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Abstract. It is well known that ‘an almost complex structure’ J that is J2 = −I on the manifold M is called
‘an almost Hermitian manifold’ (M, J,G) if G(JX, JY) = G(X,Y) and proved that (F2M, JD,GD) is ‘an almost
Hermitian manifold’ on the frame bundle of the second order F2M. The term ‘an almost complex structure’
refers to the general quadratic structure J2 = pJ + qI, where p = 0, q = −1. However, this paper aims to
study the general quadratic equation J2 = pJ + qI, where p, q are positive integers, it is named as a metallic
structure. The diagonal lift of the metallic structure J on the frame bundle of the second order F2M is studied
and shows that it is also a metallic structure. The proposed theorem proves that the diagonal lift GD of a
Riemannian metric G is a metallic Riemannian metric on F2M. Also, a new tensor field J̃ of type (1,1) is
defined on F2M and proves that it is a metallic structure. The 2-form and its derivative dF of a tensor field
J̃ are determined. Furthermore, the Nijenhuis tensor N J̃ of a metallic structure J̃ and the Nijenhuis tensor
NJD of a tensor field JD of type (1,1) on the frame bundle of the second order F2M are calculated.

1. Introduction

In the framework of the geometry of frame bundles, it is classical to consider various geometric struc-
tures; for example, ‘an almost complex’, ‘an almost Hermitian’, ‘an almost symplectic’ structures, etc. using
‘the complete’, ‘vertical’, ‘horizontal’, and ‘diagonal lifts’ transforming structures on the base manifold to
the frame bundle FM and the frame bundle of the second order F2M. Bonome et. al. [5] defined ‘an almost
complex structure’ J and proved that (FM, 1D, J) is ‘an almost Hermitian manifold’, where the diagonal
lift 1D is a Riemannian metric on FM. The Nijenhuis tensor of ‘an almost complex structure’ J on FM has
been calculated and established a necessary and sufficient condition for integrability of J. The author [24]
introduced the notion of a tensor field J̃ of type (1,1) on the frame bundle FM and showed that it is a metallic
structure. The Nijenhuis tensor, derivative, and co-derivative of the 2-form have been determined. Kowal-
ski and Sekizawa [25] studied the properties of curvatures of a diagonal lift from an affine connection to the
linear frame bundle. León and Salgado [11] initiated the study of a diagonal lift of tensor fields, an almost
Hermitian manifold and the Kähler form to the frame bundle of the second order F2M. Many authors have
studied the geometry of the frame bundle and the frame bundle of the second order [7, 12, 26, 27].

2020 Mathematics Subject Classification. Primary 53C15 ; Secondary 58D17
Keywords. Metallic structure, Nijenhuis tensor, Diagonal lift, Riemannian metric, Frame bundle.
Received: 18 June 2021; Accepted: 15 September 2022
Communicated by Ljubica Velimirović
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The various geometric structures; for example, ‘an almost complex’, ‘an almost Hermitian’, ‘an almost
symplectic’ structures, etc. provide effective results while studying on the frame bundle and the frame
bundle of the second order. The differential geometry of metallic structures on the manifold is one of the
most studied subjects [2, 28–30, 35, 36]. The notion of the metallic means family was introduced by Spindel
[33, 34] which consists of the Gold mean, the Silver mean, the Bronze mean, etc. Consider an equation
x2
− px − q = 0, p and q are positive integers whose positive solution

σq
p =

p +
√

p2 + 4q
2

is called metallic means family. The polynomial structure of degree 2 that is the general quadratic equation
on M given by

J2 = pJ + qI, (1)

where J is a tensor field of type (1,1), I is an identity tensor field and p and q are positive integers. Then J
is called metallic structure which is a particular case of the polynomial structure of degree n introduced by
Goldberg and Yano and Goldberg and Petridis [14, 15]. Hretreanu and Crasmareanu [17] initiated the study
of metallic structure on Riemannian manifolds and established a necessary and sufficient condition for a
submanifold to be a metallic Riemannian manifold. Various structures of metallic Riemannian manifolds
for curvature have been studied by Blaga and Hretreanu [3, 4, 19]. Recently, the author [24] studied the
frame bundle endowed with the metallic structure on an almost contact metric manifold and investigated
that the diagonal lift 1D of a Riemannian metric 1 is a metallic Riemannian metric on FM. Many authors
have studied the geometry of metallic structures [1, 8, 10, 16, 18–20, 22, 31].

The major focus of this work can be summarized as follows:

• The diagonal lift of a metallic structure is also a metallic structure on the frame bundle of the second
order F2M.

• The proposed theorem proves that the diagonal lift GD of a Riemannian metric G is a metallic Rie-
mannian metric on F2M.

• Define a new tensor field J̃ of type (1,1) on F2M and proves that it is a metallic structure.

• Some results on the 2-form, the derivative of 2-form, the Nijenhuis tensor NJ̃ of a metallic structure J̃
and the Nijenhuis tensor NJD of a tensor field JD of type (1,1) on the frame bundle of the second order
F2M are calculated.

The structure of the remaining paper is organized as.
Section 2 focuses on definitions of the frame bundle FM and the frame bundle of the second order F2M,

the diagonal lift of tensor fields of type (1,1) and (0,2) on F2M. In Section 3, the diagonal lift of the metallic
structure J on the frame bundle of the second order F2M is studied and shows that it is also a metallic
structure. The proposed theorem proves that the diagonal lift GD of G is a metallic Riemannian metric on
F2M. Also, a new tensor field J̃ of type (1,1) is defined and proves that it is a metallic structure. The 2-form
and its derivative dF of a tensor field J̃ are determined. In Section 4, the Nijenhuis tensor N J̃ of a metallic
structure J̃ and the Nijenhuis tensor NJD of a tensor field JD of type (1,1) on the frame bundle of the second
order F2M are calculated.

2. Preliminaries

Let C∞(ℜn) be the algebra of C∞ functions on the Eulidean spaceℜn whose coordinates are (x1, x2, ...., xn)
and f and 1 be two elements of C∞(ℜn). Let M be an n-dimensional manifold and U and V be two
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neighborhoods at x = 0 ∈ ℜn. The mappings f : U→M and 1 : V →M are said to define same r-jet if

f (0) = 1(0),(
∂
∂xα

)
( f ) =

(
∂
∂xα

)
(1),(

∂2

∂xα∂xβ

)
( f ) =

(
∂2

∂xα∂xβ

)
(1),

...........

............(
∂r

∂xα∂xβ....∂xγ

)
( f ) =

(
∂r

∂xα∂xβ....∂xγ

)
(1),

at 0 ∈ ℜn for all α, β, γ = 1, 2, ..., p.
”If f is a diffeomorphism of a neighborhood U of 0 onto a open subset of M then the r-jet jr f at x = 0 is

called an r-frame at x = f (0). The set of the r-frames of M is a principal bundle over M with projection πr

such that πr( jr f ) = f (0) and denoted by FrM. If 1 is a diffeomorphism of a neighborhood V of 0 onto a open
subset of M, then set of r-frames of M denoted by Gr(n)” [6, 11].

Let jr1 and jr1′ be two elements of Gr(n) such that ( jr1)( jr1′) = jr(1 ◦ 1′). Then Gr(n) is a Lie group with
multiplication defined by the composition of jets. Let jr f and jr1 be elements of FrM and Gr(n). Then the
multiplication of jr f and jr1 defined as

( jr f )( jr1) = jr( f ◦ 1).

Consider the frame bundle of the second order F2M such that the canonical projection π2
1 : F2M → FM

and π2
1( j2 f ) = j′ f and the base M is covered by a system of coordinate neighborhood (U, xi), where (xi)

is a local coordinate system defined in the neighborhood U. Thus {FU, (xi,Xi
j)} and {F2U, (xi,Xi

jk)} are the

induced coordinate systems in FM and F2M with groups G′(n) = Gl(n) and G2(n), respectively. Where Xi
j

and Xi
jk are local components of the vector X j of the 1-frame and 2-frame respectively and Xi

jk = Xi
k j.

Let 12(n) be the Lie algebra of group G2(n) and (A, α) be an element of 12(n). Then a vector λ(A, α) on
F2M is called the fundamental vector field corresponding to (A, α), where A ∈ 1l(n) and α ∈ S2(n),S2(n) is
the set of symmetric bilinear forms onℜn such that G2(n) = 1l(n) × S2(n) [6].

Definition 2.1 A coonection Γ in the bundle F2M of 2-frames of M is called a connection of order 2 on M
[6].

Definition 2.2 A curvature form Ω of Γ is a tensorial 2-form on F2M of type Ad(G2(n)) and given as

Ω = Ω0 +Ω1,

where Ω0 is a 1l(n) valued and Ω1 is a S2(n) valued 2-form of F2M [6].

2.1. Vector field of F2M
Let F2M be the frame bundle of the second order with the second order connection Γ on M. Let X be a

vector field on M and XH its horizontal lift. Then

X = Xi ∂

∂xi

and

XH = Xi

 ∂∂xi − Γ
r
ilx

l
j
∂
∂xr

j
− (Γr

ilx
l
jk + Γ

r
ilmxl

jx
m
k )

 ,
where Γr

il and Γr
ilm are the components of Γ on M [6].

Proposition 2.1. Let F2M be the frame bundle of the second order and XH be the horizontal lift of X then

[XH,YH] = [X,Y] − λ(R(X,Y)◦) − 2λΩ1(XH,YH), (2)

for all vector fields X,Y on M [6].
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2.2. Diagonal lifts of tensor fields of type (1,1) and 1-form

Let F and τ be a tensor field of type (1,1) and 1-form, respectively on M. The diagonal lifts FD and τD on
F2M are given by [6]

FD = Fh
j Dh ⊗ η

j + δi
jF

h
kDi

h ⊗ η
k
j + δ

i
jδ

k
l Fh

mDh
jl ⊗ η

m
ik , (3)

τD = τiη
i +

n∑
i=1

τiη
i
j +

n∑
j,k=1

τiη
i
jk, (4)

where

ηi = dxi,

ηi
j = Γi

rsx
s
jdxr + dxi

j,

ηi
jk = {(Γi

lrx
r
jk + Γ

i
lrsx

r
jx

s
k) − ys

mΓ
m
lr (xr

jx
i
sk + xr

kxi
js)}dxl

− yr
l (δ

sjxi
rk + δ

skxi
jrdxl

s + dxi jk,

Di =
∂

∂xi − Γ
k
ilx

l
r
∂

∂xk
r
− (Γs

imxm
rk + Γ

s
imlx

m
r xl

k)
∂
∂xs

rk
,

D j
k =

∂

∂xi
j

+ yr
jx

m
rs
∂
∂xm

is
+ yr

jx
m
sr
∂
∂xm

si
,

Di
jk =

∂

∂xi
jk

,

are local components of η and D in F2U.
The diagonal and horizontal lifts have the following formulas [6]:

FDXH = (FX)H,

FD(λ f ) = λ(F◦ f ),
FD(λ1) = λ(F◦1), (5)
FD(λA) = λ(F◦A),
FD(λα) = λ(F◦α),

for any vector field X on M, all A ∈ 1l(n), α ∈ S2(n)∀ f : F2M→ 1l(n) and 1 : F2M→ S2(n).

2.3. Diagonal lifts of tensor fields of type (0,2)

Let G be a tensor field of type (0,2) on M. The diagonal lift GD of G to F2M is a tensor field of type (0,2)
has local components

GD = Gi jη
j
⊗ η j + δklGi jη

i
j ⊗ η

j
l + δkmδlrGi jη

i
kl ⊗ η

j
mr. (6)

If rank of G is r, then GD has rank r(1 + n + n(n+1)
2 ).

Let G◦ be globally defined functions on F2M, then

G◦(A,B) = δrsAk
rBl

sx
i
kx j

l Gi j, (7)

G◦(α, β) = δrsαk
rβ

l
sx

i
kx j

l Gi j, (8)

where A = Ai
jE

j
i ,B = Bi

jE
j
i ∈ 1l(n), α = αi

jkE jk
i and β = βi

jkE jk
i ∈ S2(n) [6].
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Proposition 2.2. The following identities are given by

GD(λA, λB) = G◦(A,B),
GD(λA, λβ) = G◦(λβ, λA) = 0,
GD(λA,XH) = GD(XH, λA) = 0, (9)
GD(λα,XH) = GD(XH, λα) = 0,
GD(λα, λβ) = G◦(α, β), (10)

GD(XH,YH) = {G(X,Y)}V,

where f V = f ◦ π2 [6, 11].

3. Proposed theorems for the metallic structure on the frame bundle of the second order

In this section, the diagonal lift of the metallic structure J on the frame bundle of the second order F2M
is studied and shows that it is also a metallic structure. The proposed theorem proves that the diagonal
lift GD of G is a metallic Riemannian metric on F2M. Also, a new tensor field J̃ of type (1,1) is defined and
proves that it is a metallic structure. The 2-form and its derivative dF of a tensor field J̃ are determined.

Let M be an n-dimensional manifold of class C∞ and J be a tensor field of type (1,1) and I an identity
tensor field on M. Then J satisfies

J2
− pJ − qI = 0, (11)

where p, q are positive integers and σq
p =

1
2 (p +

√
p2 + 4q) is its positive solution. The tensor field J referred

to as a metallic structure on M and (M, J) referred to as a metallic manifold [1, 21, 23].
Let G be a Riemannian metric on M such that

G(JX,Y) = G(X, JY), (12)

or equivalent

G(JX, JY) = pG(X, JY) + qG(X,Y), (13)

for all X and Y are vector fields on M. Then (M, J,G) is said to be a metallic Riemannian manifold.
The Nijenhuis tensor NJ of a metallic structure J is given by

NJ(X,Y) = [JX, JY] − J[JX,Y] − J[X, JY] + J2[X,Y], (14)

where X and Y are vector fields on M. The metallic structure J is called integrable if NJ(X,Y) = 0 [37, 38].
Now, state the following propositions [11]:

Proposition 3.1. Let J and K be tensor fields of type (1,1) on M. Then

(i) (JK)D = JDKD (15)
(ii) ID = I, (16)

where I is an identity tensor field.

Proposition 3.2. If P(t) is a polynomial of variable t, then

(P(J)D) = P(JD), (17)

where J is a tensor field of type (1,1) on M.

Theorem 3.3. Let J be a tensor field of type (1,1) on the manifold M and F2M its frame bundle of second order. Then
the diagonal lift JD of J is a metallic structure on F2M if J is a metallic structure on M.
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Proof. Let J be a metallic structure. Applying diagonal lift on equation (11) and using Proposition (3.1) and
Proposition (3.2), the obtained equation is

(J2
− pJ − qI)D = 0,

(J2)D
− qJD

− qID = 0,
(JD)2

− qJD
− qI = 0, as ID. (18)

This shows that JD is a metallic structure on F2M.

Theorem 3.4. Let F2M its frame bundle of second order of the manifold M admits a tensor field J of type (1,1) given
by equation (11), then the diagonal lift GD of G is a metallic Riemannian metric on F2M i.e.

GD(JDX̃, JDỸ) = pGD(X̃, JDỸ) + qGD(X̃, Ỹ)

where X̃ and Ỹ are vector fields on F2M.

Proof. In order to prove that the diagonal lift GD of G is a metallic Riemannian metric on F2M. It is enough
to check the identity

GD(JDX̃, JDỸ) = pGD(X̃, JDỸ) + qGD(X̃, Ỹ) (19)

in the following three cases:
(i) Setting X̃ = XH and Ỹ = YH in equation (19). Using equation (13) and Proposition (2.3), the obtained

equation is

GD(JDXH, JDYH) = GD((JX)H), (JY)H),
= (G(JX, JY))V,

= (pG(X, JY) + qG(X,Y))V,

= p(G(X, JY))V + q(G(X,Y))V,

= pGD(XH, (JY)H) + qG(XH,YH).

(ii) Setting X̃ = XH and Ỹ = λ(A, α) in equation (19). Using equation (13), Proposition (2.2) and
Proposition (2.3), the obtained equation is

GD(JDXH, JDλ(A, α)) = GD((JX)H, λJ◦(A, α)) = 0.

(iii) Setting X̃ = λ(A, α) and Ỹ = λ(B, β) in equation (19). Using equation (13), Proposition (2.2) and
Proposition (2.3), the obtained equation is

GD(JDλ(A, α), JDλ(B, β)) = GD(λJ◦(A, α), λJ◦(B, β)),
= G◦(J◦(A, α), J◦(B, β))
= pG◦((A, α), J◦(B, β)) + qG◦((A, α), (B, β))
= pGD(λ(A, α), JDλ(B, β)) + qGD(λ(A, α), λ(B, β)),

for vector fields X,Y on M, A,B ∈ 1l(n) and α, β ∈ S2(n).

Let M be an n-dimensional manifold and F2M its frame bundle of second order. Let XH and λA be
vector fileds on F2M with respect to the second order connection Γ.

In [6], Cordero et al defined a tensor field Fα, α = 1, 2, ....,n of type (1,1) on the frame bundle FM as

FαXH = −X(α), FαX(β) = δ
β
αX

H, (20)

where XH and X(α) are ‘the horizontal’ and ‘α−th vertical’ lifts of a vector field X on M. It is proved that
F3
α + Fα = 0 i.e. F-structure.
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Also, Gezer and Kamran [13] defined a tensor field J̃ of type (1,1) on the tangent bundle TM of M by

J̃XH =
1
2

(αXH + (2σβα − α)(X ⊗ ẼV),

J̃XV =
1
2

(α(X ⊗ ẼV + (2σβα − α)XH),

J̃AV = σ
β
αA

V,

for any vector field X, tensor field A of type (1,1), Ẽ = 1 ◦ E and 1 a Riemannian metric on M. It is proved
that J̃ is a metallic structure on TM.

From Cordero et al [6] and Gezer and Kamran [13], a tensor field J̃ of type (1,1) on F2M is introduced as

J̃XH =
1
2
{pXH + (2σq

p − p)λA}, (21)

J̃λA =
1
2
{pλA + (2σq

p − p)XH
}, (22)

where σq
p =

p+
√

p2+4q
2 .

Theorem 3.5. Let F2M be the frame bundle of the second order of the manifold M. Then the tensor field J̃ defined by
equations (21) and (22) is a metallic structure on F2M.

Proof. In order to prove the tensor field J̃ is a metallic structure. It is enough to prove that J̃2
− pJ̃ − qI = 0.

Let XH and λA be vector fields on F2M. Making use of equations (21) and (22), then

(J̃2
− pJ̃ − qI)XH = J̃(J̃XH) − pJ̃XH

− qXH

= J̃
1
2
{pXH + (2σq

p − p)λA} −
p
2
{pXH + (2σq

p − p)λA} − qXH

=
p
2

J̃XH +
(2σq

p − p)

2
J̃λA} −

p2

2
XH
−

p(2σq
p − p)

2
λA} − qXH

= 0.

Similarly, (J̃2
− pJ̃ − qI)λA = 0. This shows that J̃2

− pJ̃ − qI = 0.
Hence, J̃ is a metallic structure on F2M.

Let GD be a metallic Riemannian metric and J̃ be a metallic structure on F2M defined by equations (21)
and (22). Let F be the 2-form on F2M is given by

F(X̃, Ỹ) = GD(X̃, J̃Ỹ). (23)

where X̃ and Ỹ are vector fields on F2M.

Theorem 3.6. Let F2M be the frame bundle of the second order of the manifold M admits a metallic structure J̃
defined by equations (21) and (22), then 2-form F on F2M given by

(i) F(XH,YH) =
p
2

(GD(X,Y))V,

(ii) F(XH, λ(A, α)) =
(2σq

p − p)

2
(GD(X,Y))V,

(iii) F(λ(A, α), λ(B, β)) =
p
2

(G◦(X,Y))V.

for all vector fields X on M, all A ∈ 1l(n), α ∈ S2(n).
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Proof. (i) Setting X̃ = XH and Ỹ = YH in equation (23). Using equations (21) and (22) and Proposition (2.2),
then

F(XH,YH) = GD(XH, J̃YH),

= GD(XH,
1
2
{pYH + (2σq

p − p)λA}),

=
p
2

GD(XH,YH) +
(2σq

p − p)

2
GD(XH, λA),

=
p
2

(GD(X,Y))V, as GD(XH, λ(A, α) = 0.

(ii) Setting X̃ = XH and Ỹ = λ(A, α) in equation (23). Using equations (21) and (22) and Proposition (2.2),
then

F(XH, λ(A, α)) = GD(XH, J̃λ(A, α))

= GD(XH,
1
2
{pλ(A, α) + (2σq

p − p)YH
})

=
p
2

GD(XH, λ(A, α)) +
(2σq

p − p)

2
GD(XH,YH),

=
(2σq

p − p)

2
(GD(X,Y))V.

(iii) Setting X̃ = λ(A, α) and Ỹ = λ(B, β) in equation (23). Using equations (21) and (22) and Proposition
(2.2), then

F(λ(A, α), λ(B, β)) = GD(λ(A, α), J̃λ(B, β))

= GD(λ(A, α),
1
2
{pλ(B, β) + (2σq

p − p)YH
})

=
p
2

GD(λ(A, α), λ(B, β)) +
(2σq

p − p)

2
GD(λ(A, α),YH),

=
p
2

G◦(λ(A, α), λ(B, β)),

where λA is a fundamental vector on F2M.

Theorem 3.7. Let F2M be the frame bundle of the second order of the manifold M and the diagonal lift GD of G. Then
the derivative of the 2-form F is given by

(i) 3dF(XH,YH,ZH) =
p
2
{(XG(Y,Z))V

− (G([Y,Z],X))V
− (YG(X,Z))V

− (G([X,Z],Y))V + (ZG(X,Y))V
− (G([X,Y],Z))V

}

+ 2{F(λΩ(XH,YH),ZH) + F(λΩ(XH,ZH),YH) + F(λΩ(YH,ZH),XH)},

(ii) 3dF(XH,YH, λ(A, α)) =
2σq

p − p

2
(XG(Y,Z))V

−
2σq

p − p

2
(YG(X,Z))V +

p
2

(λ(A, α)G(X,Y))V

−
2σq

p − p

2
(G([X,Y],Z))V + 2λF(Ω(XH,YH), λ(A, α)),
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(iii) 3dF(XH, λ(A, α), λ(B, β)) =
p
2

XHG◦(λ(A, α)], λ(B, β)) + λ(B, β)(G(X,Z))V

−
2σq

p − p

2
λ(A, α)(G(X,Z))V

− F(λ[(A, α), (B, β)],XH),

(iv) 3dF(λ(A, α), λ(B, β), λ(C, γ)) =
p
2
{λ(A, α)G◦((B, β), (C, γ)) − λ(B, β)G◦((A, α), (C, γ))

+ λ(C, γ)G◦((A, α), (B, β))} −
p
2
{G◦([(A, α), (B, β)], (C, γ))

− G◦([(A, α), (C, γ)], (B, β)) + G◦([(B, β), (C, γ)], (A, α))},

for all vector fields X on M, all A ∈ 1l(n,ℜ), α ∈ S2(n).

Proof. ”The derivative dF of the 2-form F is given by [24]

3dF(X̃, Ỹ, Z̃) = X̃(F(Ỹ, Z̃)) − Ỹ(F(X̃, Z̃)) + Z̃(F(X̃, Ỹ)) − F([X̃, Ỹ], Z̃) + F([X̃, Z̃], Ỹ) − F([Ỹ, Z̃], X̃), (24)

where X̃, Ỹ, Z̃ being arbitrary vector fields on F2M”.
(i) Setting X̃ = XH, Ỹ = YH, Z̃ = ZH in equation (24) and using Theorem (3.4), then

3dF(XH,YH,ZH) = XH(F(YH,ZH)) − YH(F(XH,ZH)) + ZH(F(XH,YH)) − F([XH,YH],ZH)
+ F([XH,ZH],YH) − F([YH,ZH],XH),

=
p
2
{(XG(Y,Z))V

− (YG(X,Z))V + (ZG(X,Y))V
}

−
p
2
{(G([X,Y],Z))V + (G([X,Z],Y))V + (G([Y,Z],X))V

}

+ 2{F(λΩ(XH,YH),ZH) + F(λΩ(XH,ZH),YH) + F(λΩ(YH,ZH),XH)}

=
p
2
{(XG(Y,Z))V

− (G([Y,Z],X))V
− (YG(X,Z))V

− (G([X,Z],Y))V + (ZG(X,Y))V
− (G([X,Y],Z))V

}

+ 2{F(λΩ(XH,YH),ZH) + F(λΩ(XH,ZH),YH) + F(λΩ(YH,ZH),XH)}.

(ii) Setting X̃ = XH, Ỹ = YH, Z̃ = λ(A, α) in equation (24) and using Theorem (3.4), then

3dF(XH,YH, λ(A, α)) = XH(F(YH, λ(A, α))) − YH(F(XH, λ(A, α))) + λ(A, α)(F(XH,YH))
− F([XH,YH], λ(A, α)) + F([XH, λ(A, α)],YH) − F([YH, λ(A, α)],XH),

=
2σq

p − p

2
(XG(Y,Z))V

−
2σq

p − p

2
(YG(X,Z))V +

p
2

(λ(A, α)G(X,Y))V

− F([X,Y]H, λ(A, α)) + 2λF(Ω(XH,YH), λ(A, α)),

=
2σq

p − p

2
(XG(Y,Z))V

−
2σq

p − p

2
(YG(X,Z))V +

p
2

(λ(A, α)G(X,Y))V

−
2σq

p − p

2
(G([X,Y],Z))V + 2λF(Ω(XH,YH), λ(A, α)).

(iii) Setting X̃ = XH, Ỹ = λ(A, α), and Z̃ = λ(B, β) in equation (24) and using Theorem (3.4), then

3dF(XH, λ(A, α), λ(B, β)) = XH(F(λ(A, α), λ(B, β))) − λ(A, α)(F(XH, λ(B, β))) + λ(B, β)(F(XH, λ(A, α))
− F([XH, λ(A, α)], λ(B, β)) + F([XH, λ(B, β)], λ(A, α)) − F([λ(A, α), λ(B, β)],XH),

=
p
2

XHG◦(λ(A, α)], λ(B, β)) −
2σq

p − p

2
λ(A, α)(G(X,Z))V

+ λ(B, β)(G(X,Z))V
− F(λ[(A, α), (B, β)],XH).
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(iv) Setting X̃ = λ(A, α), Ỹ = λ(B, β), Z̃ = λ(C, γ)in equation (24) and using Theorem (3.4), then

3dF(λ(A, α), λ(B, β), λ(C, γ)) = λ(A, α)(F(λ(B, β), λ(C, γ))) − λ(B, β)(F(λ(A, α)λ(C, γ)))
+ λ(C, γ)(F(λ(A, α), λ(B, β))) − F([λ(A, α), λ(B, β)], λ(C, γ))
+ F([λ(A, α), λ(C, γ)]λ(B, β)) − F([λ(B, β), λ(C, γ)], λ(A, α)),

=
p
2
{λ(A, α)G◦((B, β), (C, γ)) − λ(B, β)G◦((A, α), (C, γ))

+ λ(C, γ)G◦((A, α), (B, β))} −
p
2
{G◦([(A, α), (B, β)], (C, γ))

− G◦([(A, α), (C, γ)], (B, β)) + G◦([(B, β), (C, γ)], (A, α))},

for all vector fields X on M, all A ∈ 1l(n), α ∈ S2(n).

4. Some calculations for the Nijenhuis tensor on the frame bundle of the second order

In this section, the Nijenhuis tensor of a metallic structure J̃ on the frame bundle of the second order
F2M is calculated.

”Let X̃ and Ỹ be vector fields on F2M and NJ̃ be the Nijenhuis tensor of a tensor field J̃ of type (1,1) is
given by [24]

NJ̃(X̃, Ỹ) = [J̃X̃, J̃Ỹ] − J̃[ J̃X̃, Ỹ] − J̃[X̃, J̃Ỹ] + J̃2[X̃, Ỹ].” (25)

Theorem 4.1. Let F2M be the frame bundle of the second order of the manifold M admits a metallic structure J̃
defined by (21) and (22), then the Nijenhuis tensor NJ̃ of J̃ is given by

(i) N J̃(X
H,YH) = (

3p2

4
+ q)[X,Y]H

−
p2 + 4p + 4q

2
λ(A, α) +

p(2σq
p − p)

2
λ(A, α),

(ii) N J̃(X
H, λ(A, α)) =

p(2σq
p − p)

2
(p − J̃)([X,Y]H

− 2λΩ(XH,YH)),

(iii) NJ̃(λ(A, α), λ(B, β)) =

p(2σq
p − p)

2

2

([X,Y]H
− 2λΩ(XH,YH)).

Proof. (i) Setting X̃ = XH and Ỹ = YH in equation (25). The equation (26) is obtained by applying equations
(21) and (22), and Proposition (2.2).

NJ̃(X
H,YH) = [J̃XH, J̃YH] − J̃[ J̃XH,YH] − J̃[XH, J̃YH] + J̃2[XH,YH],

= [J̃
1
2
{pXH + (2σq

p − p)λ(A, α)}, J̃
1
2
{pYH + (2σq

p − p)λ(B, β)}]

− J̃[ J̃
1
2
{pXH + (2σq

p − p)λ(A, α)},
1
2
{pYH + (2σq

p − p)λ(B, β)}]

− J̃[
1
2
{pXH + (2σq

p − p)λ(A, α)}, J̃
1
2
{pYH + (2σq

p − p)λ(B, β)}]

+ J̃2[
1
2
{pXH + (2σq

p − p)λ(A, α)},
1
2
{pYH + (2σq

p − p)λ(B, β)}],

NJ̃(X
H,YH) = (

3p2

4
+ q)[X,Y]H

−
p2 + 4p + 4q

2
λ(A, α) +

p(2σq
p − p)

2
λ(A, α). (26)

(ii) Setting X̃ = XH and Ỹ = λ(A, α) in equation (25). The equation (27) is obtained by applying equations
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(21), (22), (5), Proposition (2.1), and Proposition (2.2).

NJ̃(X
H, λ(A, α)) = [J̃XH, J̃λ(A, α)] − J̃[ J̃XH, λ(A, α)] − J̃[XH, J̃λ(A, α)] + J̃2[XH, λ(A, α)],

= [
1
2
{pXH + (2σq

p − p)λ(A, α)},
1
2
{pλ(B, β)} + (2σq

p − p)YH]

− J̃[
1
2
{pXH + (2σq

p − p)λ(A, α)}, λ(B, β)}] − J̃[XH,
1
2
{pλ(A, α) + (2σq

p − p)YH
}],

+ J̃2[XH, λ(A, α)],

=
p(2σq

p − p)

2
(p − J̃)([X,Y]H

− 2λΩ(XH,YH)). (27)

(iii) Setting X̃ = λ(A, α) and Ỹ = λ(B, β) in equation (25). The equation (28) is obtained by applying equations
(21), (22), (5), Proposition (2.1), and Proposition (2.2).

N J̃(λ(A, α), λ(B, β)) = [ J̃λ(A, α), J̃λ(B, β)] − J̃[ J̃λ(A, α), λ(B, β)] − J̃[λ(A, α), J̃λ(B, β)] + J̃2[λ(A, α), λ(B, β)],

= [
1
2
{pλ(A, α) + (2σq

p − p)XH
},

1
2
{pλ(A, β) + (2σq

p − p)YH
}]

− J̃[
1
2
{pλ(A, α) + (2σq

p − p)XH
}, λ(B, β)] − J̃[λ(A, α),

1
2
{pλ(A, β) + (2σq

p − p)YH]

+ J̃2[λ(A, α), λ(B, β)],

=

p(2σq
p − p)

2

2

([X,Y]H
− 2λΩ(XH,YH)). (28)

Theorem 4.2. Let F2M be the frame bundle of the second order of the manifold M admitting a metallic structure J.
The Nijenhuis tensor NJD of the diagonal lift JD of J on F2M is given by

(i)NJD (XH,YH) = (NJ(X,Y))H
− λ((R(JX, JY) − JR(JX,Y) − JR(X, JY)

+ J2R(X,Y))◦) − 2λ(Ω1((JX)H, (JY)H) − J◦Ω1((JX)H,YH)
− J◦Ω1(XH, (JY)H) + (J2)◦Ω1(XH,YH),

(ii)NJD (XH, λB) = λ((∇JX J − J∇J J)◦B),

(iii)NJD (XH, λβ) = λ((∇JX J − J∇J J)◦β),
(iv)NJD (λA, λB) = NJD (λA, λβ) = NJD (λα, λβ) = 0,

for any vector fiels X,Y on M, any A,B ∈ 1l(n) and any α, β ∈ S2(n).

Proof. Let X̃ and Ỹ be vector fields and NJD be the Nijenhuis tensor of of the diagonal lift JD of J on F2M is
given by

NJD (X̃, Ỹ) = [JDX̃, JDỸ] − JD[JDX̃, Ỹ] − JD[X̃, JDỸ] + (JD)2[X̃, Ỹ], (29)

for all vector fields X on M, all A ∈ 1l(n), α ∈ S2(n).
(i) Setting X̃ = XH, Ỹ = YH in (29) and using equation (5) and Proposition 2.1, we get

NJD (XH,YH) = [JDXH, JDYH] − JD[JDXH,YH] − JD[XH, JDYH] + (JD)2[XH,YH],

= [(JX)H, (JY)H] − JD[(JX)H,YH] − JD[XH, (JY)H] + (JD)2[XH,YH],
= (NJ(X,Y))H

− λ((R(JX, JY) − JR(JX,Y) − JR(X, JY)
+ J2R(X,Y))◦) − 2λ(Ω1((JX)H, (JY)H) − J◦Ω1((JX)H,YH)
− J◦Ω1(XH, (JY)H) + (J2)◦Ω1(XH,YH).

Similarily, the proof of Theorem (4.2) i, ii, iii are obtained by applying equation (5) and Proposition 2.1.
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