions are the features that a feasible point of an optimization problem must be satisfied
them when it is a candidate for an optimal solution. Accordingly, establishing optimality conditions for
the problem (NLP) is one of the fundamentals in both the theory and practice. Although, an optimality
condition that is both necessary and sufficient is preferred, but such kind of conditions may only be valid
under some certain assumptions on the optimization problem, for example; convexity, differentiability.
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Therefore, in the past decades, a great deal of attention was given to establish the optimality conditions
for scalar optimization problems (see, for example; [1, 3, 7, 11, 13, 16–18, 24–26, 29, 30]), and moreover,
many classical results known for scalar optimization problems have been extended to vector-valued and
set-valued optimization problems (see, for example; [2, 12, 14, 15, 19–23, 32]). One of the most common
optimality conditions is Karush-Kuhn-Tucker (KKT) conditions [8, 10], and that the establishment of the
(KKT) optimality conditions depends on the representation of the feasible set. As a general rule, to obtain
a checkable necessary optimality condition for a given constrained optimization problem, one needs to
assume some properties of the constraint system called constraint qualifications (CQs in short).

The subject of constraint qualifications is of significant importance in optimization. Indeed, constraint
qualifications are corner stones for the study of the classical convex programming and they guarantee
necessary and sufficient conditions for optimality. Thus, the (KKT) conditions and constraint qualifications
play a key role in the study of optimization problems. Recently, the (KKT) conditions and constraint
qualifications were studied by many authors for vector-valued and set-valued optimization problems and,
in particular, for convex and nonconvex scalar optimization problems [1–3, 7, 11–23, 25, 27–30, 32]. Indeed,
in 2010, Lasserre [25] considered an optimization problem, whose the objective function is differentiable
and convex and constraint functions are differentiable but are not necessarily convex. In this case, it was
shown that Slater’s condition together with nondegeneracy condition ensures that the (KKT) optimality
conditions are necessary and sufficient. Moreover, in 2013, Dutta and Lalitha [13] by using Clarke’s
subdifferential introduced a nonsmooth version of Lasserre’s optimization problem, whose the objective
function is convex but is not necessarily differentiable and constraint functions are locally Lipschitz. In
continuation of the previous studies, in 2017, Chieu et al. [11], considered an optimization problem, whose
the objective function is convex and constraint functions are differentiable but are not necessarily convex,
and introduced the weakest constraint qualification that guarantees the (KKT) conditions are necessary for
optimality. In this case, in 2019, for the latter problem it was given a new constraint qualification that is the
weakest qualification for the (KKT) conditions to be necessary for optimality [7].

In this paper, our attention focuses on the class of tangentially convex functions. It should be noted
that Pshenichnyi [31] introduced this class of functions and they were called “tangentially convex“ by
Lemaréchal [26]. The tangentially convex functions cover a broad class of functions, for example; this class
contains Gâteaux differentiable functions, convex functions with open domain and locally Lipschitz regular
functions. A few works have been done in optimizing the problems with such constraint functions, includ-
ing: In 2015, Martı́nez-Legaz [29] presented necessary and sufficient optimality conditions for minimizing
of pseudoconvex functions over convex feasible sets described by tangentially convex functions in terms
of the notion of tangential subdifferentials. Actually, he has extended the results obtained in [13, 25]. Also,
in [30] the necessary optimality condition for minimizing of convex functions over nonconvex feasible sets
described by tangentially convex functions that are continuous at the feasible points was presented. More-
over, under an extra assumption (locally Lipschitzian of the constraint functions) the sufficient condition
has been given for optimality. Although, in all of the above mentioned works, the constraint functions are
not convex, but the feasible set and the objective function are convex, while in this paper, we go beyond
this and remove the convexity of the feasible set and the objective function. We consider a nonconvex
case of the problem (NLP), called the problem (P), whose the objective function is tangentially convex and
active constraint functions are tangentially convex at a given feasible point but are not necessarily convex
or differentiable, and moreover, the feasible set is not convex. Our aim is to present a condition on a
nonconvex feasible set defined by tangentially convex functions and provide a new constraint qualification
that guarantees the (KKT) conditions are necessary and sufficient for optimality of the problem (P). Our
results recapture the corresponding known results of [7, 11, 13, 25, 29, 30].

The paper has the following structure: In Section 2, we provide basic concepts, notations and preliminary
results related to nonconvex analysis and nonconvex geometry. Moreover, characterizing subdifferential
cone and its interior, and to describe the connection between various types of cone of directions which are
related to the negative polar of the subdifferential cone and also investigating various nonsmooth (general-
ized) constraint qualifications that are a modification of the well known constraint qualifications are given
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in Section 2. In Section 3, we present a new constraint qualification to guarantee that Karush-Kuhn-Tucker
conditions are necessary and sufficient for optimality of the problem (P). Several illustrative examples are
given to clarify the connection between nonsmooth constraint qualifications and new constraint qualifica-
tion.

2. Preliminaries

In this section, we provide some basic definitions, notations and results related to nonconvex analysis and
nonconvex geometry. Throughout the paper, we assume that Rn is the Euclidean space with the inner
product ⟨·, ·⟩ and the induced norm ∥ · ∥. The nonnegative orthant of Rn is defined by:

Rn
+ := {(x1, x2, . . . , xn) ∈ Rn : xi ≥ 0, i = 1, 2, . . . ,n} .

The closed ball in Rn with center at x ∈ Rn and radius r > 0 is defined by

B(x, r) :=
{
y ∈ Rn : ∥y − x∥ ≤ r

}
.

For a nonempty set X ⊆ Rn, we denote ([4, 9]) by coneX and conicX the cone generated by X and conical
hull of X, respectively, and are defined as follow:

coneX := R+X := {λx : λ ≥ 0, x ∈ X} ,

conicX :=
{ n∑

j=1

λ jx j : λ j ≥ 0, x j ∈ X, j = 1, 2, . . . ,n, n ∈N
}
.

We also define the negative and positive polar cone of X, by

X⊖ := {u ∈ Rn : ⟨u, x⟩ ≤ 0, ∀ x ∈ X} ,

and

X⊕ := {u ∈ Rn : ⟨u, x⟩ ≥ 0, ∀ x ∈ X} ,

respectively. It is not difficult to see that polar cone of a set X ⊆ Rn is a closed convex cone (see, for example;
[4, 9]).

The cone of feasible directions [3] of a nonempty set X ⊆ Rn at a point x ∈ X is defined by

FX(x) := {d ∈ Rn : ∃ δ > 0 ∋ x + λd ∈ X, ∀ λ ∈ [0, δ]} .

Clearly, FX(x) is a cone containing the origin. It can be seen that cl FX(x) ⊆ TX(x),where TX(x) is the tangent
cone of X at the point x ∈ X, and is defined by

TX(x) := {d ∈ Rn : ∃ tk > 0, ∃ dk ∈ R
n
∋ tk ↓ 0, dk −→ d, x + tkdk ∈ X, ∀ k ≥ 1} .

It is clear that TX(x) is a closed cone. However, TX(x) is not necessarily convex (see [3, 8]). The normal cone
of a convex set X ⊆ Rn at a point x ∈ X is defined by NX(x) := (X − x)⊖ (see [8]).

The cone of attainable directions [8] of a set X ⊆ Rn at a point x ∈ X is defined by

AX(x) :=
{
d ∈ Rn : ∃ δ > 0, ∃ a function α : R −→ Rn

∋ α(t) ∈ X, ∀ t ∈ (0, δ),

α(0) = x, and d = lim
t↓0

α(t) − α(0)
t

}
.
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In view of the definition of FX(x), AX(x) and TX(x), we have

FX(x) ⊆ AX(x) ⊆ TX(x). (1)

Moreover, since TX(x) is closed, we get

cl FX(x) ⊆ cl AX(x) ⊆ TX(x). (2)

The directional derivative [10] of a real valued function f : Rn
−→ R at a point x ∈ Rn in the direction

d ∈ Rn is given by the following if the limit exists.

f ′(x, d) := lim
t↓0

f (x + td) − f (x)
t

. (3)

The convex subdifferential [10] of a convex function f : Rn
−→ R at a point x ∈ Rn is defined by

∂ f (x) :=
{
ξ ∈ Rn : ⟨ξ, y − x⟩ ≤ f (y) − f (x), ∀ y ∈ Rn} .

For each x ∈ Rn, one has ∂ f (x) is a nonempty compact convex subset of Rn.Moreover,

f ′(x, d) := max
ξ∈∂ f (x)

⟨ξ, d⟩, d ∈ Rn. (4)

Definition 2.1. [3] A function f : Rn
−→ R is said to be locally Lipschitz at a point x0 ∈ Rn if there exist positive

real numbers L > 0 and δ > 0 such that, for each x, y ∈ B(x0, δ),

| f (x) − f (y)| ≤ L∥x − y∥.

The function f is said to be locally Lipschitz on Rn if f is locally Lipschitz at every point x ∈ Rn.

Definition 2.2. [3] Let f : Rn
−→ R be a locally Lipschitz function on Rn.

(i) The Clarke directional derivative of f at a point x ∈ Rn in the direction v ∈ Rn is defined by

f ◦(x, v) := lim sup
y−→x

t↓0

f (y + tv) − f (y)
t

.

(ii) The Clarke subdifferential of f at a point x ∈ Rn, ∂◦ f (x), is defined by

∂◦ f (x) :=
{
ξ ∈ Rn : ⟨ξ, v⟩ ≤ f ◦(x, v), ∀ v ∈ Rn} .

Remark 2.1. [3] For each x ∈ Rn, the Clarke directional derivative, f ◦(x, ·), is a sublinear function with respect to
the second variable (i.e., positively homogeneous and convex), and the Clarke subdifferential, ∂◦ f (x), is a nonempty
compact convex subset of Rn.Moreover, we have

f ◦(x, v) = max
ξ∈∂◦ f (x)

⟨ξ, v⟩, v ∈ Rn.

Definition 2.3. [3] A function f : Rn
−→ R is said to be regular at a point x ∈ Rn, if f is locally Lipschitz at x and,

for all v ∈ Rn, the classical directional derivative f ′(x, v) exists and

f ◦(x, v) = f ′(x, v), ∀ v ∈ Rn.

The function f is called regular on Rn, if f is regular at every point x ∈ Rn.

Definition 2.4. [29] A function f : Rn
−→ R is said to be tangentially convex at a given point x ∈ Rn if, for each

d ∈ Rn, the limit in (3) exists, finite and f ′(x, ·) is a convex function with respect to the second variable.
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Remark 2.2. It should be noted that, in view of Remark 2.1 and Definition 2.3, if f : Rn
−→ R is a regular function

at a point x ∈ Rn, then, f is tangentially convex at x.

Now, by using the concept of tangential convexity, we define the tangential subdifferential of a function
f : Rn

−→ R at a point x ∈ Rn as follows.

Definition 2.5. [29] Let f : Rn
−→ R be a tangentially convex function at a point x ∈ Rn. The tangential

subdifferential of f at the point x is defined by

∂T f (x) :=
{
ξ ∈ Rn : ⟨ξ, d⟩ ≤ f ′(x, d), ∀ d ∈ Rn} . (5)

Remark 2.3. [29] It should be noted that if f : Rn
−→ R is a tangentially convex function at a point x ∈ Rn, then

the directional derivative of f at the point x in the direction d ∈ Rn is the support function of ∂T f (x), i.e., one has

f ′(x, d) = max
ξ∈∂T f (x)

⟨ξ, d⟩, d ∈ Rn. (6)

Moreover, if the function f : Rn
−→ R is tangentially convex at a point x ∈ Rn, then it is clear that f ′(x, ·) is a

positively homogeneous function, and hence, in view of Definition 2.4, f ′(x, ·) is sublinear with respect to the second
variable. If f : Rn

−→ R is tangentially convex at a point x ∈ Rn, then ∂T f (x) is a nonempty compact convex set in
Rn.

We now give the following lemma which has a crucial role for proving the main results and it has been
proved in [6].

Lemma 2.1. [6] Let X be a subset of Rn, and let f : Rn
−→ R be a tangentially convex function at a point x∗ ∈ X.

Assume that f is continuous at x∗ and x∗ is a minimizer of f over X. Then

TX(x∗) ∩
{
d ∈ Rn : f ′(x∗, d) < 0

}
= ∅. (7)

We now consider the following nonconvex nonsmooth constrained optimization problem:

min f (x),
s.t.

x ∈ X,
(P)

with the constraint set X is defined by:

X := C ∩ K, (8)

where

K :=
{
x ∈ Rn : 1i(x) ≤ 0, i = 1, 2, . . . ,m

}
, (9)

C is a subset ofRn such that C∩K , ∅, and 1i : Rn
−→ R (i = 1, 2, . . . ,m) is a tangentially convex function at

a given point x∗ ∈ X, and moreover, f , 1i : Rn
−→ R (i = 1, 2, . . . ,m) are continuous functions at the point x∗.

The set of active indices at a point x ∈ X is defined by

I(x) :=
{
i ∈ {1, 2, . . . ,m} : 1i(x) = 0

}
. (10)

In the following, we give some results related to the problem (P).

Definition 2.6. (Cone of Tangential Subdifferentials) Consider the problem (P). The cone of tangential subdif-
ferentials at a point x ∈ X is defined by

M(x) :=
{ ∑

i∈I(x)

λi∂T1i(x) : λi ⩾ 0, i ∈ I(x)
}
. (11)
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The next lemma states that M(x) is a convex cone. However, M(x) is not necessarily closed.

Lemma 2.2. [6] M(x) is a convex cone.

Remark 2.4. It is easy to check that for each λ := (λ1, λ2, · · · , λm) ∈ Rm
+ \ {0} with λi1i(x) = 0, i = 1, 2, · · · ,m, we

have

m∑
i=1

λi∂T1i(x) ⊆M(x). (12)

Moreover,

cone
(
∂T1i(x)

)
⊆ cone

( ⋃
i∈I(x)

∂T1i(x)
)
⊆M(x), i ∈ I(x), (13)

and

M(x) = conic
( ⋃

i∈I(x)

∂T1i(x)
)
. (14)

Definition 2.7. Consider the problem (P).We define the set M0(x) at a point x ∈ X by

M0(x) :=
{
d ∈ Rn : ⟨d, ξi⟩ < 0, ∀ ξi ∈ ∂T1i(x), ∀ i ∈ I(x)

}
. (15)

It is not difficult to show that M0(x) is an open convex set in Rn. For an easy reference, we now present the
following lemmas (without proof) which have been proved in [6].

Lemma 2.3. Consider the problem (P) with x∗ ∈ X. Let M(x∗) and M0(x∗) be given as in (11) and (15), respectively.
Then the following assertions hold.

(i) M(x∗)⊖ =
{
d ∈ Rn : ⟨d, ξi⟩ ≤ 0, ∀ ξi ∈ ∂T1i(x∗), ∀ i ∈ I(x∗)

}
.

(ii) If 0 <
⋃

i∈I(x∗) ∂T1i(x∗), then int M(x∗)⊖ =M0(x∗).

(iii) If 0 < conv
(⋃

i∈I(x∗) ∂T1i(x∗)
)
, then M(x∗) is closed, and M0(x∗) , ∅.

(iv) cl M0(x∗) =M(x∗)⊖ if and only if M0(x∗) , ∅.

Lemma 2.4. Consider the problem (P) with x∗ ∈ X. Let M(x∗) and M0(x∗) be given as in (11) and (15), respectively.
Then the following assertions hold.

(i)

M(x∗)⊖ =
⋂

i∈I(x∗)

[∂T1i(x∗)]⊖ =
{
d ∈ Rn : 1′i (x

∗, d) ≤ 0, ∀ i ∈ I(x∗)
}
. (16)

(ii)

M0(x∗) =
{
d ∈ Rn : 1′i (x

∗, d) < 0, ∀ i ∈ I(x∗)
}
. (17)

Lemma 2.5. Consider the problem (P) with x∗ ∈ X. Let M(x∗) and M0(x∗) be given as in (11) and (15), respectively.
Then, TX(x∗) ⊆M(x∗)⊖. In addition, if in the problem (P) the set C ⊆ Rn is open, then

M0(x∗) ⊆ FX(x∗).
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Remark 2.5. Consider the problem (P) with x∗ ∈ X. Therefore, by (2) and Lemma 2.5, it can easily be verified that
the following inclusions are satisfied at the point x∗ ∈ X.

cl FX(x∗) ⊆ cl AX(x∗) ⊆ TX(x∗) ⊆M(x∗)⊖. (18)

Moreover, if in the problem (P) the set C ⊆ Rn is open, then by (18) and Lemma 2.5, the following inclusions hold.

cl M0(x∗) ⊆ cl FX(x∗) ⊆ cl AX(x∗) ⊆ TX(x∗) ⊆M(x∗)⊖, (19)

while the converse inclusions may not hold, in general.

In the sequel, we recall that the Karush-Kuhn-Tucker (KKT) conditions have been developed and used by
many authors under various constraint qualifications [1–3, 7, 11–23, 25, 27–30, 32]. Over the years, many
constraint qualifications have been presented by researchers. In this paper, based on the cone of tangential
subdifferentials, we give various nonsmooth (generalized) constraint qualifications that are generalizations
of the well known constraint qualifications which have been used for optimality of convex or nonconvex
programs. We start with the definition of the Karush-Kuhn-Tucker (KKT) conditions in nonsmooth case.

Definition 2.8. ((KKT) Conditions). Consider the problem (P). Let x∗ ∈ X be given. We say that the (KKT)
conditions hold at x∗, if there exist λ1, λ2, . . . , λm ≥ 0 with λi1i(x∗) = 0, i = 1, 2, · · · ,m, such that

0 ∈ ∂T f (x∗) +
m∑

i=1

λi∂T1i(x∗) + (C − x∗)⊖. (20)

Condition (20) is called the Karush-Kuhn-Tucker (KKT) conditions, and λi, i = 1, 2, · · · ,m, in (20) are called
Lagrange multipliers at x∗, and x∗ is called a (KKT) point for the problem (P).

Furthermore, the (KKT) conditions at the point x∗ ∈ X in terms of the cone M(x∗) are given as follow:

0 ∈ ∂T f (x∗) +M(x∗) + (C − x∗)⊖, (21)

or equivalently,

∂T f (x∗)
⋂(

−M(x∗) + (C − x∗)⊕
)
, ∅. (22)

We now present a nonsmooth (generalized) version of the well known constraint qualifications.

Definition 2.9. Consider the problem (P) with x∗ ∈ X.We say that

(i) Nonsmooth Abadie’s constraint qualification (NACQ) is satisfied at x∗ for the problem (P) if M(x∗)⊖ ⊆ TX(x∗).

(ii) Nonsmooth Guignard’s constraint qualification (NGCQ) is satisfied at x∗ for the problem (P) if M(x∗)⊖ ⊆
cl (conv(TX(x∗))).

(iii) Nonsmooth Cottle’s constraint qualification (NCCQ) is satisfied at x∗ for the problem (P) if M(x∗)⊖ = cl M0(x∗).

(iv) Nonsmooth Zangwill’s constraint qualification (NZCQ) is satisfied at x∗ for the problem (P) if M(x∗)⊖ ⊆ cl FX(x∗).

(v) Nonsmooth Kuhn-Tucker’s constraint qualification (NKTCQ) is satisfied at x∗ for the problem (P) if M(x∗)⊖ ⊆
cl AX(x∗).

(vi) Nonsmooth Mangasarian-Fromovitz constraint qualification (NMFCQ) is satisfied at x∗ for the problem (P) if
there exists 0 , d ∈ Rn such that

⟨d, ξi⟩ < 0, ∀ ξi ∈ ∂T1i(x∗), ∀ i ∈ I(x∗).

(vii) Slater’s constraint qualification (SCQ) holds for the problem (P) if there exists x0 ∈ C such that 1i(x0) < 0 for all
i = 1, 2, . . . ,m.
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Remark 2.6. It should be noted that by Remark 2.5 (18), in all statements (i), (ii), (iv) and (v) of Definition 2.9, the
equality holds.

Remark 2.7. Obviously, the definitions of nonsmooth constraint qualifications which are given by Definition 2.9
reduce to their counterparts in the case of differentiability [5, 9]. Clearly, in view of Remark 2.5 (18) and Definition
2.9 the following implications hold.

(NZCQ) =⇒ (NKTCQ) =⇒ (NACQ) =⇒ (NGCQ). (23)

Moreover, if in the problem (P) the set C ⊆ Rn is open, then in view of Remark 2.5 (19) and Definition 2.9 the
following implications hold.

(NMFCQ) =⇒ (NCCQ) =⇒ (NZCQ) =⇒ (NKTCQ) =⇒ (NACQ) =⇒ (NGCQ). (24)

It is worth noting that (NMFCQ) =⇒ (SCQ).

The following example shows that nonsmooth Guignard’s constraint qualification is the weakest among
the others.

Example 2.1. Let 1 j : R2
−→ R ( j = 1, 2, 3) be defined by

11(x1, x2) := |x1| − x1,

12(x1, x2) := −x2,

13(x1, x2) := x1x2,

for all (x1, x2) ∈ R2. It is easy to see that all 1 j
′s ( j = 1, 2, 3) are not smooth functions, and

K = {(x1, x2) ∈ R2 : 1 j(x1, x2) ≤ 0, ∀ j = 1, 2, 3}

= {(x1, x2) ∈ R2 : x1 = 0, x2 ≥ 0} ∪ {(x1, x2) ∈ R2 : x1 ≥ 0, x2 = 0}.

So, K is not convex. Let C := R× (−1,+∞). Thus, C is an open set inR2, and we have X := C∩K = K, which is not
convex. Let x∗ := (0, 0) ∈ X. Then, 1 j(x∗) = 0 for all j = 1, 2, 3, and so, I(x∗) = {1, 2, 3}. It is not difficult to check that

1′1(x∗, t) = |t1| − t1, 1
′

2(x∗, t) = −t2, 1
′

3(x∗, t) = 0, ∀ t := (t1, t2) ∈ R2.

Clearly, 11, 12, 13 are tangentially convex at x∗.Moreover, one can see that

∂T11(x∗) = {(u1,u2) ∈ R2 : u1 ≤ 0, u2 = 0},
∂T12(x∗) = {(0,−1)},
∂T13(x∗) = {(0, 0)}.

Therefore, by Remark 2.4 (14), we have

M(x∗) = conic
( ⋃

j∈I(x∗)

∂T1 j(x∗)
)
= R2

−,

which is closed. Obviously, we obtain that M(x∗)⊖ = R2
+. On the other hand, one can show that

TX(x∗) = {(u1,u2) ∈ R2 : u1 ≥ 0, u2 ≥ 0, u1u2 = 0},

which is not convex. Hence, M(x∗)⊖ = R2
+ = cl (conv(TX(x∗))), while M(x∗)⊖ , TX(x∗), i.e., (NGCQ) holds at x∗,

but (NACQ) does not hold at x∗, and hence (note that C is open), in view of Remark 2.7 (23) and (24), nonsmooth
constraint qualifications (NMFCQ), (NCCQ, ) (NZCQ) and (NKTCQ) are not satisfied at x∗. Clearly, Slater’s
constraint qualification (SCQ) does not hold. Consequently, (NGCQ) holds at x∗,while (SCQ), (NMFCQ), (NCCQ),
(NZCQ), (NKTCQ) and (NACQ) do not hold at x∗.
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In the following, we give a definition of pseudoconvexity for tangentially convex functions, which was
given in [29].

Definition 2.10. [29] Let 1 : Rn
−→ R be a tangentially convex function at a given point x ∈ Rn.We say that 1 is

pseudoconvex at x, if

y ∈ Rn, 1(y) < 1(x) =⇒ 1′(x, y − x) < 0.

3. Necessary and sufficient conditions for optimality of the problem (P)

In this section, we first present a new constraint qualification which provides characterizations for optimal
solutions of the problem (P). Moreover, we show that under this constraint qualification, the (KKT) con-
ditions are necessary and sufficient for optimality of the problem (P). We now introduce a new constraint
qualification called “tangentially constraint qualification“ ((TCQ) in short).

Definition 3.1. Consider the problem (P), and let x∗ ∈ X = C ∩ K be given. We say that “tangentially constraint
qualification“ ((TCQ) in short) holds at the point x∗, if

C − x∗ ⊆ TX(x∗). (25)

In the following, we show that tangentially constraint qualification (TCQ) is independent of the other
nonsmooth constraint qualifications. We first give a sufficient condition under which a point x∗ ∈ X is a
global minimizer of the problem (P) over X.

Theorem 3.1. (Karush-Kuhn-Tucker Sufficient Conditions). Consider the problem (P) with the objective
function f : Rn

−→ R is tangentially convex and pseudoconvex at a given point x∗ ∈ X. Assume that x∗ is a (KKT)
point for the problem (P). If X − x∗ ⊆ TX(x∗), then, x∗ is a global minimizer of the problem (P) over X.

Proof. Suppose that x∗ is a (KKT) point for problem (P). Therefore, by Definition 2.8, there existλ1, λ2, . . . , λm ≥

0 with λi1i(x∗) = 0, i = 1, 2, . . . ,m, such that

0 ∈ ∂T f (x∗) +
m∑

i=1

λi∂T1i(x∗) + (C − x∗)⊖.

Then there exist ξ∗ ∈ ∂T f (x∗), ξ∗i ∈ ∂T1i(x∗), i = 1, 2, . . . ,m, and u ∈ (C − x∗)⊖ such that

0 = ξ∗ +
m∑

i=1

λiξ
∗

i + u.

Using 1i(x∗) < 0 for each i < I(x∗) and the fact that λi1i(x∗) = 0 for all i = 1, 2, . . . ,m, we get λi = 0 for all
i < I(x∗). So,

0 = ξ∗ +
∑

i∈I(x∗)

λiξ
∗

i + u.

Let x ∈ X be arbitrary. Since u ∈ (C − x∗)⊖ and X ⊆ C, we conclude from the later equality and Remark 2.3
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that

0 = ⟨ξ∗ +
∑

i∈I(x∗)

λiξ
∗

i + u, x − x∗⟩

= ⟨ξ∗, x − x∗⟩ +
∑

i∈I(x∗)

λi⟨ξ
∗

i , x − x∗⟩ + ⟨u, x − x∗⟩

≤ max
ξ∈∂T f (x∗)

⟨ξ, x − x∗⟩ +
∑

i∈I(x∗)

λi max
ξi∈∂T1i(x∗)

⟨ξi, x − x∗⟩ + ⟨u, x − x∗⟩

= f ′(x∗, x − x∗) +
∑

i∈I(x∗)

λi1
′

i (x
∗, x − x∗) + ⟨u, x − x∗⟩

≤ f ′(x∗, x − x∗) +
∑

i∈I(x∗)

λi1
′

i (x
∗, x − x∗).

Thus,

f ′(x∗, x − x∗) +
∑

i∈I(x∗)

λi1
′

i (x
∗, x − x∗) ≥ 0, ∀ x ∈ X. (26)

Due to Lemma 2.5, one has TX(x∗) ⊆ M(x∗)⊖. So, in view of the hypothesis that X − x∗ ⊆ TX(x∗), it follows
that X − x∗ ⊆M(x∗)⊖, and hence, by Lemma 2.4 (i),we obtain that

1′i (x
∗, x − x∗) ≤ 0, ∀ x ∈ X, ∀ i ∈ I(x∗).

This together with (26) implies that

f ′(x∗, x − x∗) ≥ 0, ∀ x ∈ X. (27)

Now, by the pseudoconvexity of f at the point x∗,we conclude from (27) and Definition 2.10 that f (x∗) ≤ f (x)
for all x ∈ X. This means that x∗ is a global minimizer of the problem (P) over X.

We now show that under new constraint qualification (TCQ), the (KKT) conditions are necessary and
sufficient for optimality of the problem (P).

Theorem 3.2. (Karush-Kuhn-Tucker Necessary and Sufficient Conditions). Consider the problem (P), and
let x∗ ∈ X = C ∩ K be given. Assume that constraint qualification (TCQ) holds at x∗.

(i) Suppose that the set C is convex and the objective function f : Rn
−→ R is tangentially convex at the point x∗. If

x∗ is a global minimizer of the problem (P) over X, then, x∗ is a (KKT) point for the problem (P).

(ii) If the objective function f : Rn
−→ R is tangentially convex and pseudoconvex at x∗, and x∗ is a (KKT) point for

the problem (P), then, x∗ is a global minimizer of the problem (P) over X.

Proof. (i). Suppose that x∗ is a global minimizer of the problem (P) over X. Then, by Lemma 2.1, f ′(x∗, d) ≥ 0
for all d ∈ TX(x∗). This together with Remark 2.3 implies that maxξ∈∂T f (x∗)⟨ξ, d⟩ ≥ 0 for all d ∈ TX(x∗).
Therefore,

inf
d∈TX(x∗)

max
ξ∈∂T f (x∗)

⟨ξ, d⟩ ≥ 0. (28)

Since, by the hypothesis, constraint qualification (TCQ) holds at x∗, it follows that C − x∗ ⊆ TX(x∗). So, we
conclude from (28) that

inf
x∈C

max
ξ∈∂T f (x∗)

⟨ξ, x − x∗⟩ ≥ 0. (29)
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By Remark 2.3, ∂T f (x∗) is compact convex and C is also convex, thus by Sion’s minimax theorem in [24], we
get

max
ξ∈∂T f (x∗)

inf
x∈C
⟨ξ, x − x∗⟩ ≥ 0. (30)

This implies that there exists ξ̄ ∈ ∂T f (x∗) such that ⟨ξ̄, x − x∗⟩ ≥ 0 for all x ∈ C. So, there exists ξ̄ ∈ ∂T f (x∗)
such that −ξ̄ ∈ (C − x∗)⊖. Therefore,

0 ∈ ∂T f (x∗) + (C − x∗)⊖. (31)

In view of Definition 2.6, one has 0 ∈M(x∗), and so, it follows from (31) that

0 ∈ ∂T f (x∗) +M(x∗) + (C − x∗)⊖.

This together with Definition 2.6 implies that there exist λ̄i ≥ 0 and ξ̄i ∈ ∂T1i(x∗) (i ∈ I(x∗)) such that

0 ∈ ∂T f (x∗) +
∑

i∈I(x∗)

λ̄iξ̄i + (C − x∗)⊖.

Put λ̄i = 0 for each i < I(x∗). Since, 1i(x∗) = 0 for all i ∈ I(x∗), we deduce that λ̄i1i(x∗) = 0 for all i = 1, 2, . . . ,m.
Hence,

0 ∈ ∂T f (x∗) +
m∑

i=1

λ̄i∂T1i(x∗) + (C − x∗)⊖,

where λ̄1, λ̄2, . . . , λ̄m ≥ 0 and λ̄i1i(x∗) = 0, i = 1, 2, . . . ,m. Thus, x∗ is a (KKT) point for the problem (P).

(ii). Suppose that f is tangentially convex and pseudoconvex at the point x∗, and x∗ is a (KKT) point for the
problem (P). In view of the fact that X − x∗ ⊆ C − x∗, and by the hypothesis constraint qualification (TCQ)
holds at x∗, i.e., C − x∗ ⊆ TX(x∗), we obtain that X − x∗ ⊆ TX(x∗). Hence, we conclude from Theorem 3.1 that
x∗ is a global minimizer of the problem (P) over X.

Corollary 3.1. Consider the problem (P) with C is convex and the objective function f : Rn
−→ R is Gâteaux

differentiable and pseudoconvex at a given point x∗ ∈ X. Assume that constraint qualification (TCQ) holds at x∗.
Then, x∗ is a global minimizer of the problem (P) over X if and only if x∗ is a (KKT) point for the problem (P).

Proof. This is an immediate consequence of Theorem 3.2, because every Gâteaux differentiable function at
the point x∗ is tangentially convex at x∗. Note that, in this case, we have ∂T f (x∗) =

{
∇ f (x∗)

}
.

Corollary 3.2. Consider the problem (P) with C is convex and the objective function f : Rn
−→ R is convex over

X, and let x∗ ∈ X be given. Assume that constraint qualification (TCQ) holds at the point x∗. Then, x∗ is a global
minimizer of the problem (P) over X if and only if x∗ is a (KKT) point for the problem (P).

Proof. This is an immediate consequence of Theorem 3.2, because every convex function f defined on X is
tangentially convex at every point x ∈ X, and f is also pseudoconvex at every point x ∈ X.Note that, in this
case, one has ∂ f (x∗) = ∂T f (x∗).

Corollary 3.3. Consider the problem (P) with C is convex and the objective function f : Rn
−→ R is regular and

pseudoconvex at a given point x∗ ∈ X. Assume that constraint qualification (TCQ) holds at x∗. Then, x∗ is a global
minimizer of the problem (P) over X if and only if x∗ is a (KKT) point for the problem (P).

Proof. This is an immediate consequence of Theorem 3.2 because, in view of Remark 2.2, every regular
function at the point x∗ is tangentially convex at x∗.Moreover, in this case, we conclude from Definition 2.3
that ∂◦ f (x∗) = ∂T f (x∗).
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In view of Theorem 3.2 and its corollaries, one can see that under constraint qualification (TCQ), the (KKT)
conditions are necessary and sufficient for optimality of the problem (P) with various objective functions.
The obtained results recapture the corresponding known results of [7, 11, 13, 25, 29, 30]. The following
examples illustrate Theorem 3.2 and show that constraint qualification (TCQ) is independent of the other
nonsmooth constraint qualifications which have been given in Section 2.

Example 3.1. Consider the problem (P) with the following objective and constraint functions.

min f (x),
s.t.
x ∈ X := C ∩ K,

where f (x1, x2) := x3
1 + x1,

K := {(x1, x2) ∈ R2 : 1i(x1, x2) ≤ 0, i = 1, 2, 3},

with 11(x1, x2) := 3x3
2 − x1, 12(x1, x2) := − sin(x1) − 2x2

2 and 13(x1, x2) := x2 − x2
1. Let C := R+ × {0} . We see that

X = C ∩ K is not convex and I(x∗) = {1, 2, 3} whenever x∗ := (0, 0) ∈ X. It is easy to check that the function f is
pseudoconvex on R2, and so at x∗, and moreover, f ′(x∗, t) = t1 for all t := (t1, t2) ∈ R2. So, f is tangentially convex
at x∗. Furthermore, we have 1′1(x∗, t) = −t1, 1′2(x∗, t) = −t1, 1′3(x∗, t) = t2 for all t := (t1, t2) ∈ R2. It is clear that the
functions 11, 12 and 13 are tangentially convex at x∗.Also, one can see that ∂T11(x∗) = {(−1, 0)} , ∂T12(x∗) = {(−1, 0)} ,
∂T13(x∗) = {(0, 1)} and ∂T f (x∗) = {(1, 0)} . Thus, M(x∗) = R− ×R+ and M(x∗)⊖ = R+ ×R−. It is easy to show that
TX(x∗) = R+ × {0} = C− x∗, and so, constraint qualification (TCQ) holds at x∗. Hence, all hypotheses of Theorem 3.2
are satisfied. Clearly, x∗ is a global minimizer of the problem (P) over X, and by choosing λ1, λ2 ≥ 0 with λ1 +λ2 ≤ 1
and λ3 = 0 (for example, λ1 := 1

2 , λ2 := 1
2 and λ3 := 0), it follows from Theorem 3.2(i) that x∗ is a (KKT) point for

the problem (P).
Moreover, note that M(x∗)⊖ = R+ × R− , R+ × {0} = cl (conv(TX(x∗))) (note that TX(x∗) is closed and convex),
and hence, nonsmooth constraint qualification (NGCQ) does not hold at x∗. Therefore, in view of (23), nonsmooth
constraint qualifications (NZCQ), (NKTCQ) and (NACQ) do not hold at x∗. Consequently, nonsmooth constraint
qualifications (NZCQ), (NKTCQ), (NACQ) and (NGCQ) do not hold at x∗, while constraint qualification (TCQ)
holds at x∗.

Example 3.2. Let K :=
{
(x1, x2) ∈ R2 : 11(x1, x2) := |x2| − x1 ≤ 0

}
and C := R+×{0} . Then, X = C∩K = C,which is

a convex set. So, TX(x∗) = R+×{0}whenever x∗ := (0, 0) ∈ X.Moreover, we have 11(x∗) = 0.Also, 1′1(x∗, t) = |t2| − t1

for all t := (t1, t2) ∈ R2, and thus, 11 is tangentially convex at x∗. Then, ∂T11(x∗) = conv {(−1,−1), (−1, 1)} , and
hence, M(x∗) =

{
(x1, x2) ∈ R2 : |x2| + x1 ≤ 0

}
. Thus,

M(x∗)⊖ =
{
(x1, x2) ∈ R2 : |x2| ≤ x1

}
.

Clearly, C − x∗ = TX(x∗), M(x∗)⊖ , TX(x∗) and M(x∗)⊖ , cl (conv(TX(x∗))). Therefore, constraint qualification
(TCQ) holds at x∗, while constraint qualification (NGCQ), and hence, in view of (23), the other nonsmooth constraint
qualifications do not hold at x∗.

Example 3.3. Let K := {(x1, x2) ∈ R2 : 1i(x1, x2) ≤ 0, i = 1, 2} with 11(x1, x2) := 1 − (x1 − 3)2
− x2

2 and
12(x1, x2) := |x2| − x1 for all (x1, x2) ∈ R2. Let C := R+ ×R.We see that X = C ∩ K is a nonconvex set. It is easy to
check that 11(x∗) = −8 , 0 and 12(x∗) = 0 whenever x∗ := (0, 0) ∈ X. Thus, I(x∗) = {2} . The functions 11 and 12 are
tangentially convex at x∗ because 1′1(x∗, t) = 6t1 and 1′2(x∗, t) = |t2| − t1 for all t := (t1, t2) ∈ R2.Moreover, we obtain
that ∂T12(x∗) = conv {(−1,−1), (−1, 1)} , and so, M(x∗) =

{
(x1, x2) ∈ R2 : |x2| + x1 ≤ 0

}
. Therefore,

M(x∗)⊖ =
{
(x1, x2) ∈ R2 : |x2| ≤ x1

}
.

It is easy to show that TX(x∗) =
{
(t1, t2) ∈ R2 : |t2| ≤ t1

}
, and hence, C − x∗ ⊈ TX(x∗). Thus, constraint qualification

(TCQ) does not hold at x∗, while TX(x∗) = M(x∗)⊖, and so, M(x∗)⊖ = cl (conv(TX(x∗))) because TX(x∗) is closed and
convex. Thus nonsmooth constraint qualifications (NACQ) and (NGCQ) hold at x∗.
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Example 3.4. Let

K :=
{
(x1, x2) ∈ R2 : 1i(x1, x2) ≤ 0, i = 1, 2

}
= {(x1, x2) ∈ R2 : 0 ≤ x1 ≤ x2},

where 11(x1, x2) := 1 − (x1 + 1)2
− x2

2 and 12(x1, x2) := |x1| − x2 for all (x1, x2) ∈ R2. Let

C := (R− ×R+) ∪ {(x1, x2) ∈ R2 : 0 ≤ x1 ≤ x2}.

Since 1′1(x∗, t) = −2t1 and 1′2(x∗, t) = |t1| − t2 for all t := (t1, t2) ∈ R2, it follows that the functions 11 and 12
are tangentially convex at x∗ whenever x∗ := (0, 0) ∈ X = C ∩ K = K. Note that X is a convex set because K
is convex. Moreover, 11(x∗) = 12(x∗) = 0, and so, I(x∗) = {1, 2} . Therefore, ∂T11(x∗) = {(−2, 0)} and ∂T12(x∗) =
conv {(−1,−1), (1,−1)} . Thus, M(x∗) = R2

−
∪ {(t1, t2) ∈ R2 : 0 ≤ t1 ≤ −t2}, and hence, M(x∗)⊖ = {(t1, t2) ∈ R2 :

0 ≤ t1 ≤ t2}. It is not difficult to show that TX(x∗) =
{
(t1, t2) ∈ R2 : 0 ≤ t1 ≤ t2

}
. Therefore, it is obvious that

M(x∗)⊖ = TX(x∗), M(x∗)⊖ = cl (conv(TX(x∗))) and C − x∗ ⊈ TX(x∗). Hence, constraint qualification (TCQ) does
not hold at x∗, but nonsmooth constraint qualifications (NACQ) and (NGCQ) hold at x∗. Moreover, by a simple
calculation one can show that cl M0(x∗) = cl FX(x∗) = cl AX(x∗) = TX(x∗) = M(x∗)⊖. Also, for 0 , d := (4, 1) ∈ Rn,
we have ⟨d, ξi⟩ < 0 for all ξi ∈ ∂T1i(x∗) and all i ∈ I(x∗). Consequently, the other nonsmooth constraint qualifications
(NMFCQ), (NCCQ), (NZCQ) and (NKTCQ), also hold at x∗, while constraint qualification (TCQ) does not hold at
x∗.

Remark 3.1. In view of Example 3.1, Example 3.2, Example 3.3 and Example 3.4, we see that in any case that the
constraint set X is convex or nonconvex, the constraint qualification (TCQ) is independent of the other nonsmooth
constraint qualifications. Note that in the case that the set C := Rn, constraint qualification (TCQ) implies (NGCQ).
Indeed, if C := Rn, then, C− x∗ = Rn (for any x∗ ∈ X).Now, we assume that (TCQ) holds at x∗. Thus,Rn = C− x∗ ⊆
TX(x∗), and so, TX(x∗) = Rn. Hence, M(x∗)⊖ ⊆ Rn = cl (conv(TX(x∗))), i.e., (NGCQ) holds at x∗.

Therefore, as a consequence, it should be noted that in addition to the easiness of using the constraint qualification
(TCQ), an important advantage of (TCQ), is that (TCQ) is a constraint qualification under which (KKT) conditions
are necessary and sufficient for optimality of the nonconvex nonsmooth optimization problem (P) without any further
assumption (see Theorem 3.2 and its corollaries), while the other nonsmooth constraint qualifications together with a
further assumption (closedness assumption, i.e., M(x∗) is closed) implies that (KKT) conditions are only “necessary“
for optimality of the problem (P) (see [6, Theorem 3.1 and Corollary 3.1]).

Finally, we investigate the connection between the constraint qualification (TCQ) and Slater’s constraint
qualification (SCQ).

Example 3.5. Let 11(x1, x2) := |x2| − x1 and 12(x1, x2) := − sin(x1) − 2x3
2 for all (x1, x2) ∈ R2. Let K ={

(x1, x2) ∈ R2 : 1i(x1, x2) ≤ 0, i = 1, 2
}
, and let

C := {(x1, x2) ∈ R2 : |x2| −
3
10

x1 ≤ 0}.

We see that X := C ∩ K is not convex. It is easy to check that 11(x∗) = 12(x∗) = 0 whenever x∗ := (0, 0) ∈ X. Thus,
I(x∗) = {1, 2} . Moreover, we have 1′1(x∗, t) = |t2| − t1 and 1′2(x∗, t) = −t1 for all t := (t1, t2) ∈ R2. It is clear that
the functions 11 and 12 are tangentially convex at x∗. Clearly, (SCQ) holds at the point x0 := (10, 1) ∈ C because
11(x0) < 0 and 12(x0) < 0.Moreover, we have C − x∗ = R+ × R ⊈ R+ × R− = TX(x∗), i.e., (TCQ) does not hold at
x∗. Hence, (SCQ) does not imply (TCQ).

The following example also shows that (TCQ) does not imply (SCQ).

Example 3.6. Let 11(x1, x2) := −sin(x1)−2x2
2, 12(x1, x2) := |x2|+2x2 and 13(x1, x2) := |x2| −x1 for all (x1, x2) ∈ R2.

Let K :=
{
(x1, x2) ∈ R2 : 1i(x1, x2) ≤ 0, i = 1, 2, 3

}
, and let C := R+ × {0} . Clearly, X = C ∩ K is not a convex

set, and also, 11(x∗) = 12(x∗) = 13(x∗) = 0 whenever x∗ := (0, 0) ∈ X. Therefore, I(x∗) = {1, 2, 3} , 1′1(x∗, t) = −t1,
1′2(x∗, t) = 2t2 + |t2| and 1′3(x∗, t) = |t2| − t1 for all t := (t1, t2) ∈ R2. Then the functions 11, 12 and 13 are tangentially
convex at x∗. Therefore, C− x∗ = R+ × {0} = TX(x∗), and so, (TCQ) holds at x∗. On the other hand, one has 12(x) = 0
for all x ∈ C, i.e., (SCQ) does not hold.
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