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Abstract. In this manuscript we introduce the class of β-matrices, which gives a new sufficient condition
for the positivity of the determinant. However, we show that nonnegative β-matrices are not necessarily
P-matrices. For column stochastic matrices, the property of being a β-matrix is weaker than strict diagonal
dominance. We extend β-matrices to tensors and call them β-tensors. Although they are not in general
P-tensors, we prove that nonnegative β-tensors of odd order are P-tensors

1. Introduction

By the Levy-Desplanques theorem (see Corollary 5.6.17 of [4]), strictly diagonally dominant matrices
with positive diagonal entries provide an example of matrices with positive determinant. In fact, they are
also P-matrices, that is, all their principal minors are positive. A B-matrix is a matrix with positive row sums
and such that each off-diagonal entry is less than the corresponding row sum. B-matrices form another
class of P-matrices (see [8]) that is, in general, far from diagonally dominant matrices. In this paper, we
introduce a new class of matrices with positive determinant (called β-matrices) that is also, in general,
far from diagonal dominance. We call them β-matrices and we also show that they are not necessarily
P-matrices. For column stochastic matrices, the property of being a β-matrix is weaker than strict diagonal
dominance.

Strictly diagonally dominant matrices and B-matrices and their generalizations (see [6]) have been
extended to tensors (see [7], [9]). We also extend β-matrices to β-tensors and we prove that nonnegative
β-tensors of odd order are P-tensors.

The paper is organized as follows. Section 2 introduces β-matrices with their properties, examples and
counterexamples. In particular, we prove that a β-matrix has always a positive determinant. Their rela-
tionship with other classes of matrices is also analyzed. Section 3 is devoted to β-tensors. We analyze their
relationship with other classes of tensors and some associated decompositions. We prove that nonnegative
β-tensors of odd order are P-tensors.

We finish the introduction with some basic definitions and notations. A real matrix A = (ai j)1≤i, j≤n is a
Z-matrix if all its off-diagonal entries are nonpositive, i.e., ai j ≤ 0 for i , j. If all its entries are nonnegative,
then A is called nonnegative and it is denoted by A ≥ 0. We say that a matrix A = (ai j)1≤i, j≤n is strictly
diagonally dominant (by rows) if |aii| >

∑
i, j |ai j| and that it is diagonally dominant (by rows) if |aii| ≥

∑
i, j |ai j|.
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Finally, we say that A is (strictly) diagonally dominant by columns if AT is (strictly) diagonally dominant by
rows.

2. β-matrices

We start this section by introducing the class of β-matrices.

Definition 2.1. Let A = (ai j)1≤i, j≤n be a square real matrix with n > 2 such that, for all j = 1, . . . ,n, C j :=
∑n

i=1 ai j ,

0, and let ãi j := ai j

C j
for all i, j and

si := min
1≤ j≤n
{ãi j}, i = 1, . . . ,n. (1)

We say that A is a β-matrix if, for all j = 1, . . . ,n, C j > 0 and

ãii > si >

(∑
k,i ãik

)
− ãii

n − 2
, i = 1, . . . ,n. (2)

The following theorem shows that a β-matrix has always positive determinant.

Theorem 2.2. If A is a β-matrix, then det A > 0.

Proof. If we define the matrix Ã = (ãi j)1≤i, j≤n and the diagonal matrix D := diag{C1, . . . ,Cn}, observe that
A = ÃD and so it is sufficient to prove that det Ã > 0 because D has positive diagonal entries. The matrix
Ã satisfies ÃTe = e, where e = (1, . . . , 1)T. Therefore, 1 is an eigenvalue of Ã. Since A is real, its complex
non-real eigenvalues occur in conjugate pairs, whose product is positive. Since det Ã is the product of its
complex non-real eigenvalues and the real ones, it is sufficient to see that, if λ , 1 is a real eigenvalue of Ã,
then λ > 0.

If s = (s1, . . . , sn)T, we can write

Ã = Ã+ + C, (3)

where Ã+ = (ãi j − si)1≤i, j≤n for all i, j and C := seT. By (2), Ã+ has positive diagonal entries and, for all
i = 1, . . . ,n,∑

k,i

(ãik − si) < ãii − si

because∑
k,i

ãik − (n − 2)si < ãii.

Thus, Ã+ is a strictly diagonally dominant matrix with positive diagonal entries. Then, by applying the
Gerschgorin circles by rows to Ã+, we deduce that the real eigenvalues of Ã+ are positive.

Since λ(, 1) is a real eigenvalue of Ã, there exists an eigenvector x(, 0) such that Ãx = λx. Trasposing
both parts of this equality, we have that λxT = xTÃT and multiplying by e, we get

λxTe = xTÃTe = xTe

and so, (λ − 1)(xTe) = 0, which implies that xTe = 0 and so eTx = 0. Hence, by (3), we deduce that

Ã+x = (Ã − C)x = Ãx − seTx = Ãx = λx

and λ is also an eigenvalue of Ã+, and so positive, which proves the result.
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Remark 2.3. Let us notice that Theorem 2.2 still holds if we extend Definition 2.1 to the case n = 2 by modifying
condition (2). In fact, for n = 2, (2) can be replaced by ãii > si for i = 1, 2. Following the argumentation given in
the proof of Theorem 2.2, we see that, when n = 2, this new condition implies that the matrix Ã+ in (3) is a diagonal
matrix with positive diagonal entries. Hence, it has positive determinant.

With some sign restrictions, let us see some relations ofβ-matrices with linear complementarity problems.
Let us recall that, given an n × n real matrix A and q ∈ Rn, the linear complementarity problem, denoted by
LCP(A, q) consists of finding, if possible, vectors x ∈ Rn satisfying

Ax + q ≥ 0, x ≥ 0, xT(Ax + q) = 0,

where the inequalities are entry wise. It is well known that A is a P-matrix if and only if the LCP(A, q) has
a unique solution x∗ for any q ∈ Rn. Let us also recall that an n × n real matrix A is called a Q-matrix if
LCP(A, q) has a solution for any q ∈ Rn (see [1]).

Proposition 2.4. Let A = (ai j)1≤i, j≤n be a β-matrix. Then the following properties hold.

i) If A is a Z-matrix, then it is strictly diagonally dominant by columns with positive diagonal entries and so it is
a P-matrix.

ii) If A is nonnegative, then it has positive diagonal entries and so it is a Q-matrix.

Proof. (i) If a Z-matrix is also a β-matrix, then it is strictly diagonally dominant by columns with positive
diagonal entries because it has positive column sums. It is well known that a strictly diagonally dominant
matrix with positive diagonal entries is a P-matrix.

(ii) If A is a nonnegative β-matrix, all entries ãi j are also nonnegative and then (1) and (2) imply that
ãii > si ≥ 0 for all i. Then the positivity of all column sums Ci also implies that A has positive diagonal
entries. Now the fact that A is a Q-matrix follows from Theorem (3.10) of Chapter 10 of [1] because it is a
nonnegative matrix with positive diagonal entries.

However, as the following example shows, not all β-matrices are Q-matrices.

Example 2.5. Let us consider the matrix

A =

10 3 3
−4 1 −2
−1 −1 1

 .
We can see that A is a β-matrix since it has positive column sums and Ã satisfies (2). However, this example does not
satisfy the hypotheses of Proposition 2.4 i) or ii). In fact, we now show that it is not a Q-matrix because the LCP(A, q)
does not have a solution for q = (0,−1,−1)T. A feasible solution x = (x1, x2, x3) should verify that Ax + q ≥ 0, i.e.,


10x1 + 3x3 + 3x3 ≥ 0,
−1 − 4x1 + x2 − 2x3 ≥ 0,
−1 − x1 − x2 + x3 ≥ 0,

with x1, x2, x3 ≥ 0. The first inequality holds for any nonnegative value of the variables. However, the second and
third inequalities are incompatible. If −1 − 4x1 + x2 − 2x3 and −1 − x1 − x2 + x3 are nonnegative, its sum should be
also nonnegative. But −2 − 5x1 − x3 ≱ 0 for any x1, x3 ≥ 0, and hence, the LCP(A, q) does not have a solution and A
is not a Q-matrix.

Observe that the matrix A of Example 2.5 also shows that the transpose of a β-matrix is not necessarily
a β-matrix because AT has columns with negative sums.

The following remark shows that, for matrices A stochastic by columns (that is, A ≥ 0 and ATe = e), the
concept of β-matrix is weaker than strict diagonal dominance by rows.
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Remark 2.6. Let n > 2 and let A = (ai j)1≤i, j≤n be a matrix stochastic by columns. Then C j = 1 for all j = 1, . . . ,n
and so ãi j = ai j for all i, j. So, a matrix A stochastic by columns is a β-matrix if and only if the following condition
holds:

aii > s′i >

(∑
k,i aik

)
− aii

n − 2
, s′i := min

1≤ j≤n
{ai j}, i = 1, . . . ,n. (4)

Observe also that, if a matrix stochastic by columns A is also strictly diagonally dominant by rows, then A is a
β-matrix because (4) clearly holds:

aii > s′i ≥ 0 >

(∑
k,i aik

)
− aii

n − 2
, i = 1, . . . ,n.

The next remark shows that, in general, we cannot replace in Theorem 2.2 the condition (2) of Definition
2.1 by the condition (4).

Remark 2.7. A matrix A = (ai j)1≤i, j≤n with positive column sums and satisfying (4) can have nonpositive determi-
nant. In fact, take ε > 0 and

A =

2 + ε 2 0
2 3 + ε 3
0 1 2 + ε

 .
Then det A = (2 + ε)(ε2 + 5ε − 1) < 0 for ε small enough. However, A has positive column sums and satisfies (4):
2 + ε > 0 > −ε, 3 + ε > 2 > 2 − ε and 2 + ε > 0 > −1 − ε.

The following example shows that, in spite of having positive determinant, nonnegative β-matrices are
not necessarily P-matrices.

Example 2.8. Let us consider the following matrix

C :=


3 + ε 2 0 1

0 2 + ε 2 0
2 2 3 + ε 3
1 0 1 2 + ε

 . (5)

We can see that C is a β-matrix. The column sums are positive, C j = 6 + ε > 0 for j = 1, . . . , 4, and the matrix C̃
given by Definition 2.1 satisfies (2) for i = 1, 2, 3, 4. However, C is not a P-matrix. As it can be seen in Remark 2.7,
the principal minor using indices 2, 3 and 4 is given by det A = (2 + ε)(ε2 + 5ε − 1) and it takes negative values for
ε small enough.

Observe that the previous example also shows that the property of being a β-matrix is not inherited by
principal submatrices. In fact, C is a β-matrix and its principal submatrix A is not a β-matrix (take into
account Remark 2.7 and Theorem 2.2).

The following examples show nonsymmetric and symmetric β-matrices that are far from being strictly
diagonally dominant matrices and from being B-matrices, which are other classes of matrices with positive
determinant.



H. Orera, J.M. Peña / Filomat 36:13 (2022), 4331–4338 4335

Example 2.9. Let us first consider the n × n (n > 2) matrix A:

A =



n + ε 1 · · · · · · · · · 1 n

n
. . .

. . . 1

1
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . . 1
1 · · · · · · · · · 1 n n + ε


, ε > 0.

Observe that A is not strictly diagonally dominant and that it is not a B-matrix because n > 3n−2+ε
n . The matrix A

has positive column sums and, if we construct the matrix Ã given by Definition 2.1, we can check that (2) holds:

n + ε
3n − 2 + ε

>
1

3n − 2 + ε
>

2(n − 1) − (n + ε)
(3n − 2 + ε)(n − 2)

=
n − 2 + ε

(3n − 2 + ε)(n − 2)
.

Then A is a β-matrix and, by Theorem 2.2, det A > 0.
The next matrix B is very close to the previous matrix A, although B is symmetric. The n × n (n > 2 even)

symmetric matrix B has also n + ε on the main diagonal, it has n, 1,n, 1, . . . ,n, 1,n on the line below (and above)
the main diagonal, and 1’s elsewhere. Observe again that B is not strictly diagonally dominant and that it is not a
B-matrix because n > 3n−2+ε

n . The matrix B also satisfies Definition 2.1, and so B is also a β-matrix and, by Theorem
2.2, det B > 0.

3. β-tensors

A real mth order n-dimensional tensor A = (ai1···im ) ∈ R[m,n] is a multi-array of real entries ai1···im ∈ R,
where ik ∈ N := {1, . . . ,n} for k = 1, . . . ,m. We call the set of entries aii2···im the i-th row ofA for i, i2, . . . , im ∈ N.
A tensorA is called diagonally dominant if

|ai···i| ≥

n∑
i2,...,im,(i,...,i)

|aii2···im |, i ∈ N. (6)

If (6) holds strictly, thenA is called strictly diagonally dominant.
We say that A = (ai1···im ) ∈ R[m,n] is nonnegative if ai1···im ≥ 0 for all i1, . . . , im ∈ N and that A is a Z-tensor

if all its off-diagonal entries are nonpositive. Let us now introduce the important concept of P-tensor and
some previous notations. Let us first recall that, given an m-th order tensorA = (ai1···im ) ∈ R[m,n] and x ∈ Rn,
thenAxm−1

∈ Rn is given by

(
Axm−1

)
i

:=
n∑

i2,...,im=1

aii2···im xi2 · · · xim , for each i = 1, . . . ,n.

Given an index ik ∈ N with k ∈ {1, . . . ,m}, let us define the ikth mode-k sum ofA (see [2]), r(A, ik, k), as

r(A, ik, k) =
n∑

i1,...,ik−1,ik+1,...,im=1

ai1···ik ···im . (7)

This sum will play the role of the row sums of the matrix whenever k = 1 and the role of the column
sums for a given j ∈ {2, . . . ,m}. We are also interested in the case where the tensor is diagonally dominant
with respect to this index j. In this case, we say that the tensorA is strictly k-diagonally dominant if
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|ai···i| >
n∑

i1,...,ik−1,ik+1,...,im,(i,...,i)

|ai1···i···im |, i ∈ N. (8)

Definition 3.1. (see [3] or page 192 of [9]) A tensorA ∈ R[m,n] is called a P-tensor if for each nonzero x ∈ Rn there
exists an index i ∈ N such that

xm−1
i (Axm−1)i > 0. (9)

For the case of tensors of order 2, a P-tensor coincides with a P-matrix (see page 338 of [3]). We now consider
an extension of the definition of β-matrices to the higher order case. This definition will give us a sufficient
condition to identify nonnegative odd order P-tensors.

Definition 3.2. Given m > 2 and k ∈ {2, . . . ,m}, letA = (ai1···im ) ∈ R[m,n] be a real tensor such that for all j = 1, . . . ,n

C j := r(A, j, k) =
n∑

i1,...,ik−1,ik+1,...,im=1

ai1··· j···im , 0, (10)

let ãii2···im =
aii2 ···im

Ci2 ···Cim
for all i, i2, . . . , im and

si = min
i2,...,im

{ãii2···im } f or i = 1, . . . ,n. (11)

We say thatA is a β-tensor (for the index k) if, for all i = 1, . . . ,n, Ci > 0 and

ãi···i > si >

∑
i2,...,im,(i,...,i) ãii2···im − ãi···i

nm−1 − 2
. (12)

As it has been the case with structured matrices and the linear complementarity problem, structured
tensors and its application to the tensor complementarity problem have received a lot of attention recently.
Given a tensor A = (ai1···im ) ∈ R[m,n] and a vector q ∈ Rn, the tensor complementarity problem, denoted by
TCP(A,q), consists of finding a vector x ∈ Rn such that

x ≥ 0, Axm−1 + q ≥ 0, xT(Axm−1 + q) = 0.

We say thatA is a Q-tensor if the TCP(A,q) has a solution for all q ∈ Rn.

Proposition 3.3. LetA be a β-tensor for an index k ∈ {2, . . . ,m}. Then the following properties hold:

i) IfA is a Z-tensor, then it is strictly k-diagonally dominant with positive diagonal entries.
ii) IfA is nonnegative, then it has positive diagonal entries and so it is a Q-tensor.

Proof. i) If a β-tensor is also a Z-tensor, it is strictly k-diagonally dominant with positive diagonal entries
because its mode-k sums (10) are positive.

ii) If A is a nonnegative β-tensor, formula (11) implies that ãi···i > si ≥ 0 for all i ∈ N. Moreover, since
its mode-k sums (10) are positive, A has positive diagonal entries. Hence, A is a nonnegative tensor with
positive diagonal entries and it is a Q-tensor by Theorem 3.2 of [5].

Let us now introduce the Yang-Yang transformation, first used in [10]. Given n nonzero real numbers
d1, . . . , dn, we define the tensor

T = (ti1···im ) = Y(A, d1, . . . , dn),

whose entries are given by

ti1···im = (di1 )−(m−1)di2 · · · dim ai1···im



H. Orera, J.M. Peña / Filomat 36:13 (2022), 4331–4338 4337

for any i j ∈ N, j = 1, . . . ,m. Given a β-tensorA, let us define

Â := Y(A, 1/C1, . . . , 1/Cn), (13)

where C j are the sums defined in (10) for j = 1, . . . ,n. We are going to see that, whenA is a β-tensor, Â can
be decomposed as the sum of a strictly diagonally dominant tensor and a rank-one tensor.

Proposition 3.4. LetA = (ai1···im ) ∈ R[m,n] be a β-tensor and let Â be the tensor given by (13). Then

Â = B + C, (14)

where B is a strictly diagonally dominant tensor with positive diagonal entries and C is a rank-one tensor.

Proof. Let us first define the tensor C := (ci1···im ) such that ci1···im = si1 Cm−1
i1

, where si1 and Ci1 are given by
formulas (10) and (11). Then we consider the tensor B := A− C. Let us check that B is strictly diagonally
dominant with positive diagonal entries. For i = 1, . . . ,n,

n∑
i2,...,im,(i,...,i)

|ãii2···im Cm−1
i − siCm−1

i | =

n∑
i2,...,im,(i,...,i)

(ãii2···im − si)Cm−1
i .

Then we need to prove the following inequality

n∑
i2,...,im,(i,...,i)

(ãii2···im − si)Cm−1
i < ai···i − siCm−1

i , (15)

or analogously,

n∑
i2,...,im,(i,...,i)

(ãii2···im − si) < ãi···i − si.

After some computations we can rewrite (15) as

n∑
i2,...,im,(i,...,i)

ãii2···im − (nm−1
− 2)si < ãi···i,

which holds because of (12). Hence, B is strictly diagonally dominant with positive diagonal entries.

Now we analyze the relationship of nonnegative β-tensors with P-tensors. By Example 2.8 we know that
β-tensors of even order are not necessarily P-tensors. As a consequence of the decomposition (14), in the
proof of the following result we are going to deduce that Â is a P-tensor whenever it is a nonnegative tensor
of odd order. Then, because of the nice properties of the Yang-Yang transformation, we can conclude that
A is also a P-tensor, and so, nonnegative β-tensors of odd order are always P-tensors.

Theorem 3.5. LetA = (ai1···im ) ∈ R[m,n] be a nonnegative β-tensor of odd order m. ThenA is a P-tensor.

Proof. Given x , 0 ∈ Rn, let us consider the decomposition (14) of Â. We have that si ≥ 0 and that (Cxm−1)i =
siCm−1

i (x1 + . . . + xn)m−1
≥ 0 for all i ∈ N because A is nonnegative. Hence, xm−1

i siCm−1
i (x1 + . . . + xn)m−1

≥ 0
for i ∈ N. Since B is a strictly diagonally dominant tensor with positive diagonal entries, it is a P-tensor
by Corollary 3.2 of [3]. So there exists an index i ∈ N such that xm−1

i (Bxm−1)i > 0. Hence, for that index we
deduce that

xm−1
i (Âxm−1)i = xm−1

i (Bxm−1)i + xm−1
i (Cxm−1)i > 0,

and so Â is a P-tensor.
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Given a nonzero vector x, let us now check that A is a P-tensor. Given an index j ∈ N, because of the
relationship betweenA and Âwe see that

(Axm−1) j =

n∑
i2,...,im=1

a ji2···im xi2 · · · xim

=
1

C(m−1)
j

n∑
i2,...,im=1

C(m−1)
j

a ji2···im

Ci2 · · ·Cim
Ci2 xi2 · · ·Cim xim

=
1

C(m−1)
j

(Âym−1) j,

where y = (C1x1, . . . ,Cnxn). We have that y , 0 because C j > 0 for all j ∈ N. Then, since Â is a P-tensor,
we deduce that there exists and index i ∈ N such that ym−1

i (Âym−1)i > 0. Hence, using again that Ci > 0 we
conclude that

ym−1
i

Cm−1
i

·
1

Cm−1
i

(Âym−1)i = xm−1
i (Axm−1)i > 0,

and so, thatA is a P-tensor.
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