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aÉcole Supérieure des Sciences et de la Technologie de Hammam Sousse, Université de Sousse, Tunisia.
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Abstract. In this article, a high-order linearized difference scheme is presented for the periodic initial value
problem of the Benjamin-Bona-Mahoney-Burgers (BBMB) equation. It is proved that the proposed scheme
is uniquely solvable and unconditionally convergent, with convergence order of O(h4 + k2) in the L∞-norm.
An application on the regularised long wave is thoroughly studied numerically. Furthermore, interaction
of solitary waves with different amplitudes is shown. The three invariants of the motion are evaluated to
determine the conservation properties of the system. Numerical experiments including the comparisons
with other numerical methods are reported to demonstrate the accuracy and efficiency of our difference
scheme and to confirm the theoretical analysis.

1. Introduction

Recent work emphasizes on the improvement of accuracy in many application of fluid mechanics [1, 2]
and other areas of aero-acoustics [3]. In this paper, we treat the nonlinear Benjamin-Bona-Mahony-Burgers
(BBMB) equation

ut − µuxxt − αuxx + ux + βuux = 0, (1)

which describes propagation of surface water waves in a channel [4]. In (1) the nonlinearity, the dissipative
and the dispersive coefficients characterized by β, α and µ, respectively. For µ = 0, (1) is the Burgers’
equation which describes wave propagation in acoustics and hydrodynamics. For α = 0, (1) is the BBM ( or
the Regularized Long Wave (RLW)) equation which incorporates the dispersive effects. Several numerical
solution have been acheived in literature for the Burgers and the BBM equation by different methods, noting
finite difference method and finite element method.
The propagation of acoustic waves needs to be accurately simulated over long time periods and far dis-
tances. Many different methods have been used to estimate BBMB equation. In [5, 6] the Benjamin-
Bona-Mahony-Burgers (BBMB) and Generalized BBMB equations are solved by meshless methods. Fourth-
order conservative compact difference scheme for the generalized BBM (GRLW) equation, the generalized
symmetric regularized long-wave (SRLW) equation and generalized Rosenau-RLW equation are discussed
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respectively by Li in [7]-[10].
Throughout this article, we discuss the periodic boundary value problem for the BBMB equation, thus we
seek a real-valued function u(x, t), that satisfies:

ut − uxxt − αuxx + ux + βuux = 0, x ∈ (xl, xr), t ∈ [0,T], (2)
u(x, 0) = u0(x), x ∈ (xl, xr), (3)
u(x, t) = u(x + (xr − xl), t), 0 < t ≤ T, (4)

where β is real constant while α is positive constant, we assume that the initial condition u0(x) is sufficiently
smooth as required by the error analysis.
The key aspect of this paper is to use the fourth-order accurate difference scheme for the BBMB equation,
and prove that the difference scheme is unconditionally stable and convergent with convergence order of
O(h4 + k2) in the discrete L∞-norm.
This paper is organized as follows. In section 2, a high-order linearized difference scheme is derived. In
section 3, the discrete dissipation law of the difference scheme and a priori estimates are also discussed.
Section 4 is devoted to the solvability of the linearized difference scheme. The convergence and stability
are proved in section 5. In the last section, some numerical examples are presented to prove the theoretical
results.
Throughout this article, C denotes a generic positive constant which is independent of the discretization
parameters h and k, but may have different values at different places.

2. Construction of linearized difference scheme

In this section, we propose a three-level linearized difference scheme for BBMB equation (2)-(4). For
convenience, the following notations are used. For a positive integer N, let time-step k = T

N , tn = nk, n =
0, 1, · · · ,N. Let space-step h = xr−xl

J , x j = xl + jh, j = 0, · · · , J. Denote QT = [xl, xr] × [0,T] and

RJ
per = {V = (V j) j∈Z | V j ∈ R and V j+J = V j, j ∈ Z}.

For a function Vn
∈ RJ

per, define the difference operators as:

(Vn
j )x =

Vn
j+1 − Vn

j

h
, (Vn

j )x̄ =
Vn

j − Vn
j−1

h
, (Vn

j )x̂ =
Vn

j+1 − Vn
j−1

2h
,

V̄n
j =

Vn+1
j + Vn−1

j

2
, Vn+ 1

2
j =

Vn+1
j + Vn

j

2
, (Vn

j )t̄ =
Vn+1

j − Vn−1
j

2k
, (Vn

j )t =
Vn+1

j − Vn
j

k
.

For any function Vn,Wn
∈ RJ

per, we introduce the discrete L2 inner product in RJ
per as:

⟨Vn,Wn
⟩ = h

J∑
j=1

Vn
j Wn

j .

The discrete L2-norm ∥Vn
∥, the discrete semi-norm ∥Vn

x∥, ∥Vn
x̂∥ and L∞-norm are defined respectively as

follows:

∥Vn
∥ =

√√√√
h

J∑
j=1

(Vn
j )2, ∥Vn

x∥ =

√√√√
h

J∑
j=1

[(Vn
j )x]2,

∥Vn
x̂∥ =

√√√√
h

J∑
j=1

[(Vn
j )x̂]2, ∥Vn

∥∞ = max
1⩽ j⩽J

|Vn
j |.
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Denote Hm
per(Ω) the periodic Sobolev space of order m.

To construct a high-order linearized difference scheme for solving BBMB equation, the following formulas
should be introduced

1
6

[
u
′

(x j+1) + 4u
′

(x j) + u
′

(x j−1)
]
=

1
2h

[
u(x j+1) − u(x j−1)

]
+O(h4), 1 ≤ j ≤ J,

1
12

[
u
′′

(x j+1) + 10u
′′

(x j) + u
′′

(x j−1)
]
=

1
h2

[
u(x j+1) − 2u(x j) + u(x j−1)

]
+O(h4), 1 ≤ j ≤ J.

(5)

By virtue of (5), let

A1Un
j = Un

j +
h2

6
(Un

j )xx̄ =
1
6

(Un
j−1 + 4Un

j +Un
j+1), 1 ≤ j ≤ J,

A2Un
j = Un

j +
h2

12
(Un

j )xx̄ =
1

12
(Un

j−1 + 10Un
j +Un

j+1), 1 ≤ j ≤ J.

We introduce the new functions y, z, v,w and ϕ, the equation (2) is reduced to an equivalent second-order
system of differential equations as:

yt = z + v − αw, (6)
v = ux, (7)
w = uxx, (8)
z = βϕ, (9)

ϕ =
1
2

(u2)x, (10)

y = −u + w. (11)

Based on notations above, we construct the following linearized difference scheme for solving the system
(6)-(11)

(Yn
j )t̄ = Z̄n

j + V̄n
j − αW̄n

j , (12)

A1V̄n
j = (Ūn

j )x̂, (13)

A2W̄n
j = (Ūn

j )xx̄, (14)

A1Z̄n
j = βϕ(Un

j , Ū
n
j ), (15)

ϕ(Un
j , Ū

n
j ) =

1
3

(
(Ūn

j )x̂Un
j + (Un

j Ūn
j )x̂

)
, (16)

Yn
j = −Un

j +Wn
j . (17)

It follows from (12)-(17) that

A1(Un
j )t̄ − A1A−1

2 (Un
j )xx̄t̄ − αA1A−1

2 (Ūn
j )xx̄ + (Ūn

j )x̂ + βϕ(Un
j , Ū

n
j ) = 0. (18)

Hence, by operating A−1
1 on the both sides of the above equality, we obtain

(Un
j )t̄ − A−1

2 (Un
j )xx̄t̄ − αA−1

2 (Ūn
j )xx̄ + A−1

1 (Ūn
j )x̂ + βA−1

1 ϕ(Un
j , Ū

n
j ) = 0. (19)

We introduce now the vector and matrix notations as

Ūn = (Ūn
1 , Ū

n
2 , · · · , Ū

n
J )T,

Φ(Un, Ūn) =
(
ϕ(Un

1 , Ū
n
1 ), ϕ(Un

2 , Ū
n
2 ), · · · , ϕ(Un

J , Ū
n
J )
)T
,
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M1 =
1
6


4 1 0 · · · 1
1 4 1 · · · 0
...

...
...

. . .
...

0 · · · 1 4 1
1 · · · 0 1 4


J×J

, M2 =
1

12


10 1 0 · · · 1
1 10 1 · · · 0
...

...
...

. . .
...

0 · · · 1 10 1
1 · · · 0 1 10


J×J

Where M1 and M2 the matrix form of A1 and A2 operators, respectively.
Note that M1 and M2 are two real symmetric positive definite matrices, there exist two real symmetric
positive definite matrices H1 and H2, such that H1 =M−1

1 , H2 =M−1
2 . So, the difference scheme (19) can be

rewritten as the following matrix form:

Un
t̄ −H2Un

xx̄t̄ − αH2Ūn
xx̄ +H1Ūn

x̂ + βH1Φ(Un, Ūn) = 0, n = 1, · · · ,N − 1, (20)

Un
j = Un

j+J, j = 1, · · · , J, n = 0, · · · ,N, (21)

U0
j = u0(x j), j = 1, · · · , J. (22)

As a scheme is a three level method, we can get U1 by the following two level nonlinear difference scheme:

U0
t −H2U0

xx̄t − αH2U
1
2
xx̄ +H1U

1
2
x̂ + βH1Ψ(U

1
2 ,U

1
2 ) = 0, (23)

where
Ψ(U

1
2 ,U

1
2 ) =
(
ψ(U

1
2
1 ,U

1
2
1 ), ψ(U

1
2
2 ,U

1
2
2 ), · · · , ψ(U

1
2
J ,U

1
2
J )
)T
,

with
ψ(U

1
2
j ,U

1
2
j ) =

1
3

(
(U

1
2
j )x̂U

1
2
j + [(U

1
2
j )2]x̂

)
, j = 1, · · · , J.

In view of difference properties and the periodic boundary condition we obtain the following Lemmas

2.1. Some useful lemmas
Lemma 2.1 ([11]). For any real-value symmetric positive definite matrix H and a periodic grid function Un, there is

⟨HUn
xx̄,U

n
⟩ = −∥QUn

x∥
2,

where Q = Chol(H), the Cholesky factorization.

Lemma 2.2. For H1 = QT
1 Q1 and H2 = QT

2 Q2, where Q1 and Q2 are two real upper triangular matrices, then

∥Un
∥

2 ⩽ ⟨H1Un,Un
⟩ = ∥Q1Un

∥
2 ⩽ 3∥Un

∥
2, (24)

∥Un
∥

2 ⩽ ⟨H2Un,Un
⟩ = ∥Q2Un

∥
2 ⩽

3
2
∥Un
∥

2. (25)

Proof. The eigenvalues of the matrices M1 and M2 are respectively

λM1, j =
1
3

(
2 + cos(

2π j
J

)
)
, λM2, j =

1
6

(
5 + cos(

2π j
J

)
)
, j = 1, . . . , J.

Therefore

1
3
⩽ λM1, j ⩽ 1,

2
3
⩽ λM2, j ⩽ 1, j = 1, . . . , J.

Thus

1 ⩽ λH1, j ⩽ 3, 1 ⩽ λH2, j ⩽
3
2
, j = 1, . . . , J. (26)
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Noticing that
⟨H1Un,Un

⟩ = ⟨Q1Un,Q1Un
⟩ = ∥Q1Un

∥
2,

⟨H2Un,Un
⟩ = ⟨Q2Un,Q2Un

⟩ = ∥Q2Un
∥

2.

Therefore, from (26), the proof holds.

Lemma 2.3. For Un
∈ RJ

per, there is

⟨H1Ūn
x̂ , Ū

n
⟩ = 0, (27)

⟨H1Φ(Un, Ūn), Ūn
⟩ = 0. (28)

Proof. For any grid functions Un,Vn
∈ RJ

per, we have

⟨H1Ūn
x̂ ,V

n
⟩ = ⟨Ūn

x̂ ,H1Vn
⟩ = −⟨Ūn,H1Vn

x̂⟩.

Obviously, we have in particular
⟨H1Ūn

x̂ , Ū
n
⟩ = 0.

For Un
∈ RJ

per, we have

⟨H1Φ(Un, Ūn), Ūn
⟩ =

1
3
⟨H1Ūn

x̂Un, Ūn
⟩ +

1
3
⟨H1(UnŪn)x̂, Ūn

⟩

=
1
3
⟨Q1Ūn

x̂ ,Q1(UnŪn)⟩ −
1
3
⟨Q1(UnŪn),Q1Ūn

x̂⟩

= 0.

Remark. Similarly, we can prove:

⟨H1U
1
2
x̂ ,U

1
2 ⟩ = 0, (29)

⟨H1Ψ(U
1
2 ,U

1
2 ),U

1
2 ⟩ = 0. (30)

3. Analysis of the linearized difference scheme

3.1. Discrete dissipative law
Bellow, we cite the dissipation energy of the linearized difference scheme.

Theorem 3.1. The difference scheme (20)-(23) satisfies:

εn ⩽ εn−1 ⩽ · · · ⩽ ε0, (31)

where
εn =

1
2

(∥Un+1
∥

2 + ∥Un
∥

2) +
1
2

(∥Q2Un+1
x ∥

2 + ∥Q2Un
x∥

2).

Proof. Computing the inner product of (20) with 2Ūn and using Lemma 2.1, we obtain

1
2k

(∥Un+1
∥

2
−∥Un−1

∥
2) +

1
2k

(∥Q2Un+1
x ∥

2
− ∥Q2Un−1

x ∥
2) + 2⟨H1Ūn

x̂ , Ū
n
⟩ (32)

+2α∥Q2Ūn
x∥

2 + 2⟨H1Φ(Un, Ūn), Ūn
⟩ = 0.

It follows from (27) and (28) that

1
2k

(∥Un+1
∥

2
− ∥Un−1

∥
2) +

1
2k

(∥Q2Un+1
x ∥

2
− ∥Q2Un−1

x ∥
2) = −2α∥Q2Ūn

x∥
2.
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As α > 0, we have
1
2

(∥Un+1
∥

2
− ∥Un−1

∥
2) +

1
2

(∥Q2Un+1
x ∥

2
− ∥Q2Un−1

x ∥
2) ⩽ 0.

Thus

εn ⩽ εn−1 ⩽ · · · ⩽ ε0. (33)

Taking now the inner product of (23) with U
1
2 and using Lemma 2.1, (29) and (30), yields to

1
2k

(∥U1
∥

2
− ∥U0

∥
2) +

1
2k

(∥Q2U1
x∥

2
− ∥Q2U0

x∥
2) = −α∥Q2U

1
2
x ∥

2 ⩽ 0.

Therefore

1
2

(∥U1
∥

2 + ∥Q2U1
x∥

2) −
1
2

(∥U0
∥

2 + ∥Q2U0
x∥

2) ⩽ 0. (34)

Thus (33) can be written
εn ⩽ · · · ⩽ ε0 = ∥U0

∥
2 + ∥Q2U0

x∥
2.

This completes the proof.

3.2. A priori estimates

We give the following a priori estimates.

Lemma 3.2 (Discrete Sobolev’s inequality [12]). There exist two constants C1 and C2 such that:

∥Un
∥∞ ⩽ C1∥Un

∥ + C2∥Un
x∥. (35)

Theorem 3.3. Assume that u0 ∈ H1
per(Ω). The solution of the difference scheme (20)-(23) satisfies a priori estimates

as follows:

∥Un
∥ ⩽ C, ∥Un

x∥ ⩽ C, ∥Un
∥∞ ⩽ C, (36)

where C is a positive constant independent of both h and k.

Proof. Using (24), we find

∥Un
∥

2 + ∥Un
x∥

2 ⩽ ∥Un
∥

2 + ∥Q2Un
x∥

2 ⩽ 2εn = ∥Un+1
∥

2 + ∥Q2Un+1
x ∥

2 + ∥Un
∥

2 + ∥Q2Un
x∥

2.

It follows from Theorem 3.1 and (24) that

∥Un
∥

2 + ∥Un
x∥

2 ⩽ 2ε0 = 2(∥U0
∥

2 + ∥Q2U0
x∥

2) ⩽ C(∥U0
∥

2 + ∥U0
x∥

2).

Hence u0 ∈ H1
per(Ω), we obtain

∥Un
∥

2 + ∥Un
x∥

2 ⩽ C.

Thus
∥Un
∥ ⩽ C, ∥Un

x∥ ⩽ C.

It follows from Lemma 3.2 that
∥Un
∥∞ ⩽ C.

This completes the proof.
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4. Solvability of the linearized difference scheme

Theorem 4.1. The linearized difference scheme (20)-(23) is uniquely solvable.

Proof. By mathematical induction, it is obvious that U0 is uniquely solvable from (22), U1 can be uniquely
determined by a fourth order method (23). Now, we assume that U0, · · · ,Un, (n ⩽ N − 1) are uniquely
solvable. It follows from (20) that

1
2k

Un+1
−

1
2k

H2Un+1
xx̄ − αH2Un+1

xx̄ +H1Un+1
x̂ + βH1Φ(Un,Un+1) = 0. (37)

Computing the inner product of (37) with Un+1 and applying Lemma 2.1 and Lemma 2.3 , we find

∥Un+1
∥

2 + ∥Q2Un+1
x ∥

2 ⩽ 0. (38)

This yields
Un+1 = 0.

That is, the system (37) determines Un+1 uniquely. This completes the proof.

5. Convergence and stability

In this section, we will prove the convergence of the linearized difference scheme.

Lemma 5.1 (Discrete Gronwall inequality [13]). Assume {Gn/n ⩾ 0} is non-negative sequences and satisfies

G0 ⩽ A, Gn ⩽ A + Bk
n−1∑
i=0

Gi, n = 1, 2, · · · ,

where A and B are non negative constants. Then G satisfies:

Gn ⩽ AeBnk, n = 0, 1, 2, · · · .

Lemma 5.2 ([14]). For any discrete function Un
∈ RJ

per, we have

∥Un
x̂∥ ⩽ ∥U

n
x∥.

Lemma 5.3. For any grid function Un
∈ RJ

per, we have

∥H1Un
x̂∥ ⩽ C∥Un

x∥.

Proof. It follows from Lemma 6 and the definition of the matrix H1 that

∥H1Un
x̂∥ ≤ ∥H1∥∞ · ∥Un

x̂∥ ≤ C∥Un
x∥.

Theorem 5.4. Suppose that the solution of problem (2)-(4) u(x, t) ∈ C6,3(QT). Then the solution of the difference
scheme (20)-(23) converges to the solution of the problem (2)-(4) in the discrete L∞-norm and the rate of convergence
is O(h4 + k2) when h and k are small, i.e.,

∥un
−Un

∥∞ ⩽ C(h4 + k2), 0 ⩽ n ⩽ N,

where C is a positive constant independent of k and h.
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Proof. Let rn = (rn
1 , · · · , r

n
J )T
∈ RJ

per be the consistency error of linearized difference scheme (20)-(23)

rn = un
t̄ −H2un

xx̄t̄ − αH2ūn
xx̄ +H1ūn

x̂ + βH1Φ(un, ūn), n = 1, · · · ,N − 1, (39)

r0 = u0
t −H2u0

xx̄t − αH2u
1
2
xx̄ +H1u

1
2
x̂ + βH1Ψ(u

1
2 ,u

1
2 ), (40)

un
j = un

j+J, j = 1, · · · , J, n = 1, · · · ,N, (41)

u0
j = u0(x j), j = 1, · · · , J. (42)

According to Taylor’s expansion, it follows that

max
j,n
|rn

j | ⩽ C(h4 + k2), j = 1, · · · , J, n = 0, · · · ,N. (43)

Letting en = un
−Un and substracting (39)-(42) from (20)-(23), we obtain

rn = en
t̄ −H2en

xx̄t̄ − αH2ēn
xx̄ +H1ēn

x̂ + β(H1Φ(un, ūn) −H1Φ(Un, Ūn)), n = 1, · · · ,N − 1, (44)

r0 = e0
t −H2e0

xx̄t − αH2e
1
2
xx̄ +H1e

1
2
x̂ + β(H1Ψ(u

1
2 ,u

1
2 ) −H1Ψ(U

1
2 ,U

1
2 )), (45)

en
j = en

j+J, j = 1, · · · , J, n = 0, · · · ,N − 1, (46)

e0
j = 0, j = 1, · · · , J. (47)

We will prove that
∥en
∥∞ ⩽ C(h4 + k2), n = 0, · · · ,N.

Taking the inner product of (44) with 2ēn and using Lemma 2.1 and (27), we have

∥en
∥

2
t̄ + ∥Q2en

x∥
2
t̄ + 2α∥Q2ēn

x∥
2 + 2β⟨H1Φ(un, ūn) −H1Φ(Un, Ūn), ēn

⟩ = 2⟨rn, ēn
⟩. (48)

Noting that

3⟨H1Φ(un, ūn) −H1Φ(Un, Ūn), ēn
⟩ = ⟨H1ēn

x̂Un, ēn
⟩ + ⟨H1ūn

x̂en, ēn
⟩ − ⟨unēn,H1ēn

x̂⟩ − ⟨e
nŪn,H1ēn

x̂⟩.

It follows from the regularity assumption of the solution u, Theorem 3.3, Lemma 5.2 and Lemma 5.3 that

⟨H1Φ(un, ūn) −H1Φ(Un, Ūn), ēn
⟩ ⩽ C(∥en+1

∥
2 + ∥en

∥
2 + ∥en−1

∥
2 + ∥en+1

x ∥
2 + ∥en−1

x ∥
2). (49)

Using (24), we obtain

⟨H1Φ(un, ūn) −H1Φ(Un, Ūn), ēn
⟩ ⩽C
(
∥en+1

∥
2 + ∥en

∥
2 + ∥en−1

∥
2 + ∥Q2en−1

x ∥
2 (50)

+ ∥Q2en
x∥

2 + ∥Q2en+1
x ∥

2
)
.

Substituting (50) into (48), we obtain

1
2k

(∥en+1
∥

2
− ∥en−1

∥
2) +

1
2k

(∥Q2en+1
x ∥

2
− ∥Q2en−1

x ∥
2) ⩽ ∥rn

∥
2 + C

[
∥en+1

∥
2 + ∥en−1

∥
2 (51)

+ ∥en
∥

2 + ∥Q2en+1
x ∥

2 + ∥Q2en
x∥

2 + ∥Q2en−1
x ∥

2
]
.

Let An = 1
2 (∥en+1

∥
2 + ∥en

∥
2) + 1

2 (∥Q2en+1
x ∥

2 + ∥Q2en
x∥

2). Therefore, (51) can be written as follows

An
− An−1

≤ k∥rn
∥

2 + Ck(An + An−1).

Summing up the above inequality from 1 to n, we obtain

An ⩽ A0 + k
n∑
ℓ=1

∥rℓ∥2 + Ck
n∑
ℓ=0

Aℓ. (52)
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Using (43), we have

k
n∑
ℓ=1

∥rℓ∥2 ⩽ nk max
1⩽ℓ⩽n

∥rℓ∥2 ⩽ CT(h4 + k2)2. (53)

Since e0
j = 0, it is easy to know from (45) and (43) that

A0 ⩽ C(h4 + k2)2. (54)

Substituting (53)-(54) into (52), we obtain

An ⩽ C(h4 + k2)2 + Ck
n∑
ℓ=0

Aℓ.

Hence,

(1 − Ck)An ⩽ C(h4 + k2)2 + Ck
n−1∑
ℓ=0

Aℓ.

For k sufficiently small such that (1 − Ck) > 0, we have

An ⩽ C(h4 + k2)2 + Ck
n−1∑
ℓ=0

Aℓ.

According to Lemma 5.1, we have

An ⩽ C(h4 + k2)2eCT ⩽ C(h4 + k2)2.

Consequently, we arrive at

∥en
∥ ⩽ C(h4 + k2), ∥Q2en

x∥ ⩽ C(h4 + k2). (55)

It follows from (24) that

∥en
∥ ⩽ C(h4 + k2), ∥en

x∥ ⩽ C(h4 + k2). (56)

Applying Lemma 3.2, we obtain

∥en
∥∞ ⩽ C(h4 + k2), n = 0, · · · ,N.

This completes the proof.
Similarly, we can prove the stability of the difference solution.

Theorem 5.5. Under the condition of Theorem 5.4, the solution of the difference scheme (20)-(23) is stable for initial
data by the ∥.∥∞ norm.

6. Numerical Experiments

In this section, we apply the proposed numerical scheme to solve the BBMB equation and test their
numerical accurate in order to validate our theoretical results that have been presented above. A comparison
of our scheme with other existing studies are made. We show also some result about the BBM equation.
All computations were obtained by using Matlab.
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6.1. Dissipation of Energy
Example 1
We consider the following periodic initial value problem of BBMB equation

ut − uxxt − uxx + ux + uux = 0, x ∈ [0, 1], t ∈ [0, 1], (57)
u(x, 0) = sin(2πx), x ∈ [0, 1]. (58)

We plot the dissipation of energy with h = k = 1/50. Figure 1 confirms the result found in Theorem 3.1.

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

18

20

22

t
n

E
n

e
rg

y 
ε
n

Figure 1: Profil of the discrete energy.

Example 2

To further illustrate the dissipation of energy, we consider the equation (2) with α = 1 and β = 12 as follows

ut − uxxt − uxx + ux + 12uux = 0, x ∈ [−1, 1], t ∈ [0, 1], (59)

we adopt the exact solution mentioned in [15]. Accordingly, we take

u(x, 0) =
−23
120
−

1
5

tanh(x) +
1

10
tanh2(x), x ∈ [−1, 1]. (60)

We compute the numerical solution of the problem (59)-(60) by the difference scheme (20)-(23) with h = 2
J

and k = 1
N . In Table 1, we give some numerical values of the discrete energy at various times tn for k = 0.02

and h = 0.02 .

tn
E

n

0.04 10.718041129435278
0.1 9.682853076162946
0.2 8.199629744154645
0.5 5.106264138262407
0.6 4.401404773312493
1 2.563745956306620

Table 1: Values of discrete energy En at different time tn.

From Table 1, we can see the dissipation of energy of the numerical solution for (59)-(60). This also
supports the result found in Theorem 3.1.
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6.2. Error estimates and order of convergence

Consider the following periodic initial value problem of the BBMB equation

ut − uxxt − uxx + ux + uux = f (x, t), x ∈ [0, 1], t ∈ [0, 1], (61)
u(x, 0) = sin(2πx), x ∈ [0, 1], (62)

where
f (x, t) = exp(−t)[2π cos(2πx) − sin(2πx) + π exp(−t) sin(4πx)].

The exact solution is
u(x, t) = exp(−t) sin(2πx).

We represent the numerical solution of the BBMB equation for h = 1/100 and k = 1/2.
Figure 2 shows the behavior of the BBMB equation obtained from t = 0 to t = 5. Obviously, we can see the
accuracy of the numerical solutions which indicates that the method is well suited and reaches a balance
with the solution of the BBMB equation.
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Figure 2: The numerical solution obtained by the difference scheme.

In order to compare the numerical scheme more qualitatively, we compute the maximum norm error of
the numerical solution

e∞(h, k) = max
0⩽n⩽N

∥un
−Un

∥∞.

The convergence order in temporal and spatial directions are defined as

Orderk = lo12

( e∞(h, 2k)
e∞(h, k)

)
, Orderh = lo12

( e∞(2h, k)
e∞(h, k)

)
,

when k and h are sufficiently small, respectively.
Tables 2 and 3 present some maximum norm errors and the corresponding convergence orders of our
difference scheme. We can see that the results obtained confirm the theoretical order of convergence found
in Theorem 5.4.
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k e∞(h, k) Orderk
1/8 1.9772 × 10−03

−

1/16 4.8806 × 10−04 2.0183
1/32 1.2130 × 10−04 2.0084
1/64 3.0239 × 10−05 2.0042

Table 2: The maximum norm errors and temporal
convergence order with various k when h = 0.01.

h e∞(h, k) Orderh

1/8 2.5564 × 10−04
−

1/16 1.3626 × 10−05 4.2296
1/32 8.4018 × 10−07 4.0196
1/64 5.1847 × 10−08 4.0184

Table 3: The maximum norm errors and spatial con-
vergence order with various h and k = h2.

6.3. Comparison with the scheme proposed in [16]

We conduct a comparison between our difference scheme and the numerical method in [16] with fixed
k and various h in Table 4. In this Table, it is clear that the results obtained by the linearized difference
scheme is more accurate and robust.

h Present scheme CPU time Scheme [16] CPU time
1/10 9.6398 × 10−05 1.369051s 1.0584 × 10−02 4.313302s
1/20 5.3935 × 10−06 2.238243s 2.7591 × 10−03 6.812266s
1/40 3.7614 × 10−07 3.226216s 7.0556 × 10−04 8.787010s
1/80 2.2318 × 10−08 4.150066s 1.7845 × 10−04 10.056571s

Table 4: Comparison of error estimates in the maximum norm with k = 0.001.

6.4. A comparison through BBM Equation (α = 0 in (1))

In this section, we have studied the BBM equation where three problem will be shown: motion of single
solitary wave, the interaction of two positive solitary waves and the undular bore.

6.4.1. Motion of single solitary wave
We consider the BBM equation with the boundary conditions u→ 0 as x→ ±∞

ut − uxxt + ux + uux = 0, x ∈ [−40, 60], t ∈ [0,T], (63)

and the initial data is

u(x, 0) = 3c sech2
(
k0[x − x0]

)
,

the exact solution is

u(x, t) = 3c sech2
(
k0[x − νt − x0]

)
,

with amplitude 3c where c, x0 are arbitrary constants, ν = 1 + c is the wave velocity and k0 =
1
2

√
c

(1+c) .

To allow comparison with the previous method, parameters are taken as c = 0.1, x0 = 0.
We discretize the problem (63) by the following finite difference scheme:

Un
t̄ −H2Un

xx̄t̄ +H1Ūn
x̂ + βH1Φ(Un, Ūn) = 0, n = 1, · · · ,N − 1,

U0
j = u0(x j), j = 1, . . . , J.
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We examined our results by calculating the following three conservative laws: mass, momentum, and
energy which can be expressed as:

I1 =

∫ b

a
udx ≃ h

J∑
j=1

Un
j ,

I2 =

∫ b

a
(u2 + µu2

x)dx ≃ h
J∑

j=1

[
(Un

j )2 + µ(Un
j )2

x̂

]
,

I3 =

∫ b

a
(3u2 + u3)dx ≃ h

J∑
j=1

[
3(Un

j )2 + (Un
j )3
]
.

In Table 5, we display the invariants and we treat the error estimates in the maximum norm for k = 0.001, h =
0.5, it shows that the results of our scheme is more accurate. A comparison of invariants obtained by the
present method for h = k = 0.2 and some existing results ([18] for h = k = 0.2 , [19] for h = 0.125, k = 0.1 and
[20] for h = 3, k = 0.01) is listed in Table 6 at time t = 20.

Time method I1 I2 I3 L∞

0 3.97992 0.81038 2.57901 −

1 Present method 3.97993 0.81038 2.57901 3.41 × 10−07

[17] 3.97993 0.81046 2.57901 4.57 × 10−07

2 Present method 3.97994 0.81038 2.57901 6.96 × 10−07

[17] 3.97994 0.81046 2.57901 3.79 × 10−05

3 Present method 3.97994 0.81038 2.57901 1.05 × 10−06

[17] 3.97994 0.81046 2.57901 3.80 × 10−05

4 Present method 3.97994 0.81038 2.57901 1.41 × 10−06

[17] 3.97995 0.81046 2.57901 3.80 × 10−05

Table 5: Comparison of error estimates in the maximum norm and the conservative laws.

method I1 I2 I3

Analytical 3.979950 0.810462 2.579007
Present method 3.979951 0.810459 2.579006

[18] 3.979942 0.810462 2.579006
[19] 3.98203 0.810467 2.57302
[20] 3.990464 0.823457 2.673990

Table 6: Comparison of invariants for t = 20.

Figure 3 and 4 represent the profiles of single solitary waves at T = 0, T = 25 and h = 0.5, k = 0.1, for
c = 0.1 and c = 0.03 .
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Figure 3: Profile of single solitary wave for c = 0.1.
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Figure 4: Profile of single solitary wave for c = 0.03.

6.4.2. Interaction of two positive solitary waves

In this part, we will investigate the interaction of two positive solitary waves having different amplitudes.
We consider the BBM equation with initial conditions given by

u(x, 0) =
2∑

i=1

3ci sech2
(
ki(x − xi)

)
, (64)

where ci =
4k2

i
1−4k2

i
, ci and xi are constants, i = 1, 2, and with the boundary conditions u → 0 as x → ±∞. We

choose parameters as µ = 1, k1 = 0.4, k2 = 0.3, x1 = 15, x2 = 35, h = 0.3 and k = 0.1 with interval [0, 120].
Figure 5 displays the profile of interaction of two positive solitary waves. As is well known, solitary waves
with smaller amplitudes have a less velocity than another of larger amplitudes. It is appeared from Figure
5 that the larger wave goes up the smaller wave and passes it at t = 25.
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Figure 5: Profil of interaction of two solitary waves.

Table 7 shows a comparison of invariants for the interaction of two positive solitary waves obtained for
h = 0.3 and k = 0.1 at different time, from present method and the method in [18].

Time method I1 I2 I3

0 37.916482 120.479974 744.081208
2 Present method 37.925772 120.480658 744.074345

[18] 37.916850 120.515270 743.998856
4 Present method 37.928355 120.480931 744.064772

[18] 37.916972 120.513172 743.956686
6 Present method 37.929586 120.480995 744.044281

[18] 37.917095 120.511737 743.917027

Table 7: Invariants for the interaction of two solitary waves.

6.4.3. The undular bore

We consider the equation (63) with the boundary conditions u → 0 as x → ∞ and u → c0 as x → −∞
and the initial condition defined by [21]

u(x, 0) =
c0

2

[
1 − tanh(

x − x0

d
)
]
, x ∈ [−36, 300],

where u(x, 0) represents the elevation of the water surface, d represents the slope between the still water
and deeper water and c0 represents the magnitude of the change in water level. We take the parameters to
have the following values: β = 1.5, µ = 1/6, c0 = 0.1 and x0 = 0.
The behavior of the wave at t = 100 for the slope d = 2 and d = 5 have been presented in Figure 6 and 7,
respectively. The numbre of undulations formed increases with time and decreases with the increase of d
from d = 2 to d = 5.
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Figure 6: The undular graph for d = 2, J = 480, T = 100.
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Figure 7: The undular graph for d = 5, J = 480, T = 100.

7. Conclusion

In this article, we construct a high-order linearized difference scheme for the BBMB equation. The
solvability of the difference scheme is shown. The proposed scheme is without any restrictions on the
grid ratio, convergent at fourth order in space and second order in time. Further, we have compared
our difference scheme with earlier published results and it was shown that our linearized scheme is more
accurate, efficient and robust. As a particular case, we have studied the BBM equation where the invariants
I1, I2 and I3 were explored for single solitary wave and interaction of two positive solitary waves, also the
undular bore development was maintained.
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