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Abstract. A complex number λ is an extended eigenvalue of an operator A if there is a nonzero operator
B such that AB = λBA. In this case, B is said to be an eigenoperator. This research paper is devoted to the
investigation of some results of extended eigenvalues for a closed linear operator on a complex Banach
space. The obtained results are explored in terms two cases bounded, and closed eigenoperators. In
addition, the notion of extended eigenvalues for a 2× 2 upper triangular operator matrix is introduced and
some of its properties are displayed.

1. Introduction

For a bounded linear operator A on a complex Banach space X, the set σext(A) of extended eigenvalues
for A is defined to be the set of complex numbers λ for which the following Sylvester’s operational equation:

AB = λBA (1)

has a nonzero solution B. Recently, there has been a spate of interest in extended eigenvalue and extended
eigenoperator. Much concern has been devoted to this notion dating back to the works of Brown in [4] and
Kim, Moore and Pearcy in [10], who set forward a generalization of the well known Lomonosov theorem
on the existence of nontrivial hyperinvariant subspace for the compact operators on a Banach space. They
demonstrated that if A is compact, then B has a nontrivial hyperinvariant subspace for any number λ ∈ C.
Certainly, if λ = 1 in Eq. (1), then this particular case pertains to Lomonosov’s theorem [12] that is the
algebra {A}′ , the commutant of A, which possesses a common trivial invariant subspace. It was proved
in [11] that if A is a compact operator, there exists spectral algebra BA which has a nontrivial invariant
subspace and contains properly {A}′ whenever the spectral radius of A is positive, so that the operators
commuting with A together with operators satisfying (1) for some | λ |≤ 1 belong to BA.

Extended eigenvalues and their corresponding extended eigenoperators whetted the interest and drew
the attention of several authors (see, e.g., [1, 5, 9, 13, 16]). In [2], Biswas, Lambert and Petrovic introduced
this notion by depicting that the extended eigenvalue of an operator A which has a dense range corresponds
to the eigenvalue of closed homomorphism constructed from A. Furthermore, they computed the set of
extended eigenvalues of the integral Volterra operator on the space L2(0, 1). The set of extended eigenoper-
ators of Volterra integration operator was reported by Karaev in [9]. On the other side, it was revealed in
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[17] that there are compact quasinilpotent operators, for which the set of extended eigenvalues is the one
point set {1}.

In [3], Biswas and Petrovic applied the Rosenblum theorem [14] that is stated as follows:

if σ(A) ∩ σ(E) = ∅, then B = 0 is the only solution of AB − BE = 0,

with the special case where E = λA, leading to derive the following important inclusion:

σext(A) ⊂ {λ ∈ C : σ(A) ∩ σ(λA) , ∅},

where σ(A) is the spectrum of A. In the same paper, it was proved that this inclusion is an equality on the
finite dimensional spaces.

The intrinsic objective of this work is to generalize some obtained results of extended eigenvalues
of a bounded linear operator in Banach space to the closed case. Furthermore, this paper is dedicated to
investigate some results of extended eigenvalues of a 2 × 2 upper triangular operator matrix.

This paper is organized as follows: In section 2, we display some notations and preliminaries which
will be needed in the sequel. In section 3, we exhibit some properties of extended eigenvalues of a closed
linear operator for both cases, when the corresponding eigenoperator is a bounded linear operator and when
the corresponding eigenoperator is a closed linear operator. The main result of this section is Theorem 3.7
which characterizes the set of extended eigenvalues of an invertible closed linear operator by means of its
Schechter essential spectrum. In section 4, we introduce the notion of extended eigenvalues of a 2×2 upper
triangular operator matrix. The basic goal of this section is to discuss the relationship between the set of
extended eigenvalue of a 2 × 2 upper triangular operator matrix and that of its diagonal entries. We close
the last section by setting forward some results of extended eigenvalue of a 2 × 2 block operator matrix.

2. Preliminaries

In this paper, the symbol X stands for a complex Banach space. We denote by C(X) the set of all
densely defined closed linear operators on X, and byL(X) the set of all bounded linear operators on X. For
a closed linear operator A we writeD(A), R(A) and N(A) to denote the domain, the range and the kernel of
A, respectively. The resolvent set, the spectrum and the point spectrum of A are, respectively, defined as

ρ(A) = {λ ∈ C : (λI − A) is injective and (λI − A)−1
∈ L(X)},

σ(A) = C \ ρ(A),
σp(A) = {λ ∈ C : (λI − A) is not injective}.

For A ∈ C(X), we shall use the symbol A∗ to denote the adjoint of A.

Definition 2.1. Let A ∈ C(X). The Schechter essential spectrum is defined by

σs(A) =
⋂

K∈K (X)

σ(A + K),

whereK (X) stands for the ideal of all compact operators on X. ♢

Lemma 2.2. ([15, Theorem 7.28]) Let A ∈ C(X) and K ∈ K (X). Therefore,

σs(A) = σs(A + K). ♢

Proposition 2.3. [8, Proposition 2.2.5] Let A ∈ C(X). Then, we have σs(A) which is closed. ♢

Definition 2.4. A set D in the complex plane is a Cauchy domain if the following conditions are satisfied:
(i) D is bounded and open,
(ii) D has a finite number of components, the closures of any two of which are disjoint, and
(iii) the boundary, ∂D, of D is composed of a finite positive number of closed rectifiable Jordan curves. ♢
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Theorem 2.5. [18] Let F be a closed and G be a bounded open subset of the complex plane such that F ⊂ G. Then,
there exists a Cauchy domain D such that F ⊂ D and D̄ ⊂ G. ♢

Lemma 2.6. [8, Theorem 7.3.2] Let A ∈ C(X). If 0 ∈ ρ(A), then we have

λ ∈ σs(A) if, and only if,
1
λ
∈ σs(A−1). ♢

Definition 2.7. Two operators U ∈ L(X) and V ∈ L(X) are similar if there exists an invertible operator S such that
SU = VS. ♢

Theorem 2.8. [6] Let H1, H2 be two Hilbert spaces. Let A ∈ L(H1) and B ∈ L(H2) be given operators. There exists
C ∈ L(H2,H1) such that R(Mc) is not dense in H1 ×H2 if, and only if, one of the following conditions is satisfied:
(i) R(B) is not dense in H1.

(ii) R(A) is not dense in H2. ♢

3. Extended eigenvalues of a closed linear operator

The basic objective of this section is a twofold one. First, we will present a description of the set of
extended eigenvalues of a closed linear operator, whenever the corresponding eigenoperator is a bounded
linear operator. In the same way, we characterize the set of extended eigenvalues of an invertible closed
linear operator whose inverse is bounded. Second, we will provide some results for the extended point
spectrum of a closed linear operator when the corresponding eigenoperator is a closed linear operator. We
conclude this section by recording some results if the generalized inverse of a closed linear operator is the
corresponding closed eigenoperator.

3.1. Bounded eigenoperator

Definition 3.1. Let A be a closed linear operator on X. A complex number λ is an extended eigenvalue of A if there
is a nonzero bounded linear operator B such that{

ABx = λBAx,
for all x ∈ D(A). (2)

The operator B is called eigenoperator corresponding to λ. The set of extended eigenvalues and the set of eigenoperators
corresponding to λ are represented, respectively, by σext(A) and Eext(A, λ). ♢

Remark 3.2. From relation (2), it follows that R(B) ⊂ D(A). ♢

Proposition 3.3. Let A be a closed linear operator on X.
(i) We have for all α ∈ C \ {0} and β ∈ C

B ∈ Eext(A, 1) if, and only if, B ∈ Eext(αA + βB, 1).

(ii) Let Bi ∈ Eext(A, λ), i ∈ {1, ...,n}. If
∏

i=1,...,n Bi , 0, then
∏

i=1,...,n Bi ∈ Eext(A, λn) for any n = 1, 2, 3, ...
(iii) Assume that 0 ∈ ρ(A), we have

0 , λ ∈ σext(A) if, and only if,
1
λ
∈ σext(A−1).

(iv) If α , 0, then
σext(αA) = σext(A). ♢
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Proof. (i) Suppose that B ∈ Eext(A, 1), then

ABx = BAx for all x, Bx ∈ D(A). (3)

Since αA + βB is a closed linear operator on X andD(αA + βB) = D(A), for all α ∈ C \ {0} and β ∈ C. Then,
grounded on relation (3), we infer that

(αA + βB)Bx = αABx + βB2x

= αBAx + βB2x
= B(αA + βB)x, for all x, Bx ∈ D(αA + βB).

This implies that B ∈ Eext(αA + βB, 1). The proof of the converse may be checked in a same way.
(ii) Let Bi ∈ Eext(A, λ) for all i ∈ {1, ...,n}. Hence, we have for all i ∈ {1, ...,n}

ABix = λBiAx, for all x, Bix ∈ D(A).

Since
∏

i=1,...,n Bi , 0 and R(B1...Bn) ⊂ R(B1), we obtain

AB1...Bnx = λnB1...BnAx, for all x, B1...Bnx ∈ D(A).

In other words, ∏
i=1,...,n

Bi ∈ Eext(A, λn).

(iii) Let 0 , λ ∈ σext(A). Then, there exists B ∈ L(X) \ {0} such that

ABx = λBAx, for all x ∈ D(A).

Since 0 ∈ ρ(A), we have
BA−1y = λA−1By, for all y ∈ X.

Multiplying by
1
λ

, we get

A−1By =
1
λ

BA−1y, for all y ∈ X.

It follows that
1
λ
∈ σext(A−1).

Conversely, let λ , 0 such that
1
λ
∈ σext(A−1). Then, there exists B ∈ L(X) \ {0} such that

A−1By =
1
λ

BA−1y, for all y ∈ X.

Since for all y ∈ X, we have y = Ax, for all x ∈ D(A). Then,

BAx =
1
λ

ABx, for all x ∈ D(A).

Multiplying by λ, we obtain
ABx = λBAx, for all x ∈ D(A).

In other words, λ ∈ σext(A).
(iv) Suppose that α , 0 and let λ ∈ σext(αA). Then, there exists B ∈ L(X) \ {0} such that

(αA)Bx = λB(αA)x, for all x ∈ D(αA).
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SinceD(αA) = D(A), we get
αABx = αλBAx, for all x ∈ D(A).

Multiplying by
1
α

, we obtain
λ ∈ σext(A).

The inverse inclusion may be proved in a similar way.

Remark 3.4. The spectral mapping theorem does not hold for extended spectrum. In fact, let A be the identity operator
on X and P(.) be the nonzero complex polynomial defined by P(λ) = λ(λ − 2). It is easy to check that σext(A) = {1}.
Then, we have

P(σext(A)) = P({1})
= {−1}.

However,

σext(P(A)) = σext(−I).

Based on Proposition 4.3 (v), we obtain

σext(P(A)) = {1}.

In other words, there is no inclusion among P(σext(A)) and σext(P(A)). ♢

Theorem 3.5. Let A ∈ C(X). Then, {α
β̄

: α ∈ σp(A) and β ∈ σp(A∗)
}
⊂ σext(A). ♢

Proof. Let λ ∈
{α
β̄

: α ∈ σp(A) and β ∈ σp(A∗)
}
. Then, there exist α ∈ σp(A) and β ∈ σp(A∗) such that λ =

α

β̄
.

Furthermore, there exist x ∈ D(A) \ {0} and y ∈ D(A∗) \ {0} such that Ax = αx and A∗y = βy. Let’s define the
operator B = x ⊗ y by

(x ⊗ y)z = (z, y)x, for all z ∈ X,

where (., .) denotes the duality mapping of y ∈ D(A∗) and z ∈ X. As D(A) proves to be a subspace, then
Bz ∈ D(A) for all z ∈ X. Now, we attempt to check that B is an eigenoperator for A associated with λ. On
the one hand, we have for all z ∈ X and Bz ∈ D(A)

(AB)z = A(Bz)
= A(z, y)x
= (z, y)Ax
= (z, y)αx
= αBz.

On the other hand, we have for all z ∈ D(A) and Az ∈ X

(BA)z = B(Az)
= (Az, y)x
= (z,A∗y)x
= (z, βy)x
= β̄(z, y)x
= β̄Bz.
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It follows that
ABz =

α

β̄
BAz, for all z, Bz ∈ D(A).

As a result, λ ∈ σext(A).

As a direct consequence of Theorem 3.5, we infer the following result:

Corollary 3.6. Let X be a complex Banach space and A ∈ C(X).
(i) If 1 ∈ σp(A∗), then σp(A) ⊂ σext(A).
(ii) If A and A∗ have nontrivial kernels, then σext(A) = C.
(iii) Let λ ∈ R. If λ ∈ σp(A) ∩ σp(A∗), then σext(λI − A) = C. ♢

Proof. (i) Let 1 ∈ σp(A∗). Since 1 = 1, it follows that σp(A) ⊂ σext(A).
(ii) Supposing that A and A∗ have nontrivial kernels. Then, there exist x ∈ D(A) \ {0} and y ∈ D(A∗) \ {0}
such that Ax = A∗y = 0. Hence, the operator B = x ⊗ y holds for all λ ∈ C

ABz = λBAz = 0, for all z, Bz ∈ D(A).

Therefore, σext(A) = C.
(iii) Let λ ∈ R such that λ ∈ σp(A)∩σp(A∗). It follows that 0 ∈ σp(λI−A)∩σp((λ̄I−A)∗).As λ is a real number,
0 ∈ σp(λI − A) ∩ σp((λI − A)∗). Departing from (ii), we infer that σext(λI − A) = C.

Theorem 3.7. Let A ∈ C(X) such that 0 ∈ ρ(A). Then,

σext(A) ⊂
{
λ ∈ C \ {0} : σs(A) ∩ σs(λA) , ∅

}
. ♢

In order to prove Theorem 3.7, we shall invest the following result:

Lemma 3.8. Let E, F ∈ C(X) and B ∈ L(X) such that 0 ∈ ρ(E) ∩ ρ(F). If σs(E) ∩ σs(F) = ∅, then B = 0 is the only
solution of the equation

BF − EB = 0. ♢

Proof. First, we demonstrate that

σs(E) ∩ σs(F) = ∅ if, and only if, σs(E−1) ∩ σs(F−1) = ∅.

To prove the “if ”part, let σs(E−1)∩σs(F−1) = ∅, suppose that σs(E)∩σs(F) , ∅, and select λ ∈ σs(E)∩σs(F). By

using Lemma 2.6, we have
1
λ
∈ σs(E−1) ∩ σs(F−1). This contradicts our assumption. The proof of the “only

if ”part can be evaluated in the same way.
Second, we consider the following equation

E−1B − BF−1 = Q,

with Q ∈ L(X). It is well known that both σ(E−1) and σ(F−1) are compact nonempty subsets of complex
plane C and as σs(E−1) and σs(E−1) are closed based on Proposition 2.3; we infer that σs(E−1) and σs(F−1) are
compact subsets. The fact that σs(E−1) ∩ σs(F−1) = ∅ and by applying Theorem 2.5, we deduce the existence
of a Cauchy domain D such that σs(E−1) ⊂ D and σs(F−1) ∩ D̄ = ∅. Now, suppose that B is a solution of the
considered equation and let ω ∈ ∂D. Then,

ω < σs(E−1)

and
ω < σs(F−1).
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Hence, there exist K0,K1 ∈ K(X) such thatω < σ(F−1+K0) andω < σ(E−1+K1). Since K0,K1 ∈ K(X) and using
Lemma 2.2, then we have

σs(F−1
− K0) = σs(F−1)

and
σs(E−1

− K1) = σs(E−1).

That’s why σ(F−1 + K0) and σ(E−1 + K1) can be replaced, respectively, by σ(F−1) and σ(E−1). From this
perspective, ω < σ(F−1) and ω < σ(E−1). Hence, we get

ω ∈ ρ(E−1) ∩ ρ(F−1).

Thus,
B(ωI − F−1) − (ωI − E−1)B = Q.

Moreover,
(ωI − E−1)−1B − B(ωI − F−1)−1 = (ωI − E−1)−1Q(ωI − F−1)−1.

Using Dunford’s functional calculus (refer back to [7]), and integrating both sides over ∂D, we obtain

1
2πi

∫
∂D

(ωI − E−1)
−1

Bdω = B,

1
2πi

∫
∂D

B(ωI − F−1)
−1

dω = 0,

and

B =
1

2πi

∫
∂D

(ωI − E−1)−1Q(ωI − F−1)−1dω. (4)

Based upon Eq. (4), if we put Q = 0, then we get B = 0 which is the unique solution of the following
equation

E−1B − BF−1 = 0.

As a result, B = 0 is the only solution of

BF − EB = 0.

Now, we are ready to proof Theorem 3.7.

Proof. Using the contraposition of Lemma 3.8, where it is sufficient to replace E by A and F by λA. In such
a way that for λ , 0, there exists B ∈ L(X) \ {0} satisfying

ABx = λBAx, for all x,Bx ∈ D(A).

Therefore, we can deduce that

σs(A) ∩ σs(λA) , ∅.

Corollary 3.9. If σs(A) = {α} with α , 0, then σext(A) = {1}. ♢

Proof. First, it should be pointed out here that having 0 ∈ ρ(A) entails the fact that 1 ∈ σext(A−1) (the operator
B in relation (2) can be taken as the identity operator on X). Referring to Proposition 3.3 (iv), we obtain
1 ∈ σext(A).
Now, it remains to prove the inverse inclusion. For this reason, let’s suppose that σs(A) = {α}with α , 0.We
have σs(A) ∩ σs(λA) , ∅, which implies that α ∈ σs(λA) =

⋂
K∈K (X)

σ(λA + K). Hence,
α
λ
∈

⋂
1
λK∈K (X)

σ(A + 1
λK).

Thus, λ = 1. As a matter of fact, σext(A) ⊂ {1}.
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3.2. Closed eigenoperator

In this subsection, we will focus upon relation{
ABx = λBAx,
f or all x ∈ D(A) ∩D(B), (5)

instead of relation (2), with B is a nonzero closed linear operator on a Banach space X. In this case, the set
of extended eigenvalues and the set of eigenoperators corresponding to λ are represented, respectively, by
σ̃ext(A) and Ẽext(A, λ).

Remark 3.10. (i) From relation (5), it follows that R(B) ⊂ D(A) and R(A) ⊂ D(B).
(ii) Let A be a closed linear operator on a Banach space X. If R(A) ⊂ D(A), then 1 ∈ σ̃ext(A). As an illustration, let’s
examine the following example:

Example 3.11. Let X = C[0, 1] be the space of continuous functions on [0, 1]. Let A be the closed linear operator on
X defined by

A f = f
′

, f or f , f
′

∈ D(A),

where D(A) = C1[0, 1] (the set of all continuously differentiable functions). It follows that its square A2 can be
expressed as

A2 f = f
′′

, f ∈ D(A2),

where D(A2) = C2[0, 1] (the set of all differentiable functions whose derivative is in C1[0, 1]). We deduce that
1 ∈ σ̃ext(A).

(iii) Let A,B be nonzero closed linear operators and λ , 0,
B ∈ Ẽext(A, λ) if, and only if, A ∈ Ẽext(B, 1

λ ). ♢

Definition 3.12. Let A and B be two closed linear operators on X. B is called a generalized inverse of A if R(B) ⊂ D(A)
and R(A) ⊂ D(B) such that

Au = ABAu, for all u ∈ D(A),

Bv = BABv, for all v ∈ D(B). ♢

Proposition 3.13. Let A be a nonzero closed linear operator and let B be the generalized inverse of A.
(i) B ∈ Ẽext(A, λ) if, and only if, BAB ∈ Ẽext(A, λ).

(ii) Let λ , 0. Then, B ∈ Ẽext(A, λ) if, and only if, ABA ∈ Ẽext(B,
1
λ

). ♢

Proof. (i) Let B ∈ Ẽext(A, λ). Then,

ABx = λBAx, for all x ∈ D(A) ∩D(B).

Consequently,
ABABx = λBABAx, for all x ∈ D(A) ∩D(B).

Thus,
A(BAB)x = λ(BAB)Ax, for all x ∈ D(A) ∩D(BAB).

It follows that
BAB ∈ Ẽext(A, λ).

Conversely, supposing that BAB ∈ Ẽext(A, λ), provides

ABABx = λBABAx, for all x ∈ D(A) ∩D(BAB).
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Hence,
A(BAB)x = λ(BAB)Ax, for all x ∈ D(A) ∩D(BAB).

So, we get
ABx = λBAx for all x ∈ D(A) ∩D(B).

As a result,
B ∈ Ẽext(A, λ).

The proof of (ii) is analogous to the previous one.

4. Extended eigenvalues of a 2 × 2 upper triangular operator matrix

In this section, we shall determine some properties of extended eigenvalues of a 2×2 upper triangular
operator matrix. Let X1 and X2 be two Banach spaces and consider the 2 × 2 upper triangular operator
matrices defined on X1 × X2 by

MC =

(
A C
0 B

)
(6)

and

M0 =

(
A 0
0 B

)
, (7)

where A ∈ L(X1), B ∈ L(X2) and C ∈ L(X2,X1).

Definition 4.1. A complex number λ is an extended eigenvalue of MC if there is a nonzero

Y =
(

Y1 Y3
0 Y2

)
, (8)

where Y1 ∈ L(X1), Y3 ∈ L(X2,X1) and Y2 ∈ L(X2) such that

MCY = λYMC. (9)

The set of extended eigenvalues is represented by σext(MC). ♢

Remark 4.2. (i) σext(MC) , ∅. Indeed, one may take Y =
(

I1 0
0 I2

)
, where the I1 and I2 are, respectively, identity

operators on X1 and X2, so that 1 ∈ σext(MC).
(ii) If A = B = 0, then σext(MC) = C. In fact, we have for all Y3 ∈ L(X2,X1) \ {0}(

0 C
0 0

) (
0 Y3
0 0

)
= λ

(
0 Y3
0 0

) (
0 C
0 0

)
,

for any λ ∈ C.
(iii) σext(M0) = σext(A) ∪ σext(B) ∪ {λ ∈ C : there exists 0 , Y3 ∈ L(X2,X1) such that AY3 = λY3B}.
(iv) If Y1, Y2 and Y3 are non zeros, then

σext(MC) = σext(A) ∩ σext(B) ∩ {λ ∈ C : AY3 + CY2 = λY1C + λY3B}. ♢

The following theorem sets a relation between the extended spectrum of a 2 × 2 upper triangular operator
matrix and the extended spectrum of its diagonal entries.
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Theorem 4.3. Let MC be the 2× 2 upper triangular operator matrices defined in Eq. (6) and consider the 2× 2 upper
triangular operator matrices, Y, defined in Eq. (8). Then, we have the following results:
(i) Let CY2 = λY1C, for any λ ∈ C.

If λ ∈ σext(A) ∪ σext(B), then λ ∈ σext(MC). (10)

(ii) If Y1 , 0 or Y2 , 0, then

σext(MC) ⊆ σext(A) ∪ σext(B). (11)

♢

Proof. (i) Suppose that CY2 = λY1C, for any λ ∈ C. Let’s consider the following cases:
First case, if λ ∈ σext(A), then there exists Y1 ∈ L(X1) \ {0} such that

AY1 = λY1A.

In this case, Y in Eq. (8) can be chosen as Y =
(

Y1 0
0 0

)
, in such a way that MCY = λYMC. This implies

that λ ∈ σext(MC).
Second case, if λ ∈ σext(B), then there exists Y2 ∈ L(X2) \ {0} such that

BY2 = λY2B.

In this case, one can take Y in Eq. (8) as Y =
(

0 0
0 Y2

)
, so that MCY = λYMC. As a result, λ ∈ σext(MC).

(ii) First, let’s notice that σext(A) ∪ σext(B) , ∅. In fact, by choosing Y1 = I1 (Y2 = I2), we get, respectively,
1 ∈ σext(A) (1 ∈ σext(B)). It follows that 1 ∈ σext(A)∪ σext(B). Now, let λ ∈ σext(MC) and consider the following
cases:
First case, if Y1 , 0, then Eq. (9) implies, in particular, the existence of Y1 ∈ L(X1) \ {0} such that

AY1 = λY1A.

Therefore,
λ ∈ σext(A) ∪ σext(B).

Second case, if Y2 , 0, the use of Eq. (9) leads, in particular, to the existence of Y2 ∈ L(X2) \ {0} such that

BY2 = λY2B.

Consequently,

λ ∈ σext(A) ∪ σext(B).

Remark 4.4. (i) The converse of implication (10) in Theorem 4.3 is not always true. Indeed, let A = V be the Volterra
integral operator on X1 = L2(0, 1), B = I be the identity operator on X2 = L2(0, 1) and let C = 0 be the zero operator
on L2(0, 1). Clearly, we notice that CY2 = λY1C, for any λ ∈ C. It is shown in [2] that σext(V) =]0,∞[. Furthermore,
it is easy to observe that σext(I) = {1}, so we get

σext(V) ∪ σext(I) =]0,∞[.

On the other side, we have

σext

( ( V 0
0 I

) )
=

{
λ ∈ C : there exists

(
Y1 Y3
0 Y2

)
,

(
0 0
0 0

)
such that
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V 0
0 I

) (
Y1 Y3
0 Y2

)
= λ

(
Y1 Y3
0 Y2

) (
V 0
0 I

) }
,

which implies that

σext

( ( V 0
0 I

) )
=

{
λ ∈ C : there exists Y1 ∈ L(L2(0, 1)) \ {0} such that(

V 0
0 I

) (
Y1 0
0 0

)
= λ

(
Y1 0
0 0

) (
V 0
0 I

) }
⋃ {

λ ∈ C : there exists Y2 ∈ L(L2(0, 1)) \ {0} such that(
V 0
0 I

) (
0 0
0 Y2

)
= λ

(
0 0
0 Y2

) (
V 0
0 I

) }
⋃ {

λ ∈ C : there exists Y3 ∈ L(L2(0, 1)) \ {0} such that(
V 0
0 I

) (
0 Y3
0 0

)
= λ

(
0 Y3
0 0

) (
V 0
0 I

) }
⋃ {

λ ∈ C : there exist Y1,Y2 ∈ L(L2(0, 1)) \ {0} such that(
V 0
0 I

) (
Y1 0
0 Y2

)
= λ

(
Y1 0
0 Y2

) (
V 0
0 I

) }
⋃ {

λ ∈ C : there exist Y1,Y3 ∈ L(L2(0, 1)) \ {0} such that(
V 0
0 I

) (
Y1 Y3
0 0

)
= λ

(
Y1 Y3
0 0

) (
V 0
0 I

) }
⋃ {

λ ∈ C : there exist Y2,Y3 ∈ L(L2(0, 1)) \ {0} such that(
V 0
0 I

) (
0 Y3
0 Y2

)
= λ

(
0 Y3
0 Y2

) (
V 0
0 I

) }
⋃ {

λ ∈ C : there exist Y1,Y2,Y3 ∈ L(L2(0, 1)) \ {0} such that(
V 0
0 I

) (
Y1 Y3
0 Y2

)
= λ

(
Y1 Y3
0 Y2

) (
V 0
0 I

) }
.

It follows that

σext

( ( V 0
0 I

) )
=

{
λ ∈ C : there exists Y1 ∈ L(L2(0, 1)) \ {0} such that VY1 = λY1V

}
⋃ {

λ ∈ C : there exists Y2 ∈ L(L2(0, 1)) \ {0} such that Y2 = λY2

}
⋃ {

λ ∈ C : there exists Y3 ∈ L(L2(0, 1)) \ {0} such that VY3 = λY3

}
⋃ {

λ ∈ C : there exist Y1,Y2 ∈ L(L2(0, 1)) \ {0} such that VY1 = λY1V and Y2 = λY2

}
⋃ {

λ ∈ C : there exist Y1,Y3 ∈ L(L2(0, 1)) \ {0} such that VY1 = λY1V and VY3 = λY3

}
⋃ {

λ ∈ C : there exist Y2,Y3 ∈ L(L2(0, 1)) \ {0} such that VY3 = λY3 and Y2 = λY2

}
⋃ {

λ ∈ C : there exist Y1,Y2,Y3 ∈ L(L2(0, 1)) \ {0} such that VY1 = λY1V,Y2 = λY2, and VY3 =

λY3

}
.

We have {
λ ∈ C : there exists Y3 ∈ L(L2(0, 1)) \ {0} such that VY3 = λY3

}
= σ(V).

Since σ(V) = {0}, then we can deduce that

σext

( ( V 0
0 I

) )
= ]0,∞[∪{1} ∪ {0} ∪ {1} ∪ ∅ ∪ ∅ ∪ ∅

= [0,∞[.
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As a result, there exists λ = 0 ∈ σext

( ( V 0
0 I

) )
. However, λ = 0 < σext(V) ∪ σext(I).

(ii) If Y1 = Y2 = 0, then there is no inclusion relation among σext(A) ∪ σext(B) and σext(MC). In fact, let H be a
Hilbert space, A ∈ L(H) such that σ(A) = {λ} with λ , 0, B = I be the identity operator on H and C ∈ L(H). Then,
it follows that σext(A) = {1} (see [3]). Furthermore, it is easy to notice that σext(I) = {1}. Hence, we obtain

σext(A) ∪ σext(I) = {1}.

On the other side, we have

σext

( ( A C
0 I

) )
=

{
λ ∈ C : there exists Y3 ∈ L(H)\{0} such that

(
A C
0 I

) (
0 Y3
0 0

)
= λ

(
0 Y3
0 0

) (
A C
0 I

) }
=

{
λ ∈ C : there exists Y3 ∈ L(H) \ {0} such that (A − λI)Y3 = 0

}
= {λ}.

That would be clear when λ , 1. ♢

Corollary 4.5. If A = B and CY2 = λY1C, for any λ ∈ C. Then,
λ ∈ σext(MC) if, and only if, λ ∈ σext(A). ♢

Proof. Suppose that A = B and CY2 = λY1C, for any λ ∈ C. Let λ ∈ σext(A). Based on Theorem 4.3
(i), we conclude that λ ∈ σext(MC). Conversely, let λ ∈ σext(MC). Using Theorem 4.3 (ii), it is sufficient to

prove λ ∈ σext(A) when Y of Eq. (8) is equal to
(

0 Y3
0 0

)
. In this case, Eq. (9) implies the existence of

Y3 ∈ L(X1) \ {0} such that
AY3 = λY3A.

As a result, we obtain λ ∈ σext(A).

In the following theorem, we will extend results obtained in Theorem 4.3 from bounded 2 × 2 upper
triangular block operator matrices to invertible closed ones.

Theorem 4.6. Let X1 and X2 two Banach spaces, we consider an unbounded 2 × 2 upper triangular block operator
matrices defined onD(MC) = D(A) ×D(B) ⊂ X1 × X2 by

MC =

(
A C
0 B

)
, (12)

where A and B are, respectively, two closed linear operators on X1 and X2 and C ∈ L(X2,X1) such that 0 ∈ ρ(A)∩ρ(B).
Consider the 2×2 upper triangular block operator matrices, Y, defined in Eq. (8). Then, we have the following results:
(i) Let CY2 = λY1C, for any λ ∈ C. Then,

if λ ∈ {σext(A) ∪ σext(B)} \ {0}, then λ ∈ σext(MC) \ {0}. (13)

(ii) If Y1 , 0 or Y2 , 0, then

σext(MC) \ {0} ⊆ {σext(A) ∪ σext(B)} \ {0}. (14)

♢

Proof. We denote that if A and B are closed linear operators and C is a bounded linear operator, then MC
with its domain D(A) × D(B) is closed as it is the sum of a closed and a bounded operator. Using the fact
that 0 ∈ ρ(A) ∩ ρ(B), we infer that 0 ∈ ρ(MC) such that

M−1
C =

(
A−1

−A−1CB−1

0 B−1

)
.
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(i) Again, relying on the fact that 0 ∈ ρ(A) ∩ ρ(B) together with Proposition 3.3 (iii) leads to

λ ∈ {σext(A) ∪ σext(B)} \ {0} if, and only if,
1
λ
∈ {σext(A−1) ∪ σext(B−1)} \ {0}.

Resting upon Theorem 4.3 (i), we get
1
λ
∈ σext(M−1

C ) \ {0}.

Again, according to Proposition 3.3 (iii), we have

λ ∈ σext(MC) \ {0}.

(ii) The fact that 0 ∈ ρ(MC) together with Proposition 3.3 (iii) leads to

λ ∈ σext(MC) \ {0} if, and only if,
1
λ
∈ σext(M−1

C ) \ {0}.

Investing Theorem 4.3 (ii), allows us to deduce that

1
λ
∈ {σext(A−1) ∪ σext(B−1)} \ {0}.

Applying again Proposition 3.3 (iii), we infer that

λ ∈ {σext(A) ∪ σext(B)} \ {0}.

Lemma 4.7. If σs(A) ∩ σs(B) = ∅, then for every C ∈ L(X2,X1) the operator MC is similar to M0. ♢

Proof. Let σs(A) ∩ σs(B) = ∅. Following the same reasoning as in the proof of Lemma 3.8, we get for every
C ∈ L(X2,X1), the equation Aψ − ψB = C has a solution ψ. Since

MC =

(
I ψ
0 I

)
M0

(
I −ψ
0 I

)
,

where
(

I −ψ
0 I

)
is the inverse of

(
I ψ
0 I

)
. We get MC which is similar to M0.

Theorem 4.8. If σs(A) ∩ σs(B) = ∅, then for every C ∈ L(X2,X1)
σext(MC) = σext(M0). ♢

Proof. Let A ∈ L(X1), B ∈ L(X2) and suppose that σs(A) ∩ σs(B) = ∅. By using Lemma 4.7, it follows that for
every C ∈ L(X2,X1) the operator MC is similar to M0 such that

MC =

(
I ψ
0 I

)
M0

(
I −ψ
0 I

)
,

where
(

I −ψ
0 I

)
is the inverse of

(
I ψ
0 I

)
. Now, let’s suppose that λ ∈ σext(MC), then there exists a

nonzero operator such that
MCY = λYMC.

It follows that, (
I ψ
0 I

)
M0

(
I −ψ
0 I

)
Y = λY

(
I ψ
0 I

)
M0

(
I −ψ
0 I

)
.
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Therefore, we get

M0

(
I −ψ
0 I

) (
Y1 Y3
0 Y2

) (
I ψ
0 I

)
= λ

(
I −ψ
0 I

) (
Y1 Y3
0 Y2

) (
I ψ
0 I

)
M0.

In other words, there exists a nonzero operator

Z =

(
I −ψ
0 I

) (
Y1 Y3
0 Y2

) (
I ψ
0 I

)
=

(
Y1 Y1ψ + Y3 − ψY2
0 Y2

)
,

such that
M0Z = λZ M0.

So, λ ∈ σext(M0). The proof of the inverse inclusion follows the same way.

Using the same method of Biswas and Petrovic [3], for which it was established that the extended
spectrum is invariant under a quasisimilarity, we can set forward the following Lemma:

Lemma 4.9. Let A,B ∈ L(X) such that A has a dense range and B is injective. Then, we have
(i) σext(AB) ⊂ σext(BA).
(ii) If, further A is injective and B has a dense range, then σext(AB) = σext(BA). ♢

Proof. (i) Suppose that λ ∈ σext(AB), then there exists a nonzero operator Z satisfying

ABZ = λZAB. (15)

Multiplying Eq. (15) by A on the left and by B on the right, we obtain

BABZA = λBZABA. (16)

In Eq. (16), we have Z , 0. Since B is injective, then BZ , 0. The fact that A has a dense range, we infer that
BZA , 0, which assures that λ ∈ σext(BA), with BZA ∈ E(BA, λ).
(ii) The inverse inclusion follows by symmetry.

Theorem 4.10. Let A ∈ L(H1) and B ∈ L(H2) be given injective operators such that R(A) dense in H1 and R(B)
dense in H2. We have for all C ∈ L(H2,H1)

σext

( ( A AC
0 B

) )
= σext

( ( A CB
0 B

) )
. ♢

Proof. We have the following formula

MC =

(
I 0
0 B

) (
I C
0 I

) (
A 0
0 I

)
.

We set R =
(

I 0
0 B

)
and S =

(
I C
0 I

) (
A 0
0 I

)
=

(
A C
0 I

)
. The fact that A, B and I are injective, allows

us to prove easily that both R and S are injective. Furthermore, A, B and I have dense ranges. Applying
Theorem 2.8, we infer that both R and S have dense ranges. Now, using Lemma 4.9 leads to

σext(MC) = σext(SR) = σext

( ( A CB
0 B

) )
. (17)
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Next, if we take R =
(

I 0
0 B

) (
I C
0 I

)
=

(
I C
0 B

)
and S =

(
A 0
0 I

)
, then in a similar way, we get

σext(MC) = σext(SR) = σext

( ( A AC
0 B

) )
. (18)

Based upon Eqs. (17) and (18), we obtain for every C ∈ L(X2,X1)

σext

( ( A AC
0 B

) )
= σext

( ( A CB
0 B

) )
.
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