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Abstract. In this paper, a new spectral projection method for solving nonlinear system of equations
with convex constraints is proposed based on inertial effect. The inertial technique is integrated into the
new proposed search direction with the aim of enhancing the numerical performance. Interestingly, the
convergence result of the new method is established based on the assumption that the underlying function is
pseudomonotone. This assumption is weaker than monotonicity which is used in many existing methods to
prove the convergence. The new method is suitable for large scale problems as well as nonsmooth problems.
Numerical experiments presented validate the efficiency of the new method which also outperforms some
existing methods in the literature.

1. Introduction

Consider the following system

Ω(z) = 0, (1)
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where z ∈ Rn, Ω : Rn
→ Rn is a continuous function. The system (1) is considered very crucial problem as

it appears in numerous area of applications in science and engineering such as signal processing and image
deblurring problems [1–6].
Iterative methods for handling problem (1) fall into different categories and each uses the following iterative
formula

zk+1 = zk + θkpk, k = 0, 1, 2, . . . , (2)

where zk and zk+1 are the current and next iterates, respectively. The parameter θk > 0 is known as step
length which is usually calculated using suitable line search techniques. The nature of the formula for
computing the search direction pk ∈ R

n is what categorizes the iterative methods.
For problem (1) with relatively small dimension and the function Ω being smooth, methods such as the
Newton method, quasi-Newton methods, Levenberg-Marquardt method and their variants are considered
important due to their locally rapid convergence rates [7–9]. If problem (1) is nonsmooth and its dimension
is relatively large, iterative methods that avoid computation and storage of matrices are considered more
efficient. Some of such iterative methods imitate the behaviour of the spectral gradient method.

The spectral gradient iterative methods were originally developed to deal with general unconstrained
optimization problems,

min{ f (z) ∈ R : z ∈ Rn
}.

Barzilai and Borwein (BB) [10] is considered the earliest spectral gradient method for solving unconstrained
optimization problems where the search direction is taken as the steepest descent direction and the step
length is calculated using either of the following formula

rBB1
k =

∥sk−1∥
2

yT
k−1sk−1

or rBB2
k =

yT
k−1sk−1

∥yk−1∥
2 , (3)

where sk−1 = zk − zk−1 and yk−1 = ∇ f (zk) − ∇ f (zk−1). However, a notable disadvantage of the BB parameters
rBB1

k and rBB2
k is that either could generate negative values for nonconvex objective functions. This motivated

Dai et al. [11] to come up with another spectral gradient method where the step length is calculated as the
geometric mean of rBB1

k and rBB2
k , i.e.,

rGBB
k =

∥sk−1∥

∥yk−1∥
. (4)

Due to the simplicity as well as nice convergence properties of the spectral gradient methods, some
researchers have imitated the approach and developed spectral methods for solving problems in the form
of (1) [12, 13]. For instance, by replacing ∇ f (z) with Ω(z) in rBB1

k , Zhang and Zhou [14] presented a nice
spectral method for solving (1) where the search direction is given as pk = −̂rBB1

k Ω(zk), and

r̂BB1
k =

∥sk−1∥
2

ŷT
k−1sk−1

, (5)

sk−1 = zk − zk−1 and ŷk−1 = Ω(zk) −Ω(zk−1) + csk−1, c > 0. The introduction of the additional term csk−1 in the
definition of the vector ŷk−1 yields ŷT

k−1sk−1 > 0, for all k, provided the functionΩ in problem (1) is monotone.
This means for all k, r̂BB1

k will produce positive values and this is one of the most interesting thing about
the Zang and Zho method. They proposed a new line search technique for calculating the step length θk
which can be viewed as a modification of the line search in [15]. By incorporating the projection formula
of Solodov and Svaiter [15] into their algorithm and assuming that Ω is monotone and Lipscitzian, they
showed the method is globally convergent. Following the same approach, Yu et al. [16] considered the
modification of problem (1) by taking the domain of z, as a nonempty closed and convex set i.e. Q ⊂ Rn,
and subsequently used the Zhang and Zhou [14] method to solve it. Similarly, Awwal et al. [17] considered
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computing the search direction as the convex combination of rBB1
k and rGBB

k with yk−1 = ŷk−1 and proposed a
hybrid spectral projection method for solving problem (1) with convex constraints. Numerical experiments
presented showed that the hybrid method has better numerical performance than the method in [16]. For
more on modified spectral projection methods, reader may refer to [18, 19].

2. Motivation

Let {βk} be the sequence of nonnegative numbers and consider the inertial step

wk = zk − βk(zk − zk−1),

which is commonly integrated into iterative algorithm so as to enhance its numerical performance, where
zk and zk−1 are two given initial points. The first known inertial based method was presented by Polyak
[20] to solve a smooth convex minimization problem. Recently, Awwal et al. presented two derivative-free
inertial based methods where the search directions were defined by incorporating the inertial step into rBB1

k
and rBB2

k with yk−1 = ŷk−1. The methods are efficient and work well. However, the two parameters rBB1
k

and rBB2
k are defined using the differences between the iterate zk and the inertial step wk together with the

differences of their images. In this paper, we propose another inertial-based spectral method where the
search direction is defined using the difference between previous inertial step and its update as well as their
images.
Furthermore, as we have mentioned in the preceding section, Zhang and Zhou [14] used ŷk−1 instead of
yk−1 so as to take the advantage of the monotonicity assumption on Ω and guarantee positive values for
the spectral parameter throughout the iteration process. However, in their numerical experiments, they
showed that the smaller the positive constant, c, the better the numerical performance. Therefore, in this
paper, our propose method will define its spectral parameter without the third term in the vector ŷk−1, i.e.
c = 0.
Moreover, all the spectral methods for solving problem (1) discussed above established their convergence
with the assumption that the function Ω is monotone, i.e.

(Ω(z) −Ω(̂z))T(z − ẑ) ≥ 0, for all z, ẑ ∈ Rn.

Interestingly, in this paper, we establish the convergence result of the proposed method based on a weaker
assumption. That is, the function Ω is assumed to pseudomonotonicity, i.e.,

Ω(̂z)T(z − ẑ) ≥ 0 =⇒ Ω(z)T(z − ẑ) ≥ 0, ∀z, ẑ ∈ Rn.

The rest of this paper is segmented as follows. The algorithm of propose method and its convergence
analysis are described in the next section while the numerical experiment is presented in Section 4. Finally
some concluding remarks will be given in Section 5.

3. Algorithm (NISPM) and its Global Convergence Results

As we are set to present the algorithm of the new method, these crucial assumptions will be helpful.

Assumption 3.1.

• The constraint set Q ⊂ Rn is convex, closed and nonempty.

• The function Ω is pseudomonotone.

• The function Ω is Lipschitz continuous.

• The solution set of problem (1) is nonempty.
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Algorithm 1: New Inertial-based Spectral Projection Method (NISPM)
Input : Given initial points z−1, z0 ∈ Q, 0 < ℓ < 2, σ, ρ ∈ (0, 1), ζ > 0, βk ∈ [0, 1) and Tol > 0.
Step 0: Set k = 0, calculate p0 := −Ω(z0) and w0 := z0 + β0(z0 − z−1).
Step 1: If ∥Ω(zk)∥ ≤ Tol, stop, otherwise execute Step 2.
Step 2: Set vk := zk + θkpk where θk := ζρi and i is the least non-negative integer for which

−Ω(vk)Tpk ≥ σζρ
i
∥pk∥

2 min{1, ∥Ω(vk)∥1/t}, t ≥ 1. (6)

Step 3: If ∥Ω(vk)∥ = 0, stop. Else compute

zk+1 := ΓQ

[
zk − ℓ

Ω(vk)T(zk − vk)
∥Ω(vk)∥2

Ω(vk)
]
. (7)

Step 4: Update the inertial step: wk+1 := zk+1 + βk(zk+1 − zk).
Step 5: Set k := k + 1, update the search direction and repeat the process from Step 1,

pk := −µkΩ(zk), (8)

µk := min

 ∥sk−1∥

∥γk−1∥
+
∥sk−1∥

2

sT
k−1γk−1

−
sT

k−1γk−1

∥γk−1∥
2 , µmax

 , 0 << µmax << +∞, (9)

sk−1 := wk − wk−1 and γk−1 := Ω(wk) −Ω(wk−1).

Remark 3.2. The projection operator ΓQ(z) in Step 3 of Algorithm 1 is defined as ΓQ(z) := arg min{∥z− ẑ∥ : ẑ ∈ Q}
and satisfies the inequality

∥ΓQ(z) − ẑ∥ ≤ ∥z − ẑ∥, for all ẑ ∈ Q. (10)

Remark 3.3. Now, observe that if γk−1 = ŷk−1,
∥sk−1∥

∥γk−1∥
=

sT
k−1γk−1

∥γk−1∥
2 and βk = 0, ∀ k, then the search direction (8) reduces

to that of [14].

By Cauchy Schwarz inequality, it holds that ∥sk−1∥
2

sT
k−1γk−1

≥
∥sk−1∥

∥γk−1∥
≥

sT
k−1γk−1

∥γk−1∥
2 . This further means ∥sk−1∥

2

sT
k−1γk−1

−
sT

k−1γk−1

∥γk−1∥
2 ≥ 0.

Therefore, by the Lipschitz continuity of the function Ω, we have

∥sk−1∥

∥γk−1∥
+
∥sk−1∥

2

sT
k−1γk−1

−
sT

k−1γk−1

∥γk−1∥
2 ≥

∥sk−1∥

∥γk−1∥
≥

1
L
. (11)

By (9) and (11), we have

1
L
≤ µk ≤ µmax. (12)

Hence, the search direction pk satisfies the followings

Ω(zk)Tpk ≤ −
1
L
∥Ω(zk)∥2, and (13)

∥pk∥ ≤ µmax∥Ω(zk)∥. (14)

Remark 3.4. We adopt the line search in Step 3 of Algorithm 1 from [21]. The line search (6) has been shown to
contain the line search strategies in [14, 22, 23] as special cases. Therefore, since the line search (6) has been shown to
be well-defined, then combining with (12), we conclude that Algorithm 1 is well-defined.
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Lemma 3.5. Suppose that the function Ω is pseudomonotone and the sequence of iterates {zk} is generated by
Algorithm 1, then the followings hold

lim
k→∞
θk∥pk∥ = 0, and (15)

θk ≥ min
{

1,
ρ∥Ω(zk)∥2

(L + σ)Lq2
2

}
. (16)

Proof. Claim 1: There exists some constant q1 such that ∥Ω(zk)∥ ≤ q1, ∀ k ≥ 0.
If ẑ ∈ Q is the solution of problem (1) then it is clear that Ω(̂z)T(vk − ẑ) ≥ 0. By the pseudomonotonicity
assumption on the function Ω, then it holds that Ω(vk)T(vk − ẑ) ≥ 0. This further yields

Ω(vk)T(zk − ẑ) = Ω(vk)T(zk − vk + vk − ẑ)

= Ω(vk)T(zk − vk) +Ω(vk)T(vk − ẑ)

≥ Ω(vk)T(zk − vk). (17)

Now, since 0 < ℓ < 2, then by (7) and (10), we have

∥zk+1 − ẑ∥2 =

∥∥∥∥∥∥ΩQ

[
zk − ℓ

Ω(vk)T(zk − vk)
∥Ω(vk)∥2

Ω(vk)
]
− ẑ

∥∥∥∥∥∥
≤

∥∥∥∥∥∥(zk − ẑ) − ℓ
Ω(vk)T(zk − vk)
∥Ω(vk)∥2

Ω(vk)

∥∥∥∥∥∥2
= ∥zk − ẑ∥2 − 2ℓ

Ω(vk)T(zk − vk)
∥Ω(vk)∥2

Ω(vk)T(zk − ẑ) + ℓ2
[Ω(vk)T(zk − vk)]2

∥Ω(vk)∥2

≤ ∥zk − ẑ∥2 − 2ℓ
Ω(vk)T(zk − vk)
∥Ω(vk)∥2

Ω(vk)T(zk − vk) + ℓ2
[Ω(vk)T(zk − vk)]2

∥Ω(vk)∥2

= ∥zk − ẑ∥2 − ℓ(2 − ℓ)
[Ω(vk)T(zk − vk)]2

∥Ω(vk)∥2
(18)

≤ ∥zk − ẑ∥2. (19)

The inequality (19) means that {∥zk − ẑ∥} is a decreasing sequence and therefore {zk} is bounded and sinceΩ
is Lipschitz continuous, then the Claim 1 holds.

Claim 2: The sequence {pk} generated by Algorithm 1 is bounded.
Indeed, by (14) and Claim 1, it is clear that

∥pk∥ ≤ q2, (20)

where q2 := µmaxq1 hence the Claim 2 is true.
Now, consider the vector vk defined in Step 2 of Algorithm 1, then by Claim 1 and Claim 2 and the fact

that the function Ω is Lipschitz continuous, we can find some constant q3 > 0 such that

∥Ω(vk)∥ ≤ q3, ∀ k ≥ 0. (21)

Next, consider the line search (6). If min
{
1, ∥Ω(vk)∥1/t

}
= ∥Ω(vk)∥1/t, then combining the inequalities (6),

(18) and (21), we have

σ2θ4
k∥pk∥

4
≤

q2−2/t
3

ℓ(2 − ℓ)

(
∥zk − ẑ∥2 − ∥zk+1 − ẑ∥2

)
. (22)

On the other hand, if min
{
1, ∥Ω(vk)∥1/t

}
= 1, then (22) reduces to

σ2θ4
k∥pk∥

4
≤

q2
3

ℓ(2 − ℓ)

(
∥zk − ẑ∥2 − ∥zk+1 − ẑ∥2

)
. (23)
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From (18), it is clear that the lim
k→∞
∥zk − ẑ∥ exists and therefore since σ > 0 and 0 < ℓ < 2, then taking limit on

both sides of either of (22) or (23) yields (15).
Finally, by the definition of the line search in Step 3 of Algorithm 1, if θk , ζ, then θ

′

k = θkρ−1 will not
satisfy (6), that is,

−Ω(zk + θkρ
−1pk)Tpk < σθkρ

−1
∥pk∥

2 min{1, ∥Ω(zk + θkρ
−1pk)∥}

≤ σθkρ
−1
∥pk∥

2, (24)

where the last inequality follows the fact that min{a, b} ≤ a, a, b ≥ 0. The inequality (24) can be rearranged
as

Ω(zk + θkρ
−1pk)Tpk + σθkρ

−1
∥pk∥

2 > 0. (25)

Now applying Cauchy-Schwarz inequality on (13) and using (20) and (25), we have

1
L
∥Ω(zk)∥2 ≤ −Ω(zk)Tpk

≤ −Ω(zk)Tpk +Ω(zk + θkρ
−1pk)Tpk + σθkρ

−1
∥pk∥

2

= (Ω(zk + θkρ
−1pk) −Ω(zk))Tpk + σθkρ

−1
∥pk∥

2

≤ Lθkρ
−1
∥pk∥

2 + σθkρ
−1
∥pk∥

2

= θk

[
Lρ−1 + σρ−1

]
q2

2.

Hence, making θk the subject of the relation yields θk ≥ min
{
1, ρ∥Ω(zk)∥2

(L+σ)Lq2
2

}
and hence the proof.

Theorem 3.6. Assume that the iterates {zk} is generated by Algorithm 1 such that Assumption 3.1 holds, then

lim inf
k→∞

∥Ω(zk)∥ = 0. (26)

Proof. If the conclusion (26) is false, then there exists some constant, say q4,

∥Ω(zk)∥ ≥ q4, for all k ≥ 0. (27)

Now, (16) and (27) gives

θk ≥ min
1,

ρq2
4

(L + σ)Lq2
2

 . (28)

Also, combining (15) and (28) yields

lim
k→∞
∥pk∥ = 0. (29)

Moreover, applying Cauchy-Schwarz inequality on (13) and using (27) gives

∥Ω(zk)∥∥pk∥ ≥
1
L
∥Ωk∥

2. (30)

Combining (27) and (30) further yields

∥pk∥ ≥
q4

L
. (31)

It is clear that (29) and (31) yield contradiction and therefore the conclusion (26) must hold.
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4. Numerical Experiments on a Collection Test Problems

This section is devoted to discussing the efficiency together with the numerical performance of the new
method. This will be done by implementing Algorithm 1 (NISPM) to solve some test problems taken from
the literature. The performance of the new method on the test problems is compared with two methods
taken from the literature in order to demonstrate its efficiency. Do to similar characteristics in some sense,
these two recently published methods are chosen for the comparison:

(i) “A Modified Spectral Gradient Projection Method for Solving Non-linear Monotone Equations with
Convex Constraints and Its Application” (MSGP) [18], and

(ii) “Inertial-Based Derivative-Free Method for System of Monotone Nonlinear Equations and Applica-
tion” (DAIS1) [21].

The algorithms of the three methods in this discussion are coded in MATLAB R2019b where the new NISPM
is executed with the parameters: ℓ = 1.99, σ = 0.0001, ρ = 0.5, ζ = 1, βk = 1/(k + 1)2, t = 2 and µmax = 1030.
The parameters used for MSGP and DAIS1 are obtained from [18, 21], respectively. The device used for the
experiments is a PC with intel Core(TM) i5-8250u processor with 4 GB of RAM and CPU 1.60 GHZ. The
terminating criteria for each algorithm is set as ∥Ω(zk)∥ ≤ 10−6. Failure is declared if the number of iterations
surpasses 1000 and the stopping criteria is yet to be satisfied.

In the course of the experiment, a collection of ten (10) test problems (see, Appendix 5.1) are solved with
their dimensions varies as 10000, 30000, 50000, 80000, 100000. The initial points (thirteen (13) of them) used
are given in Table 1. This yields a total of six hundred and fifty (650) test problems solved in this experiment.
The metrics considered in assessing the performance of the three algorithms are (i) number of iterations
(#iter) and (ii) number of function evaluations (#fval). Moreover, for each test problem considered, ∥Ω(̂z)∥
(denoted by Norm) is reported in order to determine the degree of accuracy for which an algorithm obtains
the solution of a particular problem.

The #iter, #fval and Norm recorded by each algorithm have been compiled and can be accessed through
the following link https://github.com/aliyumagsu/NISPM_Numerical_Results. Looking through the
tables in the link provided above, it can be seen that NISPM obtained the solutions of more than half of
the test problems with higher degree of accuracy. Furthermore, it is pleasing to see that the new NISPM
attained the solutions of most of the test problems with minimum #iter and #fval compared to MSGP and
DAIS1. It can be seen from Table 7 in the link provided above that MSGP and DAIS1 failed to obtain the
solution of Problem 5.7 with the thirteenth initial point. The summary of the information, with respect to
#iter and #fval, reported in the link provided above are graphically presented in Figures 1 and 2. These two
figures were prepared in accordance with Dolan and Moré performance profile [24]. Interestingly, the two
figures revealed that the new NISPM outperforms MSGP and DAIS1 as the curve with respect to NISPM
stays above those with respect to MSGP and DAIS1. This establishes the efficiency of the MSGP.

Table 1: Initial Points
S/No. z0 z−1

1 ( 1
10 ,

1
10 ,

1
10 , . . . ,

1
10 )T, ( 1

100 ,
1

100 ,
1

100 , . . . ,
1

100 )T,
2 ( 1

2 ,
1
22 ,

1
23 , . . . ,

1
2n )T ( 1

2 ,
1
22 ,

1
23 , . . . ,

1
2n )T

3 (2, 2, 2, . . . , 2)T (1, 1, 1, . . . , 1)T

4 (1, 1
2 ,

1
3 , . . . ,

1
n )T (1, 1

2 ,
1
3 , . . . ,

1
n )T

5 (1 − 1
n , 1 −

2
n , 1 −

3
n , . . . , 0)T (1 − 1

n , 1 −
2
n , 1 −

3
n , . . . , 0)T

6 (0, 1
n ,

2
n , . . . ,

n−1
n )T (0, 1

n ,
2
n , . . . ,

n−1
n )T

7 ( n−1
n ,

n−2
n ,

n−3
n , . . . , 0)T ( n−1

n ,
n−2

n ,
n−3

n , . . . , 0)T

8 ( 1
n ,

2
n ,

3
n , . . . , 1)T ( 1

n ,
2
n ,

3
n , . . . , 1)T

9 rand(0, 1) rand(0, 1)
10 (1.5, 1.5, 1.5, . . . , 1.5)T (1, 1, 1, . . . , 1)T

11 ( 1
2 ,

1
2 ,

1
2 , . . . ,

1
2 )T ( 1

2 ,
1
2 ,

1
2 , . . . ,

1
2 )T

12 5 min(ih, 1 − ih) 5 min(ih, 1 − ih), 1 ≤ i ≤ n , h = 1/(n + 1)
13 (−1)i

(
i

i+3

)
, 1 ≤ i ≤ n (−1)i

(
i

i+3

)
, 1 ≤ i ≤ n

https://github.com/aliyumagsu/NISPM_Numerical_Results
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Figure 1: Dolan and Moré performance profile with respect to number of iterations
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Figure 2: Dolan and Moré performance profile with respect to number of function evaluation

5. Conclusions

A new spectral projection method based on inertial effect has been developed for solving nonlinear
system of equations with convex constraints. The details about the new method and how it works have been
given is Section 3. With the assumption that the function in Problem (1) is Lipschitzian and pseudomontone,
the theoretical convergence result of new methods has been discussed. By implementing the new method
to solve some test problems and comparing the performance with two existing methods [18, 21], it was
revealed that the new method works well and is more efficient than its competitors. Future research include
using the idea in this paper to develop two-step iterative algorithms as presented in [19]. Furthermore, it
will be interesting to incorporate the idea in this paper into the methods proposed in [25, 26].
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5.1. Appendix A
We use the following monotone nonlinear equation for the second experiments whereΩ(z) = (Ω1(z), . . . ,Ωn(z))T

and z = (z1, . . . , zn)T.

Problem 5.1. [27]

Ω1(z) = ez1 − 1
Ωi(z) = ezi + zi−1 − 1,

i = 2, 3, . . . ,n, where Q = Rn
+.

Problem 5.2. [27]

Ωi(zi) = log(zi + 1) −
zi

n
, i = 1, 2, . . . ,n, where Q =

z ∈ Rn :
n∑

i=1

zi ≤ n, zi > −1, i = 1, 2, . . . ,n

 .
Problem 5.3. [28]

Ωi(z) = 2zi − sin |zi|, i = 1, 2, . . . ,n, where Q = Rn
+.

Problem 5.4. [16]

Ωi(z) = ezi − 1, i = 1, 2, . . . ,n, where Q = Rn
+.

Problem 5.5. [29]

Ω1(z) = z1 − exp
(
cos
(z1 + z2

n + 1

))
Ωi(z) = zi − exp

(
cos
(zi−1 + zi + zi+1

n + 1

))
, 2 ≤ i ≤ n − 1,

Ωn(z) = zn − exp
(
cos
(zn−1 + zn

n + 1

))
,

where Q = Rn
+.

Problem 5.6. [30]

Ωi(z) = zi − sin(|zi − 1|), i = 1, 2, . . . ,n, where Q =

z ∈ Rn :
n∑

i=1

zi ≤ n, zi ≥ −1, i = 1, 2, . . . ,n

 .
Problem 5.7. [31]

Ωi(z) = ez2
i +

3
2

sin(2zi) − 1, i = 1, 2, . . . ,n, where Q = Rn
+.

Problem 5.8. [14]

Ω1(z) = z1 + sin(z1) − 1
Ωi(z) = −zi−1 + 2zi + sin(zi) − 1, i = 2, . . . ,n − 1,
Ωn(z) = zn + sin(zn) − 1,

where Q = Rn
+.

Problem 5.9. [31]

Ωi(z) =
i
n

ezi − 1, i = 1, 2, . . . ,n, where Q = Rn
+.

Problem 5.10. [5]

Ωi(x) = cos(zi) + zi − 1, i = 1, 2, . . . ,n, where Q = Rn
+.
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