Published by Faculty of Sciences and Mathematics, University of Niš, Serbia
Available at: http://www.pmf.ni.ac.rs/filomat

β-matrices and β-tensors

H. Orera ${ }^{\text {a }}$, J. M. Peña ${ }^{\text {a }}$
${ }^{a}$ Departamento de Matemática Aplicada/IUMA, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain

Abstract

In this manuscript we introduce the class of β-matrices, which gives a new sufficient condition for the positivity of the determinant. However, we show that nonnegative β-matrices are not necessarily P-matrices. For column stochastic matrices, the property of being a β-matrix is weaker than strict diagonal dominance. We extend β-matrices to tensors and call them β-tensors. Although they are not in general P-tensors, we prove that nonnegative β-tensors of odd order are P-tensors

1. Introduction

By the Levy-Desplanques theorem (see Corollary 5.6 .17 of [4]), strictly diagonally dominant matrices with positive diagonal entries provide an example of matrices with positive determinant. In fact, they are also P-matrices, that is, all their principal minors are positive. A B-matrix is a matrix with positive row sums and such that each off-diagonal entry is less than the corresponding row sum. B-matrices form another class of P-matrices (see [8]) that is, in general, far from diagonally dominant matrices. In this paper, we introduce a new class of matrices with positive determinant (called β-matrices) that is also, in general, far from diagonal dominance. We call them β-matrices and we also show that they are not necessarily P-matrices. For column stochastic matrices, the property of being a β-matrix is weaker than strict diagonal dominance.

Strictly diagonally dominant matrices and B-matrices and their generalizations (see [6]) have been extended to tensors (see [7], [9]). We also extend β-matrices to β-tensors and we prove that nonnegative β-tensors of odd order are P-tensors.

The paper is organized as follows. Section 2 introduces β-matrices with their properties, examples and counterexamples. In particular, we prove that a β-matrix has always a positive determinant. Their relationship with other classes of matrices is also analyzed. Section 3 is devoted to β-tensors. We analyze their relationship with other classes of tensors and some associated decompositions. We prove that nonnegative β-tensors of odd order are P-tensors.

We finish the introduction with some basic definitions and notations. A real matrix $A=\left(a_{i j}\right)_{1 \leq i, j \leq n}$ is a Z-matrix if all its off-diagonal entries are nonpositive, i.e., $a_{i j} \leq 0$ for $i \neq j$. If all its entries are nonnegative, then A is called nonnegative and it is denoted by $A \geq 0$. We say that a matrix $A=\left(a_{i j}\right)_{1 \leq i, j \leq n}$ is strictly diagonally dominant (by rows) if $\left|a_{i i}\right|>\sum_{i \neq j}\left|a_{i j}\right|$ and that it is diagonally dominant (by rows) if $\left|a_{i i}\right| \geq \sum_{i \neq j}\left|a_{i j}\right|$.

[^0]Finally, we say that A is (strictly) diagonally dominant by columns if A^{T} is (strictly) diagonally dominant by rows.

2. β-matrices

We start this section by introducing the class of β-matrices.
Definition 2.1. Let $A=\left(a_{i j}\right)_{1 \leq i, j \leq n}$ be a square real matrix with $n>2$ such that, for all $j=1, \ldots, n, C_{j}:=\sum_{i=1}^{n} a_{i j} \neq$ 0 , and let $\tilde{a}_{i j}:=\frac{a_{i j}}{C_{j}}$ for all i, j and

$$
\begin{equation*}
s_{i}:=\min _{1 \leq j \leq n}\left\{\tilde{a}_{i j}\right\}, \quad i=1, \ldots, n \tag{1}
\end{equation*}
$$

We say that A is a β-matrix if, for all $j=1, \ldots, n, C_{j}>0$ and

$$
\begin{equation*}
\tilde{a}_{i i}>s_{i}>\frac{\left(\sum_{k \neq i} \tilde{a}_{i k}\right)-\tilde{a}_{i i}}{n-2}, \quad i=1, \ldots, n \tag{2}
\end{equation*}
$$

The following theorem shows that a β-matrix has always positive determinant.
Theorem 2.2. If A is a β-matrix, then $\operatorname{det} A>0$.
Proof. If we define the matrix $\tilde{A}=\left(\tilde{a}_{i j}\right)_{1 \leq i, j \leq n}$ and the diagonal matrix $D:=\operatorname{diag}\left\{C_{1}, \ldots, C_{n}\right\}$, observe that $A=\tilde{A} D$ and so it is sufficient to prove that $\operatorname{det} \tilde{A}>0$ because D has positive diagonal entries. The matrix \tilde{A} satisfies $\tilde{A}^{T} e=e$, where $e=(1, \ldots, 1)^{T}$. Therefore, 1 is an eigenvalue of \tilde{A}. Since A is real, its complex non-real eigenvalues occur in conjugate pairs, whose product is positive. Since $\operatorname{det} \tilde{A}$ is the product of its complex non-real eigenvalues and the real ones, it is sufficient to see that, if $\lambda \neq 1$ is a real eigenvalue of \tilde{A}, then $\lambda>0$.

If $s=\left(s_{1}, \ldots, s_{n}\right)^{T}$, we can write

$$
\begin{equation*}
\tilde{A}=\tilde{A}^{+}+C \tag{3}
\end{equation*}
$$

where $\tilde{A}^{+}=\left(\tilde{a}_{i j}-s_{i}\right)_{1 \leq i, j \leq n}$ for all i, j and $C:=s e^{T}$. By (2), \tilde{A}^{+}has positive diagonal entries and, for all $i=1, \ldots, n$,

$$
\sum_{k \neq i}\left(\tilde{a}_{i k}-s_{i}\right)<\tilde{a}_{i i}-s_{i}
$$

because

$$
\sum_{k \neq i} \tilde{a}_{i k}-(n-2) s_{i}<\tilde{a}_{i i} .
$$

Thus, \tilde{A}^{+}is a strictly diagonally dominant matrix with positive diagonal entries. Then, by applying the Gerschgorin circles by rows to \tilde{A}^{+}, we deduce that the real eigenvalues of \tilde{A}^{+}are positive.

Since $\lambda(\neq 1)$ is a real eigenvalue of \tilde{A}, there exists an eigenvector $x(\neq 0)$ such that $\tilde{A} x=\lambda x$. Trasposing both parts of this equality, we have that $\lambda x^{T}=x^{T} \tilde{A}^{T}$ and multiplying by e, we get

$$
\lambda x^{T} e=x^{T} \tilde{A}^{T} e=x^{T} e
$$

and so, $(\lambda-1)\left(x^{T} e\right)=0$, which implies that $x^{T} e=0$ and so $e^{T} x=0$. Hence, by (3), we deduce that

$$
\tilde{A}^{+} x=(\tilde{A}-C) x=\tilde{A} x-s e^{T} x=\tilde{A} x=\lambda x
$$

and λ is also an eigenvalue of \tilde{A}^{+}, and so positive, which proves the result.

Remark 2.3. Let us notice that Theorem 2.2 still holds if we extend Definition 2.1 to the case $n=2$ by modifying condition (2). In fact, for $n=2$, (2) can be replaced by $\tilde{a}_{i i}>s_{i}$ for $i=1,2$. Following the argumentation given in the proof of Theorem 2.2, we see that, when $n=2$, this new condition implies that the matrix \tilde{A}^{+}in (3) is a diagonal matrix with positive diagonal entries. Hence, it has positive determinant.

With some sign restrictions, let us see some relations of β-matrices with linear complementarity problems. Let us recall that, given an $n \times n$ real matrix A and $q \in \mathbf{R}^{n}$, the linear complementarity problem, denoted by $\operatorname{LCP}(A, q)$ consists of finding, if possible, vectors $x \in \mathbf{R}^{n}$ satisfying

$$
A x+q \geq 0, \quad x \geq 0, \quad x^{T}(A x+q)=0
$$

where the inequalities are entry wise. It is well known that A is a P-matrix if and only if the $\operatorname{LCP}(A, q)$ has a unique solution x^{*} for any $q \in \mathbf{R}^{n}$. Let us also recall that an $n \times n$ real matrix A is called a Q-matrix if $\operatorname{LCP}(A, q)$ has a solution for any $q \in \mathbf{R}^{n}$ (see [1]).
Proposition 2.4. Let $A=\left(a_{i j}\right)_{1 \leq i, j \leq n}$ be a β-matrix. Then the following properties hold.
i) If A is a Z-matrix, then it is strictly diagonally dominant by columns with positive diagonal entries and so it is a P-matrix.
ii) If A is nonnegative, then it has positive diagonal entries and so it is a Q-matrix.

Proof. (i) If a Z-matrix is also a β-matrix, then it is strictly diagonally dominant by columns with positive diagonal entries because it has positive column sums. It is well known that a strictly diagonally dominant matrix with positive diagonal entries is a P-matrix.
(ii) If A is a nonnegative β-matrix, all entries $\tilde{a}_{i j}$ are also nonnegative and then (1) and (2) imply that $\tilde{a}_{i i}>s_{i} \geq 0$ for all i. Then the positivity of all column sums C_{i} also implies that A has positive diagonal entries. Now the fact that A is a Q-matrix follows from Theorem (3.10) of Chapter 10 of [1] because it is a nonnegative matrix with positive diagonal entries.

However, as the following example shows, not all β-matrices are Q-matrices.
Example 2.5. Let us consider the matrix

$$
A=\left(\begin{array}{ccc}
10 & 3 & 3 \\
-4 & 1 & -2 \\
-1 & -1 & 1
\end{array}\right)
$$

We can see that A is a β-matrix since it has positive column sums and \tilde{A} satisfies (2). However, this example does not satisfy the hypotheses of Proposition 2.4 i) or $i i)$. In fact, we now show that it is not a Q-matrix because the $\operatorname{LCP}(A, q)$ does not have a solution for $q=(0,-1,-1)^{T}$. A feasible solution $x=\left(x_{1}, x_{2}, x_{3}\right)$ should verify that $A x+q \geq 0$, i.e.,

$$
\left\{\begin{array}{c}
10 x_{1}+3 x_{3}+3 x_{3} \geq 0 \\
-1-4 x_{1}+x_{2}-2 x_{3} \geq 0 \\
-1-x_{1}-x_{2}+x_{3} \geq 0
\end{array}\right.
$$

with $x_{1}, x_{2}, x_{3} \geq 0$. The first inequality holds for any nonnegative value of the variables. However, the second and third inequalities are incompatible. If $-1-4 x_{1}+x_{2}-2 x_{3}$ and $-1-x_{1}-x_{2}+x_{3}$ are nonnegative, its sum should be also nonnegative. But $-2-5 x_{1}-x_{3} \nsupseteq 0$ for any $x_{1}, x_{3} \geq 0$, and hence, the $\operatorname{LCP}(A, q)$ does not have a solution and A is not a Q-matrix.

Observe that the matrix A of Example 2.5 also shows that the transpose of a β-matrix is not necessarily a β-matrix because A^{T} has columns with negative sums.

The following remark shows that, for matrices A stochastic by columns (that is, $A \geq 0$ and $A^{T} e=e$), the concept of β-matrix is weaker than strict diagonal dominance by rows.

Remark 2.6. Let $n>2$ and let $A=\left(a_{i j}\right)_{1 \leq i, j \leq n}$ be a matrix stochastic by columns. Then $C_{j}=1$ for all $j=1, \ldots, n$ and so $\tilde{a}_{i j}=a_{i j}$ for all i, j. So, a matrix A stochastic by columns is a β-matrix if and only if the following condition holds:

$$
\begin{equation*}
a_{i i}>s_{i}^{\prime}>\frac{\left(\sum_{k \neq i} a_{i k}\right)-a_{i i}}{n-2}, \quad s_{i}^{\prime}:=\min _{1 \leq j \leq n}\left\{a_{i j}\right\}, \quad i=1, \ldots, n . \tag{4}
\end{equation*}
$$

Observe also that, if a matrix stochastic by columns A is also strictly diagonally dominant by rows, then A is a β-matrix because (4) clearly holds:

$$
a_{i i}>s_{i}^{\prime} \geq 0>\frac{\left(\sum_{k \neq i} a_{i k}\right)-a_{i i}}{n-2}, \quad i=1, \ldots, n
$$

The next remark shows that, in general, we cannot replace in Theorem 2.2 the condition (2) of Definition 2.1 by the condition (4).

Remark 2.7. A matrix $A=\left(a_{i j}\right)_{1 \leq i, j \leq n}$ with positive column sums and satisfying (4) can have nonpositive determinant. In fact, take $\varepsilon>0$ and

$$
A=\left(\begin{array}{ccc}
2+\varepsilon & 2 & 0 \\
2 & 3+\varepsilon & 3 \\
0 & 1 & 2+\varepsilon
\end{array}\right)
$$

Then $\operatorname{det} A=(2+\varepsilon)\left(\varepsilon^{2}+5 \varepsilon-1\right)<0$ for ε small enough. However, A has positive column sums and satisfies (4): $2+\varepsilon>0>-\varepsilon, 3+\varepsilon>2>2-\varepsilon$ and $2+\varepsilon>0>-1-\varepsilon$.

The following example shows that, in spite of having positive determinant, nonnegative β-matrices are not necessarily P-matrices.

Example 2.8. Let us consider the following matrix

$$
C:=\left(\begin{array}{cccc}
3+\varepsilon & 2 & 0 & 1 \tag{5}\\
0 & 2+\varepsilon & 2 & 0 \\
2 & 2 & 3+\varepsilon & 3 \\
1 & 0 & 1 & 2+\varepsilon
\end{array}\right)
$$

We can see that C is a β-matrix. The column sums are positive, $C_{j}=6+\varepsilon>0$ for $j=1, \ldots, 4$, and the matrix \tilde{C} given by Definition 2.1 satisfies (2) for $i=1,2,3,4$. However, C is not a P-matrix. As it can be seen in Remark 2.7, the principal minor using indices 2,3 and 4 is given by $\operatorname{det} A=(2+\varepsilon)\left(\varepsilon^{2}+5 \varepsilon-1\right)$ and it takes negative values for ε small enough.

Observe that the previous example also shows that the property of being a β-matrix is not inherited by principal submatrices. In fact, C is a β-matrix and its principal submatrix A is not a β-matrix (take into account Remark 2.7 and Theorem 2.2).

The following examples show nonsymmetric and symmetric β-matrices that are far from being strictly diagonally dominant matrices and from being B-matrices, which are other classes of matrices with positive determinant.

Example 2.9. Let us first consider the $n \times n(n>2)$ matrix A :

$$
A=\left(\begin{array}{ccccccc}
n+\varepsilon & 1 & \cdots & \cdots & \cdots & 1 & n \\
n & \ddots & \ddots & & & & 1 \\
1 & \ddots & \ddots & \ddots & & & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & & \vdots \\
\vdots & & \ddots & \ddots & \ddots & \ddots & \vdots \\
\vdots & & & \ddots & \ddots & \ddots & 1 \\
1 & \cdots & \cdots & \cdots & 1 & n & n+\varepsilon
\end{array}\right), \varepsilon>0 .
$$

Observe that A is not strictly diagonally dominant and that it is not a B-matrix because $n>\frac{3 n-2+\varepsilon}{n}$. The matrix A has positive column sums and, if we construct the matrix \tilde{A} given by Definition 2.1, we can check that (2) holds:

$$
\frac{n+\varepsilon}{3 n-2+\varepsilon}>\frac{1}{3 n-2+\varepsilon}>\frac{2(n-1)-(n+\varepsilon)}{(3 n-2+\varepsilon)(n-2)}=\frac{n-2+\varepsilon}{(3 n-2+\varepsilon)(n-2)} .
$$

Then A is a β-matrix and, by Theorem 2.2, $\operatorname{det} A>0$.
The next matrix B is very close to the previous matrix A, although B is symmetric. The $n \times n$ ($n>2$ even) symmetric matrix B has also $n+\varepsilon$ on the main diagonal, it has $n, 1, n, 1, \ldots, n, 1, n$ on the line below (and above) the main diagonal, and 1's elsewhere. Observe again that B is not strictly diagonally dominant and that it is not a B-matrix because $n>\frac{3 n-2+\varepsilon}{n}$. The matrix B also satisfies Definition 2.1, and so B is also a β-matrix and, by Theorem 2.2 , $\operatorname{det} B>0$.

3. β-tensors

A real m th order n-dimensional tensor $\mathcal{A}=\left(a_{i_{1} \cdots i_{m}}\right) \in \mathbb{R}^{[m, n]}$ is a multi-array of real entries $a_{i_{1} \cdots i_{m}} \in \mathbb{R}$, where $i_{k} \in N:=\{1, \ldots, n\}$ for $k=1, \ldots, m$. We call the set of entries $a_{i i_{2} \cdots i_{m}}$ the i-th row of \mathcal{A} for $i, i_{2}, \ldots, i_{m} \in N$. A tensor \mathcal{A} is called diagonally dominant if

$$
\begin{equation*}
\left|a_{i \cdots i}\right| \geq \sum_{i_{2}, \ldots, i_{m} \neq(i, \ldots, i)}^{n}\left|a_{i i_{2} \cdots i_{m}}\right|, i \in N \tag{6}
\end{equation*}
$$

If (6) holds strictly, then \mathcal{A} is called strictly diagonally dominant.
We say that $\mathcal{A}=\left(a_{i_{1} \cdots i_{m}}\right) \in \mathbb{R}^{[m, n]}$ is nonnegative if $a_{i_{1} \cdots i_{m}} \geq 0$ for all $i_{1}, \ldots, i_{m} \in N$ and that \mathcal{A} is a Z-tensor if all its off-diagonal entries are nonpositive. Let us now introduce the important concept of P-tensor and some previous notations. Let us first recall that, given an m-th order tensor $\mathcal{A}=\left(a_{i_{1} \ldots i_{m}}\right) \in \mathbb{R}^{[m, n]}$ and $x \in \mathbb{R}^{n}$, then $\mathcal{A} x^{m-1} \in \mathbb{R}^{n}$ is given by

$$
\left(\mathcal{A} x^{m-1}\right)_{i}:=\sum_{i_{2}, \ldots, i_{m}=1}^{n} a_{i i_{2} \cdots i_{m}} x_{i_{2}} \cdots x_{i_{m}}, \quad \text { for each } i=1, \ldots, n
$$

Given an index $i_{k} \in N$ with $k \in\{1, \ldots, m\}$, let us define the i_{k} th mode- k sum of \mathcal{A} (see [2]), $r\left(\mathcal{A}, i_{k}, k\right)$, as

$$
\begin{equation*}
r\left(\mathcal{A}, i_{k}, k\right)=\sum_{i_{1}, \ldots, i_{k-1}, i_{k+1}, \ldots, i_{m}=1}^{n} a_{i_{1} \cdots i_{k} \cdots i_{m}} . \tag{7}
\end{equation*}
$$

This sum will play the role of the row sums of the matrix whenever $k=1$ and the role of the column sums for a given $j \in\{2, \ldots, m\}$. We are also interested in the case where the tensor is diagonally dominant with respect to this index j. In this case, we say that the tensor \mathcal{A} is strictly k-diagonally dominant if

$$
\begin{equation*}
\left|a_{i \cdots i}\right|>\sum_{i_{1}, \ldots, i_{k-1}, i_{k+1} \ldots, i_{m} \neq(i, \ldots, i)}^{n}\left|a_{i_{1} \cdots i \cdots i_{m}}\right|, i \in N \tag{8}
\end{equation*}
$$

Definition 3.1. (see [3] or page 192 of [9]) A tensor $\mathcal{A} \in \mathbb{R}^{[m, n]}$ is called a P-tensor if for each nonzero $x \in \mathbb{R}^{n}$ there exists an index $i \in N$ such that

$$
\begin{equation*}
x_{i}^{m-1}\left(\mathcal{A} x^{m-1}\right)_{i}>0 . \tag{9}
\end{equation*}
$$

For the case of tensors of order 2, a P-tensor coincides with a P-matrix (see page 338 of [3]). We now consider an extension of the definition of β-matrices to the higher order case. This definition will give us a sufficient condition to identify nonnegative odd order P-tensors.

Definition 3.2. Given $m>2$ and $k \in\{2, \ldots, m\}$, let $\mathcal{A}=\left(a_{i_{1} \cdots i_{m}}\right) \in \mathbb{R}^{[m, n]}$ be a real tensor such that for all $j=1, \ldots, n$

$$
\begin{align*}
C_{j} & :=r(\mathcal{A}, j, k)=\sum_{i_{1}, \ldots, i_{k-1}, i_{k+1}, \ldots, i_{m}=1}^{n} a_{i_{1} \ldots j \ldots i_{m}} \neq 0, \tag{10}\\
\text { let } \tilde{a}_{i i_{2} \cdots i_{m}} & =\frac{a_{i_{i} \cdots i_{m}}}{C_{i_{2}} \cdots c_{i m}} \text { for all } i, i_{2}, \ldots, i_{m} \text { and } \\
s_{i} & =\min _{i_{2}, \ldots, i_{m}}\left\{\tilde{a}_{i_{2} \cdots i_{2}}\right\} \text { for } i=1, \ldots, n . \tag{11}
\end{align*}
$$

We say that \mathcal{A} is a β-tensor (for the index k) if, for all $i=1, \ldots, n, C_{i}>0$ and

$$
\begin{equation*}
\tilde{a}_{i \cdots i}>s_{i}>\frac{\sum_{i_{2}, \ldots, i_{m} \neq(i, \ldots, i)} \tilde{a}_{i i_{2} \cdots i_{m}}-\tilde{a}_{i \cdots i}}{n^{m-1}-2} \tag{12}
\end{equation*}
$$

As it has been the case with structured matrices and the linear complementarity problem, structured tensors and its application to the tensor complementarity problem have received a lot of attention recently. Given a tensor $\mathcal{A}=\left(a_{i_{1} \cdots i_{m}}\right) \in \mathbb{R}^{[m, n]}$ and a vector $q \in \mathbf{R}^{n}$, the tensor complementarity problem, denoted by $\operatorname{TCP}(\mathcal{A}, q)$, consists of finding a vector $x \in \mathbf{R}^{n}$ such that

$$
x \geq 0, \mathcal{A} x^{m-1}+q \geq 0, \quad x^{T}\left(\mathcal{A} x^{m-1}+q\right)=0
$$

We say that \mathcal{A} is a Q-tensor if the $\operatorname{TCP}(\mathcal{A}, q)$ has a solution for all $q \in \mathbf{R}^{n}$.
Proposition 3.3. Let \mathcal{A} be a β-tensor for an index $k \in\{2, \ldots, m\}$. Then the following properties hold:
i) If \mathcal{A} is a Z-tensor, then it is strictly k-diagonally dominant with positive diagonal entries.
ii) If \mathcal{A} is nonnegative, then it has positive diagonal entries and so it is a Q-tensor.

Proof. i) If a β-tensor is also a Z-tensor, it is strictly k-diagonally dominant with positive diagonal entries because its mode- k sums (10) are positive.
ii) If A is a nonnegative β-tensor, formula (11) implies that $\tilde{a}_{i \ldots i}>s_{i} \geq 0$ for all $i \in N$. Moreover, since its mode- k sums (10) are positive, \mathcal{A} has positive diagonal entries. Hence, \mathcal{A} is a nonnegative tensor with positive diagonal entries and it is a Q-tensor by Theorem 3.2 of [5].

Let us now introduce the Yang-Yang transformation, first used in [10]. Given n nonzero real numbers d_{1}, \ldots, d_{n}, we define the tensor

$$
\mathcal{T}=\left(t_{i_{1} \cdots i_{m}}\right)=Y\left(\mathcal{A}, d_{1}, \ldots, d_{n}\right)
$$

whose entries are given by

$$
t_{i_{1} \cdots i_{m}}=\left(d_{i_{1}}\right)^{-(m-1)} d_{i_{2}} \cdots d_{i_{m}} a_{i_{1} \cdots i_{m}}
$$

for any $i_{j} \in N, j=1, \ldots, m$. Given a β-tensor \mathcal{A}, let us define

$$
\begin{equation*}
\hat{\mathcal{A}}:=Y\left(\mathcal{A}, 1 / C_{1}, \ldots, 1 / C_{n}\right), \tag{13}
\end{equation*}
$$

where C_{j} are the sums defined in (10) for $j=1, \ldots, n$. We are going to see that, when \mathcal{A} is a β-tensor, $\hat{\mathcal{A}}$ can be decomposed as the sum of a strictly diagonally dominant tensor and a rank-one tensor.

Proposition 3.4. Let $\mathcal{A}=\left(a_{i_{1} \ldots i_{m}}\right) \in \mathbb{R}^{[m, n]}$ be a β-tensor and let $\hat{\mathcal{A}}$ be the tensor given by (13). Then

$$
\begin{equation*}
\hat{\mathcal{A}}=\mathcal{B}+C, \tag{14}
\end{equation*}
$$

where \mathcal{B} is a strictly diagonally dominant tensor with positive diagonal entries and C is a rank-one tensor.
Proof. Let us first define the tensor $C:=\left(c_{i_{1} \cdots i_{m}}\right)$ such that $c_{i_{1} \cdots i_{m}}=s_{i_{1}} C_{i_{1}}^{m-1}$, where $s_{i_{1}}$ and $C_{i_{1}}$ are given by formulas (10) and (11). Then we consider the tensor $\mathcal{B}:=\mathcal{A}-C$. Let us check that \mathcal{B} is strictly diagonally dominant with positive diagonal entries. For $i=1, \ldots, n$,

$$
\sum_{i_{2}, \ldots, i_{m} \neq\left(i_{, \ldots, i)}\right.}^{n}\left|\tilde{a}_{i i_{2} \cdots i_{m}} C_{i}^{m-1}-s_{i} C_{i}^{m-1}\right|=\sum_{i_{2}, \ldots, i_{m} \neq(i, \ldots, i)}^{n}\left(\tilde{a}_{i i_{2} \cdots i_{m}}-s_{i}\right) C_{i}^{m-1} .
$$

Then we need to prove the following inequality

$$
\begin{equation*}
\sum_{i_{2}, \ldots, i_{m} \neq(i, \ldots, i)}^{n}\left(\tilde{a}_{i i_{2} \cdots i_{m}}-s_{i}\right) C_{i}^{m-1}<a_{i \cdots i}-s_{i} C_{i}^{m-1} \tag{15}
\end{equation*}
$$

or analogously,

$$
\sum_{i_{2}, \ldots, i_{m} \neq(i, \ldots, i)}^{n}\left(\tilde{a}_{i_{i} \cdots i_{m}}-s_{i}\right)<\tilde{a}_{i \cdots i}-s_{i} .
$$

After some computations we can rewrite (15) as

$$
\sum_{i_{2}, \ldots, i_{m} \neq(i, \ldots, i)}^{n} \tilde{a}_{i i_{2} \cdots i_{m}}-\left(n^{m-1}-2\right) s_{i}<\tilde{a}_{i \cdots i},
$$

which holds because of (12). Hence, \mathcal{B} is strictly diagonally dominant with positive diagonal entries.
Now we analyze the relationship of nonnegative β-tensors with P-tensors. By Example 2.8 we know that β-tensors of even order are not necessarily P-tensors. As a consequence of the decomposition (14), in the proof of the following result we are going to deduce that $\hat{\mathcal{A}}$ is a P-tensor whenever it is a nonnegative tensor of odd order. Then, because of the nice properties of the Yang-Yang transformation, we can conclude that \mathcal{A} is also a P-tensor, and so, nonnegative β-tensors of odd order are always P-tensors.

Theorem 3.5. Let $\mathcal{A}=\left(a_{i_{1} \cdots i_{m}}\right) \in \mathbb{R}^{[m, n]}$ be a nonnegative β-tensor of odd order m. Then \mathcal{A} is a P-tensor.
Proof. Given $x \neq 0 \in \mathbb{R}^{n}$, let us consider the decomposition (14) of $\hat{\mathcal{A}}$. We have that $s_{i} \geq 0$ and that $\left(C x^{m-1}\right)_{i}=$ $s_{i} C_{i}^{m-1}\left(x_{1}+\ldots+x_{n}\right)^{m-1} \geq 0$ for all $i \in N$ because \mathcal{A} is nonnegative. Hence, $x_{i}^{m-1} s_{i} C_{i}^{m-1}\left(x_{1}+\ldots+x_{n}\right)^{m-1} \geq 0$ for $i \in N$. Since \mathcal{B} is a strictly diagonally dominant tensor with positive diagonal entries, it is a P-tensor by Corollary 3.2 of [3]. So there exists an index $i \in N$ such that $x_{i}^{m-1}\left(\mathcal{B} x^{m-1}\right)_{i}>0$. Hence, for that index we deduce that

$$
x_{i}^{m-1}\left(\hat{\mathcal{A}} x^{m-1}\right)_{i}=x_{i}^{m-1}\left(\mathcal{B} x^{m-1}\right)_{i}+x_{i}^{m-1}\left(C x^{m-1}\right)_{i}>0,
$$

and so $\hat{\mathcal{A}}$ is a P-tensor.

Given a nonzero vector x, let us now check that \mathcal{A} is a P-tensor. Given an index $j \in N$, because of the relationship between \mathcal{A} and $\hat{\mathcal{A}}$ we see that

$$
\begin{aligned}
\left(\mathcal{A} x^{m-1}\right)_{j} & =\sum_{i_{2}, \ldots, i_{m}=1}^{n} a_{j i_{2} \cdots i_{m}} x_{i_{2}} \cdots x_{i_{m}} \\
& =\frac{1}{C_{j}^{(m-1)}} \sum_{i_{2}, \ldots, i_{m}=1}^{n} C_{j}^{(m-1)} \frac{a_{j i_{2} \cdots i_{m}}}{C_{i_{2}} \cdots C_{i_{m}}} C_{i_{2}} x_{i_{2}} \cdots C_{i_{m}} x_{i_{m}} \\
& =\frac{1}{C_{j}^{(m-1)}}\left(\hat{\mathcal{A}} y^{m-1}\right)_{j},
\end{aligned}
$$

where $y=\left(C_{1} x_{1}, \ldots, C_{n} x_{n}\right)$. We have that $y \neq 0$ because $C_{j}>0$ for all $j \in N$. Then, since $\hat{\mathcal{A}}$ is a P-tensor, we deduce that there exists and index $i \in N$ such that $y_{i}^{m-1}\left(\hat{\mathcal{A}} y^{m-1}\right)_{i}>0$. Hence, using again that $C_{i}>0$ we conclude that

$$
\frac{y_{i}^{m-1}}{C_{i}^{m-1}} \cdot \frac{1}{C_{i}^{m-1}}\left(\hat{\mathcal{A}} y^{m-1}\right)_{i}=x_{i}^{m-1}\left(\mathcal{A} x^{m-1}\right)_{i}>0
$$

and so, that \mathcal{A} is a P-tensor.

References

[1] A. Berman, R. J. Plemmons, Nonnegative matrices in the mathematical sciences, Classics in Applied Mathematics 9, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1994.
[2] M. Che, C. Bu, L. Qi, Y. Wei, Nonnegative tensors revisited: plane stochastic tensors, Linear Multilinear Algebra 67 (2019) 1364-1391.
[3] W. Ding, Z. Luo, L. Qi, P-tensors, P_{0}-tensors and their applications, Linear Algebra Appl. 555 (2018) 336-354.
[4] R. A. Horn, C. R. Johnson, Matrix analysis, (2nd edition), Cambridge University Press, Cambridge, 2013.
[5] Z.-H. Huang, L. Qi, Tensor complementarity problems—Part I: basic theory, J. Optim. Theory Appl. 183 (2019) 1-23.
[6] M. Neumann, J. M. Peña and O. Pryporova, Some classes of nonsingular matrices and applications, Linear Algebra Appl. 438 (2013), 1936-1945.
[7] H. Orera, J. M. Peña, B_{π}^{R}-tensors. Linear Algebra Appl. 581 (2019) 247-259.
[8] J. M. Peña, A class of P-matrices with applications to the localization of the eigenvalues of a real matrix, SIAM J. Matrix Anal. Appl. 22 (2001) 1027-1037.
[9] L. Qi, Z. Luo, Tensor analysis, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2017.
[10] Y. Yang, Q. Yang, Further results for Perron-Frobenius theorem for nonnegative tensors, SIAM J. Matrix Anal. Appl. 31 (2010) 2517-2530.

[^0]: 2020 Mathematics Subject Classification. Primary 15A15; Secondary 15A69, 15B48
 Keywords. positive determinants, P-matrices, P-tensors
 Received: 29 April 2021; Revised: 17 August 2021; Accepted: 07 March 2022
 Communicated by Predrag Stanimirović
 This work was partially supported through the Spanish research grant PGC2018-096321-B-I00 (MCIU/AEI) and by Gobierno de Aragón (E41_20R).

 Email addresses: hectororera@unizar.es (H. Orera), jmpena@unizar.es (J. M. Peña)

