
Filomat 36:13 (2022), 4319–4329
https://doi.org/10.2298/FIL2213319B

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. In this paper, we introduce and investigate new concepts of L-weakly and M-weakly demicom-
pact operators. Let E be a Banach lattice. An operator T : E −→ E is called L-weakly demicompact, if for
every norm bounded sequence (xn) in BE such that {xn − Txn, n ∈ N} is an L-weakly compact subset of E,
we have {xn, n ∈ N} is an L-weakly compact subset of E. Additionally, an operator T : E −→ E is called
M-weakly demicompact if for every norm bounded disjoint sequence (xn) in E such that ∥xn −Txn∥ → 0, we
have ∥xn∥ → 0. L-weakly (resp. M-weakly) demicompact operators generalize known classes of operators
which are L-weakly (resp. M-weakly) compact operators. We also elaborate some properties of these classes
of operators.

1. Introduction

Throughout this paper X and Y will denote real Banach spaces, E and F will denote real Banach lattices.
BX is the closed unit ball of X and Sol(A) denotes the solid hull of a subset A of a Banach lattice. The positive
cone of E will be denoted by E+ = {x ∈ E; 0 ≤ x}.

Let A be a non-empty bounded subset of a Banach lattice E. A is said to be L-weakly compact if
lim ∥xn∥ = 0 for every disjoint sequence (xn) contained in the solid hull of A. The classes of L-weakly and
M-weakly compact operators were introduced by Meyer-Nieberg [10]. An operator T from X into F is
called L-weakly compact if T(BX) is an L-weakly compact subset of F. An operator T from E into Y is called
M-weakly compact if lim ∥Txn∥ = 0 holds for every norm bounded disjoint sequence (xn) in E.

Recall from [12] that an operator T : D(T) ⊆ X −→ X, where D(T) is a subspace of X, is said to be
demicompact if, for every bounded sequence (xn) in the domain D(T) such that (xn − Txn) converges to
x ∈ X, there is a convergent subsequence of (xn). Note that each compact operator is demicompact, but the
opposite is not always true. In fact, let IdX : X −→ X be the identity operator of a Banach space X of infinite
dimension. It is clear that −IdX is demicompact but it is not compact. The concept of demicompactness has
emerged in literature since 1966 in order to address fixed points. It was introduced by Petryshyn [12]. Jeribi
[7] used the class of demicompact operators to obtain some results on Fredholm and spectral theories.

Next, in [8] some Fredholm and perturbation results including the class of weakly demicompact oper-
ators. Moreover, they explored the relationship between this class and measures of weak noncompactness
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of operators with respect to an axiomatic one. Let us recall that an operator T : D(T) ⊆ X −→ X is said to
be weakly demicompact if, every bounded sequence (xn) inD(T) such that (xn − Txn) weakly converges in
X, has a weakly convergent subsequence. As an example of a weakly demicompact operator, we mention
weakly compact operators. Ferjani et al. confirmed in [5] that each demicompact operator on a Banach
space X is weakly demicompact.

Recently, Benkhaled et al. [2] have introduced the class of order weakly demicompact operators on
Banach lattices. An operator T from E into E is said to be order weakly demicompact if, for every order
bounded sequence (xn) in E+ such that xn → 0 in σ(E,E′) and ∥xn − Txn∥ → 0, we have ∥xn∥ → 0. This class
includes both the order weakly compact and weakly demicompact operators.

The basic objective of this work lies in defining L-weakly and M-weakly demicompact operators.
This paper is organized in the following way. In Section 2, we shall introduce a new concept of L-weakly
demicompact operators (see Definition 2.1). Note that the class of L-weakly demicompact operators involves
that of L-weakly compact operators (see Proposition 2.2). Subsequently, we shall illustrate our analysis
by some outstanding properties (see Proposition 2.7 and Example 2.9). In Section 3, a characterization of
L-weakly demicompact operators is displayed. The main result of this section is Theorem 3.3. In Section
4, the relationship between L-weakly demicompact operators and order weakly demicompact operators is
enacted (see Proposition 4.1). In Section 5, the notion of M-weakly demicompact operators is introduced
(see Definition 5.1). Note that the class of M-weakly demicompact operators includes that of M-weakly
compact operators (see Proposition 5.2). Next, some interesting results are drawn (see Proposition 5.5,
Example 5.7 and Theorem 5.9).

To state our results, we need to fix some notations and recall some definitions. A vector lattice E is an
ordered vector space in which sup(x, y) exists for every x, y ∈ E. A Banach lattice is a Banach space (E, ∥.∥)
such that E is a vector lattice and its norm satisfies the following property: for each x, y ∈ E such that
|x| ≤ |y|, we have ∥x∥ ≤ ∥y∥. If E is a Banach lattice, its topological dual E′, endowed with the dual norm
and the dual order, is also a Banach lattice. A norm ∥.∥ of a Banach lattice E is order continuous if for each
generalized sequence (xα) such that xα ↓ 0 in E, the sequence (xα) converges to 0 for the norm ∥.∥, where the
notation xα ↓ 0 means that the sequence (xα) is decreasing, its infimum exists and inf(xα) = 0.

We use the term operator T : E −→ F between two Banach lattices to mean a bounded linear mapping.
It is positive if T(x) ∈ F+ whenever x ∈ E+. The operator T is regular if T = T1 − T2, where T1 and T2 are
positive operators from E into F. It is well known that each positive linear mapping on a Banach lattice is
continuous.

We refer the reader to the monographs [1, 11] for ambiguous terminology from Banach lattices and
positive operators theory.

2. L-weakly Demicompact Operators

We start by the following definition.

Definition 2.1. Let E be a Banach lattice. An operator T : E −→ E is called L-weakly demicompact if, for every norm
bounded sequence (xn) in BE such that {xn − Txn, n ∈N} is an L-weakly compact subset of E, we have {xn, n ∈N}
is an L-weakly compact subset of E.

Proposition 2.2. Let E be a Banach lattice. Every L-weakly compact operator T : E −→ E is L-weakly demicompact.

Proof. Let (xn) be a norm bounded sequence in BE such that {xn − Txn, n ∈ N} is an L-weakly compact
subset of E. We claim that {xn, n ∈N} is an L-weakly compact subset of E. Assuming that (wk) is a disjoint
sequence in the solid hull of {xn, n ∈ N}, we need to show that ∥wk∥ → 0. Consider (xnk ) a subsequence of
(xn) such that |wk| ≤ |xnk | for each k ∈N. Since

|wk| ≤ |xnk − Txnk | + |Txnk | for each k ∈N,
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it follows, from the Riesz decomposition property (see [1, Theorem 1.13]), that for each k there exists
wk1 ,wk2 ∈ E such that wk = wk1 + wk2 with

|wk1 | ≤ |xnk − Txnk | (1)

and
|wk2 | ≤ |Txnk | (2).

Inequality (1) yields that (wk1 ) is a disjoint sequence in Sol({xnk − Txnk , n ∈ N}). Since {xn − Txn, n ∈ N} is
an L-weakly compact subset of E, then ∥wk1∥ converges to 0. Furthermore, inequality (2) yields that (wk2 )
is a disjoint sequence in the solid hull of {Txnk , n ∈ N}. Thus, the L-weak compactness of T indicates that
∥wk2∥ → 0. Since we can write

∥wk∥ ≤ ∥wk1∥ + ∥wk2∥

for each k, then ∥wk∥ → 0, and the proof holds.

Remark 2.3. Note that the converse of Proposition 2.2 is not true in general. For instance, consider the identity
operator Idl1 : l1 −→ l1. It is clear that αIdl1 , for α , 1, is L-weakly demicompact. On the other side, Bl1 is not
relatively weakly compact and therefore is not L-weakly compact (see [11, Proposition 3.6.5]). Hence, αIdl1 is not
L-weakly compact.

Recall that an operator T : E −→ E is said to be power L-weakly compact if there exists m ∈ N∗ satisfying
Tm which is L-weakly compact. To establish a sufficient condition for which each power L-weakly compact
regular operator is L-weakly demicompact, we need to give the following Lemma.

Lemma 2.4. [13, Lemma 1.4.3] Let T be a regular operator from a Banach lattice E into a Banach lattice F with an
order continuous norm. If A ⊂ E is L-weakly compact, then T(A) is L-weakly compact.

Proposition 2.5. If E has an order continuous norm, then each power L-weakly compact regular operator T : E −→ E
is L-weakly demicompact.

Proof. Assume that the norm of E is an order continuous norm. Let T : E −→ E be a regular operator and
(xn) be a norm bounded sequence in BE such that {xn − Txn, n ∈ N} is an L-weakly compact subset of E.
The power L-weak compactness of T implies that there exists m ∈ N⋆ such that Tm is L-weakly compact
and therefore {Tmxn, n ∈ N} is an L-weakly compact subset of E. Moreover, since Tm−1 which is regular,
it follows from Lemma 2.4 that {Tm−1xn − Tmxn, n ∈ N} is an L-weakly compact subset of E. From the
following inclusion

{Tm−1xn, n ∈N} ⊂ {Tm−1xn − Tmxn, n ∈N} + {Tmxn, n ∈N},

we obtain that {Tm−1xn, n ∈N} is an L-weakly compact subset of E. Repeating this process for i = m− 2, ...,
1. We have Ti which is regular. By using Lemma 2.4, we infer that {Tixn − Ti+1xn, n ∈ N} is an L-weakly
compact subset of E. Since we can write

{Tixn, n ∈N} ⊂ {Tixn − Ti+1xn, n ∈N} + {Ti+1xn, n ∈N},

then {Tixn, n ∈ N} is an L-weakly compact subset of E. Thus, for i = 1, we obtain {Txn, n ∈ N} is an
L-weakly compact subset of E. This implies that T is L-weakly compact. By using Proposition 2.2, we
deduce that T is L-weakly demicompact.

In what follows, we examine the L-weak demicompactness of the matrix operatorT fromE intoE expressed
by

T =


T1,1 T1,2 · · · T1,m
T2,1 T2,2 · · · T2,m
...

...
. . .

...
Tm,1 Tm,2 · · · Tm,m
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where E =
∏m

i=1 Ei is a direct sum of a family of Banach lattices (Ei)1≤i≤m and Ti, j : E j −→ Ei is an operator
for all 1 ≤ i, j ≤ m.

Proposition 2.6. Let E =
∏m

i=1 Ei be a direct sum of a family of Banach lattices (Ei)1≤i≤m and let Ti,i : Ei −→ Ei be
an L-weakly demicompact operator for all 1 ≤ i ≤ m. Then, the matrix operator T1 : E −→ E defined by

T1 =


T1,1 0 · · · 0

0 T2,2 · · · 0
...

...
. . .

...
0 0 · · · Tm,m


is L-weakly demicompact.

Proof. Let {Xn = (x1
n, x2

n, ..., xm
n ), n ∈N} be a norm bounded sequence in BE such that {Xn − T1Xn, n ∈N} is

an L-weakly compact subset of E. We have to demonstrate that {Xn, n ∈N} is an L-weakly compact subset
of E. Since

Xn − T1Xn =



x1
n − T1,1x1

n

x2
n − T2,2x2

n

...

xm
n − Tm,mxm

k


,

for each n ∈ N, then {xi
n − Ti,ixi

n, n ∈ N} is an L-weakly compact subset of Ei for each i ∈ {1, 2, ...,m}. Thus,
the L-weak demicompactness of Ti,i entails that {xi

n, n ∈ N} is an L-weakly compact subset of Ei for each
1 ≤ i ≤ m. Therefore, {Xn = (x1

n, x2
n, ..., xm

n ),n ∈N} is an L-weakly compact subset of E.

Proposition 2.7. Let E =
∏m

i=1 Ei be a direct sum of a family of Banach lattices (Ei)1≤i≤m and let Ti, j : E j −→ Ei be
an operator for all 1 ≤ i, j ≤ m. If the following conditions hold:
(i) Ti,i : Ei −→ Ei is L-weakly demicompact for all 1 ≤ i ≤ m.
(ii) Ti, j : E j −→ Ei is L-weakly compact for all 1 ≤ i < j ≤ m.
(iii) Ti, j : E j −→ Ei is regular for all 1 ≤ j < i ≤ m.
(iv) The norm of E is order continuous.
Then, the matrix operator T2 : E −→ E determined by

T2 =


T1,1 T1,2 · · · T1,m
T2,1 T2,2 · · · T2,m
...

...
. . .

...
Tm,1 Tm,2 · · · Tm,m


is L-weakly demicompact.

Proof. Since E has an order continuous norm, the norm of Ei is an order continuous norm for all 1 ≤ i ≤ m
. Let {Xn = (x1

n, x2
n, ..., xm

n ), n ∈ N} be a norm bounded sequence in E such that {Xn − T2Xn, n ∈ N} is an
L-weakly compact subset of E. We have to demonstrate that {Xn, n ∈ N} is an L-weakly compact subset
of E. To this end, it is sufficient to confirm that {xi

n, n ∈ N} is an L-weakly compact subset of Ei for each
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1 ≤ i ≤ m. Accordingly, for every n, we get

Xn − T2Xn =



x1
n − T1,1x1

n − T1,2x2
n − ... − T1,mxm

n

x2
n − T2,1x1

n − T2,2x2
n − ... − T2,mxm

n

...

xm
n − Tm,1x1

n − Tm,2x2
n − ... − Tm,mxm

n


.

Then we have {xi
n − Ti,1x1

n − Ti,2x2
n − ... − Ti,mxm

n , n ∈ N} which is an L-weakly compact subset of Ei
for all 1 ≤ i ≤ m. First, let i = 1. Since T1, j is L-weakly compact for all 1 < j ≤ m, this means that
{T1,2x1

n + T1,3x3
n + ... + T1,mxm

n , n ∈ N} is an L-weakly compact subset of E1. Therefore, departing from the
relation

{x1
n − T1,1x1

n, n ∈N} ⊂{x1
n − T1,1x1

n − T1,2x2
n − ... − T1,mxm

n , n ∈N} + {T1,2x1
n + ... + T1,mxm

n , n ∈N},

it follows that {x1
n−T1,1x1

n, n ∈N} is an L-weakly compact subset of E1. Thus, the L-weak demicompactness
of T1,1 yields that {x1

n, n ∈ N} is an L-weakly compact subset of E1. Next, consider i = 2, ...,m − 1. Since
Ti, j is regular for each 1 ≤ j < i. It follows from Lemma 2.4 that {Ti, jxi

n, n ∈ N} is an L-weakly compact
subset of Ei for each 1 ≤ j < i. Moreover, the L-weak demicompactness of Ti, j for each i < j ≤ m implies that
{Ti,i+1xi+1

n +Ti,i+2xi+2
n + ...+Ti,mxm

n , n ∈N} is an L-weakly compact subset of Ei. From the following inclusion

{xi
n − Ti,ixi

n, n ∈N} ⊂{xi
n − Ti,1x1

n − ... − Ti,ixi
n − .... − Ti,mxm

n , n ∈N}

+ {Ti,1x1
n, n ∈N} + ... + {Ti,i−1xi−1

n , n ∈N}

+ {Ti,i+1xi+1
n + ... + Ti,mxm

n , n ∈N},

it follows that {xi
n−Ti,ixi

n, n ∈N} is an L-weakly compact subset of Ei.Thus, the L-weak demicompactness of
Ti,i implies that {xi

n, n ∈N} is an L-weakly compact subset of Ei. Finally, for i=m. We have {Tm, jx1
n, n ∈N}

which is an L-weakly compact subset of Em for each 1 ≤ j < m. Since we can state that

{xm
n − Tm,mxm

n , n ∈N} ⊂{Tm,1x1
n, n ∈N} + ... + {Tm,m−1xm−1

n , n ∈N}

+ {xm
n − Tm,1x1

n − ... − Tm,m−1xm−1
n − Tm,mxm

n , n ∈N},

we get {xm
n − Tm,mxm

n , n ∈ N} is an L-weakly compact subset of Em. The use of L-weak demicompactness
of Tm,m implies that {xm

n , n ∈ N} is an L-weakly compact subset of Em, and the proof of the proposition is
finished.

Corollary 2.8. Let us assume that the following conditions hold:
(i) Ti,i : Ei −→ Ei is L-weakly demicompact for all 1 ≤ i ≤ m.
(ii) Ti, j : E j −→ Ei is regular for all 1 ≤ i < j ≤ m.
(iii) Ti, j : E j −→ Ei is L-weakly compact for all 1 ≤ j < i ≤ m.
(iv) The norm of E is order continuous.
Then, T2 is L-weakly demicompact.

Proof. We invest the same reasoning as with the proof of Proposition 2.7.

It is worth noting that the class of L-weakly demicompact operators lacks the vector space structure with
the sum and with the external product. To illustrate this point, we provide the following example.

Example 2.9. Let J : L2[0, 1] −→ L1[0, 1] be the canonical injection. Consider E = L2[0, 1] ⊕ L1[0, 1] and let the
operators T1 and T2 be defined via the matrix:

T1 =

(
2IdL2[0,1] J

0 0

)
and T2 =

(
−IdL2[0,1] J

0 0

)
.
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The canonical injection J is L-weakly compact. Relying on Proposition 2.7, it follows that T1 and T2 are L-weakly
demicompact, but the sum T1 + T2 expressed by

T = T1 + T2 =

(
IdL2[0,1] 2J

0 0

)
is not. In fact, consider x̃n = (en, 0) for every n, where en is the sequence with the nth entry which equals 1 and others
are zero. It is obvious that (x̃n) is a norm bounded sequence of BE. Moreover, {x̃n − T x̃n, n ∈ N} is an L-weakly
compact subset of E. Note that ∥x̃n∥E = ∥en∥L2[0,1] = 1. This proves that {x̃n, n ∈ N} is not an L-weakly compact
subset of E and hence T = T1 + T2 is not an L-weakly demicompact.
If we follow the same reasoning as previously mentioned, we get −T2 which is not L-weakly demicompact.

3. Characterization of L-weakly demicompact opertors

The main target of this section is to exhibit a characterization of L-weakly demicompact operators. For
this reason, we need to prove the following lemma:

Lemma 3.1. Let E,F be two Banach lattices such that F has an order continuous norm, and let A, B : E −→ F be
operators with B is regular. Suppose that there are two sequences ( fn) and (1n) in E such that:

1. {1n : ∈N} is an L-weakly compact subset of E.
2. ∥A fn − B1n∥ → 0.

Then, {A fn : n ∈N} is an L-weakly compact subset of F.

Proof. Let A, B : E −→ F be two operators with B is regular. Let ( fn) and (1n) be two sequences in E such
that ∥A fn − B1n∥ → 0 and {1n : n ∈ N} is an L-weakly compact subset of E. We have to demonstrate that
{A fn : n ∈ N} is an L-weakly compact subset of E. Resting upon Proposition 3.6.2 in [11], it is sufficient to
confirm that for every ϵ > 0 there exists 0 ≤ vϵ ∈ F such that:

{A fn : n ∈N} ⊂ [−vϵ, vϵ] + ϵBF.

To this end, let ϵ > 0. Taking into account that ∥A fn − B1n∥ → 0, we deduce that there exists N ∈ N such
that A fn − B1n ∈

ϵ
2 BE for each n ≥ N. Since {1n : n ∈ N} is an L-weakly compact, we infer from Lemma 2.4

that {B1n : n ∈N} is an L-weakly compact subset of F. Using Proposition 3.6.2 in [11], we have

{B1n : ∈N} ⊂ [−uϵ,uϵ] +
ϵ
2

BE,

for some 0 ≤ uϵ ∈ F. Put vϵ := uϵ + ∨N
i=1|A fi|. It is easy to infer that

{A fn : n ∈N} ⊂ [−vϵ, vϵ] + ϵBF,

and the proof of the lemma is finished.

As a consequence, we obtain:

Corollary 3.2. Let E be a Banach lattice with an order continuous norm, and let T,S : E −→ E be two operators
such that T which is L-weakly demicompact. If for every sequence ( fn) of E such that {T fn : n ∈ N} is an L-weakly
compact subset of E and ∥T fn − S fn∥ → 0, then S is L-weakly demicompact.

Proof. Let ( fn) be a norm bounded sequence in BE such that { fn − S fn : n ∈ N} is an L-weakly compact
subset of E. We show that { fn : n ∈N} is an L-weakly compact subset of E. Since ∥T fn −S fn∥ → 0, it follows
from Lemma 3.1 (with A = I − S and B = I − T) that { fn − T fn : n ∈ N} is an L-weakly compact subset of E.
Thus, the L-weak demicompactness of T implies that { fn : n ∈N} is L-weakly compact subset of E.
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Recall that a Banach lattice an with order continuous norm E has the subsequence splitting property [6], if
for every bounded sequence ( fn), there exist a disjoint sequence (hk) an equi-integrable sequence (1k) and a
subsequence ( fnk ) such that fnk = 1k + hk with 1k and hk are disjoint for all k. Now, we are in a position to
establish our theorem.

Theorem 3.3. Let E be a Banach lattice with an order continuous norm and satsfies the subsequence splitting
property. Let T : E −→ E be a regular operator, then the following assertions are equivalent:

1. T is an L-weakly demicompact operator.
2. ∥wn∥ → 0 for each norm bounded disjoint sequence (wn) in BE such that {wn − Twn : n ∈ N} is an L-weakly

compact subset of E.

Proof. (1) =⇒ (2) Consider that T : E−→E is a regular operator. Assume that T is an L-weakly demicompact.
Let (wn) be a norm bounded disjoint sequence in BE such that {wn − Twn : n ∈ N} is an L-weakly compact
subset of E. The L-weak demicompactness of T implies that {wn, n ∈N} is an L-weakly compact subset of
E and so ∥wn∥ → 0.
(2) =⇒ (1) Let (xn) be a norm bounded sequence in BE such that {xn − Txn : n ∈N} is an L-weakly compact
subset of E. Passing to a subsequence, we can assume that xn = wn + yn, where (yn) is an L-weakly compact
sequence, (wn) is a disjoint sequence and |wn| ∧ |yn| = 0 for each n ∈ N. This implies that Txn = Twn + Tyn
for each n ∈ N. Since T is regular, it follows from Lemma 2.4 that {Tyn : n ∈ N} is an L-weakly compact
set. From the following inclusion

{wn − Twn : n ∈N} ⊂ {xn − Txn : n ∈N} + {−yn : n ∈N} + {Tyn : n ∈N},

we obtain that {wn−Twn, n ∈N} is an L-weakly compact subset of E. Applying the assertion (2), ∥wn∥ → 0.
Therefore, ∥xn − yn∥ → 0. According to Lemma 3.1 with A = B = I, we have {xn : n ∈ N} is an L-weakly
compact subset of E.

4. Relationship between L-weakly demicompact and order weakly demicompact operators

Recall that an element e ∈ E is said to be a weak unit if for h ∈ E, e∧ h = 0 implies h = 0. Every separable
Banach lattice has a weak unit. Note that an order continuous Banach lattice with a weak unit can be
assumed to be included in L1(Ω,Σ, µ) for some probability measure µ (see Theorem 1.b.14 in [9]). Hence,
we denote this inclusion by j : E ↪→ L1(Ω,Σ, µ). Let us remark that if X is a separable subspace of an order
continuous Banach lattice E, it follows from Proposition 1.a.9 in [9] that EX (EX the ideal generated by X)
has a weak unit.

The following result proves that the class of order weakly demicompact operators bigger than that of
L-weakly demicompact operators.

Proposition 4.1. Let E be a Banach lattice. If T : E −→ E is an L-weakly demicompact operator, then T is order
weakly demicompact.

Proof. Let (xn) be an order bounded sequence in E+ such that xn → 0 in σ(E,E′) and ∥xn−Txn∥ → 0. We need
to demonstrate that ∥xn∥ → 0. It is clear that {xn − Txn, n ∈ N} is an L-weakly compact subset of E. Thus,
the L-weak demicompactness of T indicates that {xn : n ∈N} is an L-weakly compact subset of E.Now, let
EA be the ideal generated by A := {xn,n ∈N} in E. It remains to show that xn → 0. For this reason, we need
to prove first that EA is order continuous. Referring to Theorems 4.13 and 4.11 in [1], it is sufficient to show
that every order bounded disjoint sequence in EA is norm convergent to zero. Indeed, let (yn) be a disjoint
sequence with 0 ≤ xn ≤ y for all n and some y ∈ EA. Then there exist xn1 , ..., xnk and λ > 0 with y ≤ λ

∑k
i=1 xni .

Departing from the Riesz decomposition property, there exist yn
1 , ..., y

n
k in E+ such that

yn = yn
1 + ... + yn

k , yn
i ≤ λxni and yn

i ≤ yn,

for all n ∈ N and i ∈ {1, ..., k}. Clearly, for each i the sequence (yn
i ) is disjoint in Sol{xn,n ∈ N}. The L-weak

compactness of {xn,n ∈N} implies that yn converges to 0. Hence, EA is order continuous.
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Now, since X := [xn] is a separable subspace of EA, it follows from Proposition 1.a.9 in [9] that EX
is an order ideal with a weak order unit. Therefore, it can be represented as a dense order ideal
of L1(Ω,Σ, µ) for some probability measure µ, such that the formal inclusion j : EX → L1(Ω,Σ, µ) is
continuous (see [9, Proposition 1.b.14]). Grounded on the Kadec-Pelczynski disjointification method in
[9, Proposition 1.c.10]), we have one of the following statements is valid:
(i) ∥ jxn∥1 ≥ δ∥xn∥ for some δ > 0. Since xn → 0 in σ(E,E′), therefore jxn → 0 in σ(L1(Ω,Σ, µ),L∞(Ω,Σ, µ)).
Thus, the positive Schur property of L1(Ω,Σ, µ) implies that ∥ jxn∥ −→ 0 in L1(Ω,Σ, µ).Hence, xn −→ 0 holds
in E ( j|X is an isomorphism).
(ii) There exist a subsequence (xn) of (xn) and a disjoint sequence (wn) of Sol{xn,n ∈N} such that ∥xn−wn∥ −→

0. Since {xn,n ∈N} is an L-weakly compact subset of E, it follows that xn −→ 0.

5. M-weakly Demicompact Operators

We start this section by the following definition.

Definition 5.1. Let E be a Banach lattice. An operator T : E −→ E is called M-weakly demicompact if for every
norm bounded disjoint sequence (xn) in E such that ∥xn − Txn∥ → 0, we have ∥xn∥ → 0.

Proposition 5.2. Let E be a Banach lattice. If T : E −→ E is an M-weakly compact operator, then T is M-weakly
demicompact.

Proof. Let (xn) be a norm bounded disjoint sequence in E such that ∥xn − Txn∥ converges to 0. The fact that
T is an M-weakly compact operator, we obtain that ∥Txn∥ → 0. Since we can state that

∥xn∥ ≤ ∥xn − Txn∥ + ∥Txn∥

for each n, then ∥xn∥ → 0.

Remark 5.3. Note that an M-weakly demicompact operator is not necessarily M-weakly compact. Inded, let α , 1
and Idl∞ : l∞ −→ l∞ be the identity operator. It is clear that αIdl∞ is M-weakly demicompact. But, since αIdl1 is not
L-weakly compact, αIdl∞ = (αIdl1 )′ is not M-weakly compact as well (see [11, Proposition 3.6.17]).

Recall that an operator T : E −→ E is said to be power M-weakly compact if there exists m ∈ N∗ satisfying
Tm which is M-weakly compact. The following result is a generalization of Proposition 5.2.

Proposition 5.4. Let E be a Banach lattice. Then every power M-weakly compact operator T : E −→ E is M-weakly
demicompact.

Proof. Let (xn) be a norm bounded disjoint sequence in E such that ∥xn − Txn∥ converges to 0. We need to
demonstrate have to show that ∥xn∥ → 0. Since T is power M-weakly compact, then there exists m ∈ N⋆

such that Tm is M-weakly compact. Thus, ∥Tmxn∥ → 0. From the following inequalities

∥xn∥ ≤ ∥xn − Tmxn∥ + ∥Tmxn∥

= ∥
(
I + T + ... + Tm−1

)(
xn − Txn

)
∥ + ∥Tmxn∥

≤ ∥I + T + ... + Tm−1
∥∥xn − Txn∥ + ∥Tmxn∥,

for each n, it follows that ∥xn∥ → 0.

Proposition 5.5. Let E =
∏m

i=1 Ei be a direct sum of a family of Banach lattices (Ei)1≤i≤m and let Ti, j : E j −→ Ei be
an operator for all 1 ≤ i, j ≤ m. If the following conditions hold:
(i) Ti,i : Ei −→ Ei is M-weakly demicompact for all 1 ≤ i ≤ m.
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(ii) Ti, j : E j −→ Ei is M-weakly compact for all 1 ≤ i < j ≤ m.
Then, the matrix operator T2 : E −→ E is provided by

T2 =


T1,1 T1,2 · · · T1,m
T2,1 T2,2 · · · T2,m
...

...
. . .

...
Tm,1 Tm,2 · · · Tm,m


is M-weakly demicompact.

Proof. Let {Xn = (x1
n, x2

n, ..., xm
n ),n ∈N} be a norm bounded disjoint sequence inE such that ∥Xn−T2Xn∥E → 0.

We have to confirm that ∥Xn∥E → 0. Since ∥Xn∥E = ∥x1
n∥E1 + ...+∥xm

n ∥Em , it is sufficient to prove that ∥xi
n∥Ei → 0

for every 1 ≤ i ≤ m. Accordingly, for every n, we have

Xn − T2Xn =



x1
n − T1,1x1

n − T1,2x2
n − ... − T1,mxm

n

x2
n − T2,1x1

n − T2,2x2
n − ... − T2,mx2

n

...

xm
n − Tm,1x1

n − Tm,2x2
n − ... − Tm,mxm

n


,

then ∥xi
n − Ti,1x1

n − Ti,2x2
n − ... − Ti,mxm

n ∥Ei → 0 for all 1 ≤ i ≤ m. First, let i = 1. Since (x j
n) is disjoint, it follows

from the M-weak compactness of T1, j that ∥T1, jx
j
n∥E1 → 0 for all 1 < j ≤ m. From the following inequality

∥x1
n − T1,1x1

n∥E1 ≤ ∥x
1
n − T1,1x1

n − T1,2x2
n − ... − T1,mxm

n ∥E1 + ∥T1,2x2
n∥E1 + ... + ∥T1,mxm

n ∥E1

for each n, we get ∥x1
n − T1,1x1

n∥E1 → 0. Thus, the M-weak demicompactness of T1,1 asserts that ∥x1
n∥E1 → 0.

Next, consider i = 2, ...,m − 1. Since ∥x j
n∥E j → 0 for every 1 ≤ j < i, it follows that ∥Ti, jx

j
n∥Ei → 0 for every

1 ≤ j < i. Moreover, the M-weakly compactness of Ti, j for each i < j ≤ m implies that ∥Ti, jx
j
n∥Ei → 0 for each

i < j ≤ m. Hence, from the relation

∥xi
n − Tiixi

n∥Ei ≤ ∥Ti,1x1
n∥Ei + ... + ∥Ti,i−1xi−1

n ∥Ei + ∥x
i
n − Ti1x1

n − ... − Ti,ixi
n − ... − Timxm

n ∥Ei

+ ∥Ti,i+1xi+1
n ∥Ei + ∥Ti,i+2xi+2

n ∥Ei + ... + ∥Timxm
n ∥Ei ,

it follows that ∥xi
n − Ti,ixi

n∥Ei → 0. Since Ti,i is M-weakly demicompact, we infer that ∥xi
n∥Ei → 0. Finally, let

i = m. We have ∥Tm, jx
j
n∥Em → 0 for all 1 ≤ j < m. From the following inequality

∥xm
n − Tm,mxm

n ∥Em ≤ ∥Tm,1x1
n∥Em + ∥Tm,2x2

n∥Em + ... + ∥Tm,m−1xm−1
n ∥Em

+ ∥xm
n − Tm,1x1

n − Tm,2x2
n − ... − Tm,m−1xm−1

n − Tm,mxm
n ∥Em ,

for each n, we get ∥xm
n −Tm,mxm

n ∥Em → 0. Thus, the M-weak demicompactness of Tm,m implies that ∥xm
n ∥Em → 0.

This completes the proof.

Corollary 5.6. Let us assume that the following conditions hold:
(i) Ti,i : Ei −→ Ei is M-weakly demicompact for all 1 ≤ i ≤ m.
(ii) Ti, j : E j −→ Ei is M-weakly compact for all 1 ≤ j < i ≤ m.
Then, T2 is M-weakly demicompact.

Proof. We invest the same reasoning provided in the proof of Proposition 5.5.
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Example 5.7. Note that the canonical injection J : L2[0, 1] −→ L1[0, 1] is M-weakly compact. If we follow the same
reasoning as reported in Example 2.9, then we can prove that the sum of M-weakly demicompact operators and the
product of a complex number by a M-weakly demicompact operator are not necessarily M-weakly demicompact.

The next result presents a relationship between L-weakly demicompact operators and M-weakly demicom-
pact operators.

Proposition 5.8. Let E be a Banach lattice. Every L-weakly demicompact operator T : E −→ E is M-weakly
demicompact.

Proof. Let (xn) be a norm bounded disjoint sequence in E such that ∥xn − Txn∥ converges to 0. We have to
corroborate that ∥xn∥ → 0. Relying on Lemma 2.4 in [3], it follows that {xn − Txn, n ∈ N} is an L-weakly
compact subset of E. The L-weak demicompactness of T implies that {xn, n ∈ N} is an L-weakly compact
subset of E and hence xn → 0.

The following theorem provides a characterization of M-weakly demicompact operators in terms of positive
weak null sequences.

Theorem 5.9. Let E be a Banach lattice such that both E and E′ have order continuous norms, and T : E −→ E be an
operator. Then, the following assertions are equivalent:
(1) T is M-weakly demicompact.
(2) For each norm bounded sequence (xn) in E+ such that xn → 0 in σ(E,E′) and ∥xn −Txn∥ → 0, we have ∥xn∥ → 0.

Proof. (1) =⇒ (2) Let (xn)n be a norm bounded sequence in E+ such that xn → 0 in σ(E,E′) and ∥xn−Txn∥ → 0.
By investing the same reasoning as used in the proof of Proposition 4.1, one of the following statements is
valid:
(i) ∥xn∥ → 0. This completes the proof.
(ii) For each subsequence (yn) of (xn), there exist a subsequence (zn) of (yn) and a disjoint sequence
(wn) ⊂Sol{zn,n ∈ N} such that ∥zn − wn∥ −→ 0. Since T is M-weakly demicompact and from the fol-
lowing inequalities

∥wn − Twn∥ ≤ ∥wn − Tzn + Tzn − Twn∥ ≤ ∥wn − Tzn∥ + ∥Tzn − Twn∥

= ∥wn − zn + zn − Tzn∥ + ∥Tzn − Twn∥

≤ ∥wn − zn∥ + ∥zn − Tzn∥ + ∥Tzn − Twn∥ → 0,

we get ∥wn∥ → 0.Using ∥zn∥ ≤ ∥zn −wn∥+ ∥wn∥, we infer that ∥zn∥ −→ 0.As (yn) is arbitrary, we deduce that
∥xn∥ −→ 0.

(2) =⇒ (1) Let (xn) be a norm bounded disjoint sequence of E such that ∥xn − Txn∥ → 0. We need to
demonstrate that ∥xn∥ → 0. Since (xn) is disjoint and the norm on E′ is order continuous, it follows from
Theorem 2.4.14 in [11] that xn → 0 in σ(E,E′). Applying the assertion (2), ∥xn∥ → 0. Hence, T is M-weakly
demicompact.

We end this paper by an open question:
Question. Does the L-weakly and M-weakly demicompactness concept provide a characterization of the
upper semi-Fredholm operators?
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