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Available at: http://www.pmf.ni.ac.rs/filomat

On the Regularized Trace of a Differential Operator
of Sturm-Liouville Type

Erdal Güla
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Abstract. In this work, we study a spectral problem for the abstract Sturm-Liouville operator with a
bounded operator coefficient V(t) and with periodic boundary conditions on the interval [0, π], and we
present a regularized trace formula for this operator.

1. Introduction

An ordinary differential operator may not have a finite trace on infinite dimensional spaces. For this reason,
the idea of a regularized trace formula is brought to light by Gelfand and Levitan in [8], where two scaler
differential operators of Sturm-Liouville type are considered and a formula for the sum of the differences
of the eigenvalues of these operators is obtained. Later, in besides these operators, many regularized trace
formulas for different differential operators are found (see [1, 6, 7, 17]).
A similar regularized trace formula to the case of scaler differential operators is obtained for a differential
operator with operator-valued coefficient in [14]. For a list of regularized trace formulas for differential
operators with operator coefficient, we can refer the articles [2, 4, 5, 12, 13, 16]. The trace formulas for
differential operators are used in inverse problems, [19] and in computing of the first eigenvalue of the
related operator, [18]. Here, we study the regularized trace of the Sturm-Liouville operator with bounded
operator coefficient and with periodic boundary conditions on [0, π].

Let us give some basic definitions and properties to motivate our problem:
Let H be a separable Hilbert space. Consider a linear operator A whose domain D(A) is dense in H (A is
called densely defined operator in H) and the inner product (Au, v) for a given fix v and every u in D(A).
Then there exists an element v∗ for which

(Au, v) = (u, v∗)

holds. In the representation v∗ = A∗v, A∗ is called the adjoint operator of A. By assumption, since D(A)
is dense in H the element v∗ is uniquely determined by the element v. We readily observe the following
properties.

(a) A∗ is a linear operator.
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(b) If A ⊆ B, then B∗ ⊆ A∗.
(c) The operator A∗ is closed even when A is not closed.
(d) If A has a closure A, then (A)∗ = A∗.
(e) If the operator A∗∗ exists, then A ⊆ A∗∗.

A linear operator A defined on D(A) is called symmetric, if for every u, v ∈ D(A), the equality

(Au, v) = (u,Av)

holds. A symmetric operator A has an extension as A∗ ⊇ A.
A linear operator A defined on D(A) is called self-adjoint, if A = A∗. From this definition we see that every
self-adjoint operator is symmetric. For the bounded operators these two notions are equivalent.
A number λ is a regular point of an operator A if the operator Rλ = (A − λI)−1 exists, is defined onH and
is bounded. The spectrum of A is set of all non-regular points and its discrete spectrum consists of the
set of all eigenvalues. Especially, the discrete spectrum of a self-adjoint operator is a countable set of real
numbers.
σ1(H) is the set of all compact operators A defined onH satisfying the condition

∞∑
k=1

sk(A) < ∞ where sk(A)

(k = 1, 2, · · · ) are the s-numbers of A. If A ∈ σ1(H), then it is called a trace-class or kernel operator.

If A is a trace-class operator and {ek}
∞

k=1 ⊂ H is any orthonormal basis, then the series
∞∑
j=1

(
Aek, ek

)
is conver-

gent and the sum of the series does not depend on the choice of the basis {ek}
∞

k=1. The sum of this series is
said to be matrix trace of the operator A denoted by trA. The reader can find more details about the theory
in the books [3, 9, 15].

Now, let us introduce our problem. Denote the inner product and the norm inH by (.,.) and ∥.∥, respectively.
LetH1 = L2([0, π];H) represent the set of all measurable functions f defined on [0, π] with their values in
H such that, for every 1 ∈ H , the scalar function ( f (t), 1) is measurable in the finite interval [0, π] and∫ π

0
∥ f (t)∥2dx < ∞.

Define the operator L onH1 by:

L(y) = −y′′(t) + V(t)y(t); y(0) − y(π) = y′(0) − y′(π) = 0.

Assume that the operator function V(t) has the following properties:

1. V(t) ∈ C2[0, π] (in the weak sense) and V(t), V′(t) and V′′(t) are self-adjoint, trace-class operators from
H toH .

2. ∥V∥H1
< 2.

3. H1 has an orthonormal basis {ϕn}
∞

n=1 such that
∑
∞

n=1

∥∥∥Vϕn

∥∥∥
H1
< ∞.

4. ∥V(t)∥σ1(H) , ∥V′(t)∥σ1(H) , ∥V′′(t)∥σ1(H) are bounded and measurable functions on [0, π].

Let L0 denote the operator L with V(t) = 0. Clearly L0 is a self-adjoint linear operator onH1. The spectrum
σ(L0) of L0 is the set {(2m)2

}
∞

m=0 and each λ ∈ σ(L0) is an eigenvalue of infinite multiplicity. The corresponding
eigenfunctions to these eigenvalues are of the form:

ψ(1)
mn = δm cos 2mt · ϕn , m = 0, 1, 2, · · · ; n = 1, 2, 3, · · ·

ψ(2)
mn = δm sin 2mt · ϕn , m = 1, 2, 3, · · · ; n = 1, 2, 3, · · ·

(1.1)

where

δm =


1
√
π

if m = 0√
2
π if m = 1, 2, . . . .
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2. Some relations on resolvents

Let R0
λ = (L0 − λI)−1 and Rλ = (L − λI)−1 be the resolvents of the operators L0 and L, respectively. Note that

the system (1.1) is an orthonormal basis forH1.

Lemma 2.1. If λ < σ(L0) then VR0
λ ∈ σ1(H1), that is, VR0

λ : H1 −→ H1 is a trace-class operator.

Proof. It is enough to prove that

∞∑
m=0

∞∑
n=1

∥∥∥VR0
λψ

(1)
mn

∥∥∥
H1
+

∞∑
m=1

∞∑
n=1

∥∥∥VR0
λψ

(2)
mn

∥∥∥
H1

is convergent (see Lemma 8.1,[10] ). Set µm = (2m)2. The system (1.1) gives

∞∑
m=0

∞∑
n=1

∥∥∥VR0
λψ

(1)
mn

∥∥∥
H1
+

∞∑
m=1

∞∑
n=1

∥∥∥VR0
λψ

(2)
mn

∥∥∥
H1

=

∞∑
m=0

∞∑
n=1

∣∣∣µm − λ
∣∣∣−1 ∥∥∥Vψ(1)

mn

∥∥∥
H1
+

∞∑
m=1

∞∑
n=1

∣∣∣µm − λ
∣∣∣−1 ∥∥∥Vψ(2)

mn

∥∥∥
H1

=

∞∑
m=0

∞∑
n=1

∣∣∣µm − λ
∣∣∣−1
[
δ2

m

∫ π

0
cos2(2m)t

∥∥∥V(t)ϕn

∥∥∥2 dt
]1/2

+

∞∑
m=1

∞∑
n=1

∣∣∣µm − λ
∣∣∣−1
[
2/π
∫ π

0
sin2(2m)t

∥∥∥V(t)ϕn

∥∥∥2 dt
]1/2

=

∞∑
n=1

|1 − λ|−1
[
1/π
∫ π

0

∥∥∥V(t)ϕn

∥∥∥2 dt
]1/2
+

∞∑
m=1

∞∑
n=1

∣∣∣µm − λ
∣∣∣−1
[
2/π
∫ π

0

∥∥∥V(t)ϕn

∥∥∥2 dt
]1/2

≤ |1 − λ|−1
∞∑

n=1

∥∥∥Vϕn

∥∥∥
H1
+

∞∑
m=1

∣∣∣µm − λ
∣∣∣−1

∞∑
n=1

∥∥∥Vϕn

∥∥∥
H1
< ∞.

Thus, the lemma follows.

Using this lemma with conditions the (2) and (3) on V(t), we can show that the spectrum σ(L) of L is a subset
of the union of pairwise disjoint intervals Fm = [µm − ∥V∥H1

, µm + ∥V∥H1
] (m = 0, 1, 2, ...) (see [11]). Each

point of σ(L) which is not equal to µm = (2m)2 is an isolated eigenvalue of finite multiplicity. However, µm
itself is the possible eigenvalue of L with either finite or infinite multiplicity. Moreover,

lim
n→∞

λmn = µm

where {λmn}
∞

n=1 are the eigenvalues of L in the interval Fm.

Lemma 2.2. The operator-valued function Rλ−R0
λ is analytic in the resolvent set ρ(L) of L with respect to the σ1(H1)

norm.

Proof. Since R0
λ is a trace class operator and R0

λ+∆λ − R0
λ = ∆λR0

λ+∆λR0
λ, we get:

D =
∥∥∥∥VR0

λ+∆λ − VR0
λ

∆λ
− V(R0

λ)2
∥∥∥∥
σ1(H1)

≤

∥∥∥VR0
λ

∥∥∥
σ1(H1)

∥∥∥R0
λ+∆λ − R0

λ

∥∥∥
H1
.

Thus D→ 0 as ∆λ→ 0 and d
dλ (VR0

λ) = V(R0
λ)2. This proves lemma.
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Let {{Ψ(1)
mn(t)}∞m=0,n=1, {Ψ

(2)
mn(t)}∞m=1,n=1}}be orthonormal eigenfunctions corresponding to eigenvalues {{λ(1)

mn}
∞

m=0,n=1,

{λ(2)
mn}
∞

m=1,n=1}} of L. Since the spectra of the operators L0 and L only consist of their eigenvalues and limit
points, we have:

R0
λ =

∞∑
m=0

∞∑
n=1

B(1)
mn

µm − λ
+

∞∑
m=1

∞∑
n=1

B(2)
mn

µm − λ
,

Rλ =
∞∑

m=0

∞∑
n=1

B(1)
mn

λ(1)
mn − λ

+

∞∑
m=1

∞∑
n=1

B(2)
mn

λ(2)
mn − λ

where

B(i)
mn = (., ψ(i)

mn)H1ψ
(i)
mn and B(i)

mn = (.,Ψ(i)
mn)H1Ψ

(i)
mn (i = 1, 2).

In view of Lemma 2.2 and the last equalities above, it follows that for i = 1, 2 the series
∞∑

n=1
(λ(i)

pn − µp) is

absolutely convergent. In this case, since Rλ − R0
λ ∈ σ1[H1], for every λ ∈ ρ(L) we get:

tr(Rλ − R0
λ) =

∞∑
m=0

∞∑
n=1

( 1

λ(1)
mn − λ

−
1

µm − λ

)
+

∞∑
m=1

∞∑
n=1

( 1

λ(2)
mn − λ

−
1

µm − λ

)
.

Multiplying both sides of the last equality by λ/2πi and integrating over the circle |λ| = bp = µp + 2p (p =
1, 2, . . . ) we find:

1
2πi

∫
|λ|=bp

λ tr(Rλ − R0
λ)dλ =

p∑
m=0

∞∑
n=1

(µm − λ
(1)
mn) +

p∑
m=1

∞∑
n=1

(µm − λ
(2)
mn).

This relation can be rewritten in the form
p∑

m=0

∞∑
n=1

(µm − λ
(1)
mn) +

p∑
m=1

∞∑
n=1

(µm − λ
(2)
mn) =

N∑
j=1

Sp
j + SpN (2.1)

where

Sp
j =

(−1) j+1

2πi

∫
|λ|=bp

λ tr
[
R0
λ(VR0

λ) j
]
dλ (2.2)

and

SpN =
(−1)N

2πi

∫
|λ|=bp

λ tr
[
Rλ(VR0

λ)N+1
]

dλ. (2.3)

for N ∈ N. Now, it is not difficult to see that

Sp
j =

(−1) j

2πi j

∫
|λ|=bp

tr(VR0
λ) jdλ. (2.4)

3. Finding of the regularized trace formula

We state and prove the regularized trace formula of the Sturm-Liouville operator L in the following theorem.
For simplicity, we will use the notation (·, ·)1 and ∥ · ∥1 for the inner product and the norm onH1 respectively.

Theorem 3.1. If the conditions (1)-(4) on V(t) are fulfilled, then we have
∞∑

m=0

[ ∞∑
n=1

(
λ(1)

mn − 4m2
)
−

1
π

∫ π

0
trV(t) dt

]
+

∞∑
m=1

[ ∞∑
n=1

(
λ(2)

mn − 4m2
)
−

1
π

∫ π

0
trV(t) dt

]
= 0. (3.1)
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Proof. The proof is based on both the system (1.1) and the relation (2.1). It will be done in four steps.

Step 1. Let us compute Sp
1: By (2.4), we have

Sp
1 =
−1
2πi

∫
|λ|=bp

tr(VR0
λ)dλ

=
−1
2πi

∫
|λ|=bp

{ ∞∑
m=0

∞∑
n=1

(
VR0

λψ
(1)
mn, ψ

(1)
mn

)
1
+

∞∑
m=1

∞∑
n=1

(
VR0

λψ
(2)
mn, ψ

(2)
mn

)
1

}
dλ.

Since |(VR0
λψ

(i)
mn, ψ

(i)
mn

)
1
| <
√
π |µm − λ|−1

||V(t)ϕn|| and V(t) satisfies the conditions (2)-(3), the series

Θm,1(λ) =
∞∑

n=1

(VR0
λψ

(1)
mn, ψ

(1)
mn

)
1

; Θm,2(λ) =
∞∑

n=1

(VR0
λψ

(2)
mn, ψ

(2)
mn

)
1

and
∞∑

m=0

Θm,1(λ) ;
∞∑

m=1

Θm,2(λ)

are absolutely and uniformly convergent on the circle |λ| = bp. Therefore, we have:

Sp
1 =

p∑
m=0

∞∑
n=1

(
Vψ(1)

mn, ψ
(1)
mn

)
1

1
2πi

∫
|λ|=bp

dλ
dλ − µm

+

p∑
m=1

∞∑
n=1

(
Vψ(2)

mn, ψ
(2)
mn

)
1

1
2πi

∫
|λ|=bp

dλ
dλ − µm

=

p∑
m=0

∞∑
n=1

(
Vψ(1)

mn, ψ
(1)
mn

)
1
+

p∑
m=1

∞∑
n=1

(
Vψ(2)

mn, ψ
(2)
mn

)
1

=
1
π

∞∑
n=1

∫ π

0

(
V(t)ϕn, ϕn

)
dt +

2
π

p∑
m=1

∞∑
n=1

∫ π

0

(
V(t)ϕn, ϕn

)
dt

=
1
π

∫ π

0
trV(t)dt +

2p
π

∫ π

0
trV(t)dt.

Hence, we get:

Sp
1 =

2p + 1
π

∫ π

0
trV(t)dt. (3.2)

Step 2. Let us compute Sp
2 and Sp

3 : For j = 2, we have

Sp
2 =

1
4πi

∫
|λ|=bp

tr(VR0
λ)2dλ

=
1

4πi

∫
|λ|=bp

{ ∞∑
m=0

∞∑
n=1

(
(VR0

λ)2ψ(1)
mn, ψ

(1)
mn

)
1
+

∞∑
m=1

∞∑
n=1

(
(VR0

λ)2ψ(2)
mn, ψ

(2)
mn

)
1

}
dλ

=
1

4πi

∫
|λ|=bp

{ ∞∑
m=0

∞∑
n=1

∞∑
k=0

∞∑
l=1

(
Vψ(1)

mn, ψ
(1)
kl

)
1

(
Vψ(1)

kl , ψ
(1)
mn

)
1

(dλ − µm)(dλ − µk)

∞∑
m=1

∞∑
n=1

∞∑
k=1

∞∑
l=1

(
Vψ(2)

mn, ψ
(2)
kl

)
1

(
Vψ(2)

kl , ψ
(2)
mn

)
1

(dλ − µm)(dλ − µk)

}
dλ.

Moreover, for m, k ≤ p, we have:

1
2πi

∫
|λ|=bp

dλ
(dλ − µm)(dλ − µk)

= 0. (3.3)
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This equality is also true for m, k ≥ p. So, Sp
2 becomes

Sp
2 =

p∑
m=0

∞∑
n=1

∞∑
k=p+1

∞∑
l=1

(
Vψ(1)

mn, ψ
(1)
kl

)
1

(
Vψ(1)

kl , ψ
(1)
mn

)
1

1
2πi

∫
|λ|=bp

dλ
(dλ − µm)(dλ − µk)

+

p∑
m=1

∞∑
n=1

∞∑
k=p+1

∞∑
l=1

(
Vψ(2)

mn, ψ
(2)
kl

)
1

(
Vψ(2)

kl , ψ
(2)
mn

)
1

1
2πi

∫
|λ|=bp

dλ
(dλ − µm)(dλ − µk)

or

Sp
2 =

p∑
m=0

∞∑
n=1

∞∑
k=p+1

∞∑
l=1

(µm − µk)−1
∣∣∣(Vψ(1)

mn, ψ
(1)
kl

)
1

∣∣∣2 + p∑
m=1

∞∑
n=1

∞∑
k=p+1

∞∑
l=1

(µm − µk)−1
∣∣∣(Vψ(2)

mn, ψ
(2)
kl

)
1

∣∣∣2.
The last discussion gives:

|Sp
2| ≤

∞∑
k=p+1

(µk − µp)−1
∞∑

l=1

[
∥Vψ(1)

kl ∥
2
1 + ∥Vψ

(2)
kl ∥

2
1

]
.

or

|Sp
2| < const

∞∑
k=p+1

(µk − µp)−1

because for i = 1, 2

∞∑
l=1

∥Vψ(i)
kl ∥

2
1 ≤

∞∑
l=1

∥Vϕl∥
2
1 < const.

Here, it can be seen that
∞∑

k=p+1

(µk − µp)−1 =

∞∑
k=p+1

(4k2
− 4p2)−1 < cp−1/2 (c > 0). (3.4)

Therefore, we obtain:

lim
p→∞

Sp
2 = 0.

In a similar manner we can show that

lim
p→∞

Sp
3 = 0.

Step 3. Let us prove that

lim
p→∞

Sp
j = 0

for j ≥ 4. First note that, we have:∥∥∥VR0
λ

∥∥∥
σ1(H1)

≤

∞∑
m=0

∞∑
n=1

∥∥∥VR0
λψ

(1)
mn

∥∥∥
1
+

p∑
m=1

∞∑
n=1

∥∥∥VR0
λψ

(2)
mn

∥∥∥
1

< c3

∞∑
m=0

|µm − λ|
−1 (c3 > 0)

(3.5)
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with
∞∑

m=0

∞∑
n=1

∥∥∥VR0
λψ

(1)
mn

∥∥∥
1
≤ c1

∞∑
m=0

|µm − λ|
−1 (c1 > 0),

∞∑
m=1

∞∑
n=1

∥∥∥VR0
λψ

(2)
mn

∥∥∥
1
≤ c2

∞∑
m=1

|µm − λ|
−1 (c2 > 0).

Now, we claim that the right hand side in the last series of inequality (3.5) is finite. In fact, we have

∞∑
m=0

|µm − λ|
−1 =

p∑
m=0

|µm − λ|
−1 +

∞∑
m=p+1

|µm − λ|
−1

≤

p∑
m=0

(|λ| − µm)−1 +

∞∑
m=p+1

(µm − |λ|)−1

≤

p∑
m=0

1
2

p−1 +

∞∑
m=p+1

(µm − µp − 2p)−1

≤ 1 +
∞∑

m=p+1

[1
2

(µm − µp) +
1
2

(µp+1 − µp) − 2p
]−1

≤ 1 +
∞∑

m=p+1

2
µm − µp

.

Thus by inequality (3.4) we get:

∞∑
m=0

|µm − λ|
−1 < c4 (c4 > 0)

This gives∥∥∥VR0
λ

∥∥∥
σ1(H1)

< c5 (c5 > 0) ; |λ| = bp = µp + 2p. (3.6)

To complete this step we need to estimate
∥∥∥R0

λ

∥∥∥
1

and ∥Rλ∥1 on the circle |λ| = bp = µp + 2p. For m ≤ p

|µm − λ| ≥ |λ| − µm ≥ 4p2 + 2p − 4m2 > p

and for m ≥ p + 1

|µm − λ| ≥ µm − |λ| ≥ 4(p + 1)2
− 4p2

− 2p > p.

Hence we have:

|µm − λ|
−1
≤ p−1 ; |λ| = bp = µp + 2p.

This implies∥∥∥R0
λ

∥∥∥
1
< p−1. (3.7)

Similarly, for sufficiently large p we get:

∥Rλ∥1 < c6p−1 (c6 > 0) ; |λ| = bp = µp + 2p. (3.8)
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Hence

|Sp
j | =

1
2π j

∣∣∣∣ ∫
|λ|=bp

tr(VR0
λ) j dλ

∣∣∣∣
≤

1
2π j

∫
|λ|=bp

∥VR0
λ∥1∥(VR0

λ) j−1
∥1|dλ|

≤
c5

2π j

∫
|λ|=bp

∥V∥ j−1
1 ∥R

0
λ∥

j−1
1 |dλ| (by (3.6))

≤
c5

2π j

∫
|λ|=bp

2 j−1p1− j
|dλ| (by (3.7))

≤ const · p3− j.

This gives:

lim
p→∞

Sp
j = 0 for j ≥ 4.

Step 4. Here we will use some results of the previous step to show that limp→∞ SpN = 0 for N ≥ 4. From (2.3)

|SpN | =
1

2π

∣∣∣∣ ∫
|λ|=bp

λ tr
[
Rλ(VR0

λ)N+1
]
dλ
∣∣∣∣

≤
1

2π

∫
|λ|=bp

|λ|
∣∣∣tr[Rλ(VR0

λ)N+1
]∣∣∣|dλ|

≤ bp

∫
|λ|=bp

∥∥∥Rλ(VR0
λ)N+1

∥∥∥
σ1(H1)

|dλ|

≤ c5 c6 2N p−1−N 2π(bp)2 (by (3.6)-(3.8))

≤ const · p3−N.

This gives

lim
p→∞

SpN = 0 for N ≥ 4.

Using relation (2.1) and the results of the previous steps we conclude that the regularized trace formula
(3.1) holds.
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